146 lines
4.9 KiB
C++
146 lines
4.9 KiB
C++
// SPDX-FileCopyrightText: 2016 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include <catch2/catch_test_macros.hpp>
|
|
|
|
#include <array>
|
|
#include <bitset>
|
|
#include <chrono>
|
|
#include <cstdlib>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
|
|
namespace {
|
|
// Numbers are chosen randomly to make sure the correct one is given.
|
|
constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
|
constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
|
|
std::array<s64, 5> delays{};
|
|
|
|
std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
|
u64 expected_callback = 0;
|
|
|
|
template <unsigned int IDX>
|
|
std::optional<std::chrono::nanoseconds> HostCallbackTemplate(std::uintptr_t user_data, s64 time,
|
|
std::chrono::nanoseconds ns_late) {
|
|
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
|
callbacks_ran_flags.set(IDX);
|
|
REQUIRE(CB_IDS[IDX] == user_data);
|
|
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
|
|
delays[IDX] = ns_late.count();
|
|
++expected_callback;
|
|
return std::nullopt;
|
|
}
|
|
|
|
struct ScopeInit final {
|
|
ScopeInit() {
|
|
core_timing.SetMulticore(true);
|
|
core_timing.Initialize([]() {});
|
|
}
|
|
|
|
Core::Timing::CoreTiming core_timing;
|
|
};
|
|
|
|
u64 TestTimerSpeed(Core::Timing::CoreTiming& core_timing) {
|
|
const u64 start = core_timing.GetGlobalTimeNs().count();
|
|
volatile u64 placebo = 0;
|
|
for (std::size_t i = 0; i < 1000; i++) {
|
|
placebo = placebo + core_timing.GetGlobalTimeNs().count();
|
|
}
|
|
const u64 end = core_timing.GetGlobalTimeNs().count();
|
|
return end - start;
|
|
}
|
|
|
|
} // Anonymous namespace
|
|
|
|
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
|
|
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
|
|
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
|
|
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
|
|
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
|
|
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
|
|
};
|
|
|
|
expected_callback = 0;
|
|
|
|
core_timing.SyncPause(true);
|
|
|
|
const u64 one_micro = 1000U;
|
|
for (std::size_t i = 0; i < events.size(); i++) {
|
|
const u64 order = calls_order[i];
|
|
const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
|
|
|
|
core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
|
|
}
|
|
/// test pause
|
|
REQUIRE(callbacks_ran_flags.none());
|
|
|
|
core_timing.Pause(false); // No need to sync
|
|
|
|
while (core_timing.HasPendingEvents())
|
|
;
|
|
|
|
REQUIRE(callbacks_ran_flags.all());
|
|
|
|
for (std::size_t i = 0; i < delays.size(); i++) {
|
|
const double delay = static_cast<double>(delays[i]);
|
|
const double micro = delay / 1000.0f;
|
|
const double mili = micro / 1000.0f;
|
|
printf("HostTimer Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
|
|
}
|
|
}
|
|
|
|
TEST_CASE("CoreTiming[BasicOrderNoPausing]", "[core]") {
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
std::vector<std::shared_ptr<Core::Timing::EventType>> events{
|
|
Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
|
|
Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
|
|
Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
|
|
Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
|
|
Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
|
|
};
|
|
|
|
core_timing.SyncPause(true);
|
|
core_timing.SyncPause(false);
|
|
|
|
expected_callback = 0;
|
|
|
|
const u64 start = core_timing.GetGlobalTimeNs().count();
|
|
const u64 one_micro = 1000U;
|
|
|
|
for (std::size_t i = 0; i < events.size(); i++) {
|
|
const u64 order = calls_order[i];
|
|
const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
|
|
core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
|
|
}
|
|
|
|
const u64 end = core_timing.GetGlobalTimeNs().count();
|
|
const double scheduling_time = static_cast<double>(end - start);
|
|
const double timer_time = static_cast<double>(TestTimerSpeed(core_timing));
|
|
|
|
while (core_timing.HasPendingEvents())
|
|
;
|
|
|
|
REQUIRE(callbacks_ran_flags.all());
|
|
|
|
for (std::size_t i = 0; i < delays.size(); i++) {
|
|
const double delay = static_cast<double>(delays[i]);
|
|
const double micro = delay / 1000.0f;
|
|
const double mili = micro / 1000.0f;
|
|
printf("HostTimer No Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
|
|
}
|
|
|
|
const double micro = scheduling_time / 1000.0f;
|
|
const double mili = micro / 1000.0f;
|
|
printf("HostTimer No Pausing Scheduling Time: %.3f %.6f\n", micro, mili);
|
|
printf("HostTimer No Pausing Timer Time: %.3f %.6f\n", timer_time / 1000.f,
|
|
timer_time / 1000000.f);
|
|
}
|