sqwarmed/sdk_src/public/raytrace.h

421 lines
14 KiB
C++

// $Id:$
#ifndef RAYTRACE_H
#define RAYTRACE_H
#include <tier0/platform.h>
#include <mathlib/vector.h>
#include <mathlib/ssemath.h>
#include <mathlib/lightdesc.h>
#include <assert.h>
#include <tier1/utlvector.h>
#include <tier1/utlbuffer.h>
#include <mathlib/mathlib.h>
#include <bspfile.h>
// fast SSE-ONLY ray tracing module. Based upon various "real time ray tracing" research.
//#define DEBUG_RAYTRACE 1
class FourRays
{
public:
FourVectors origin;
FourVectors direction;
inline void Check(void) const
{
// in order to be valid to trace as a group, all four rays must have the same signs in all
// of their direction components
#ifndef NDEBUG
for(int c=1;c<4;c++)
{
Assert(direction.X(0)*direction.X(c)>=0);
Assert(direction.Y(0)*direction.Y(c)>=0);
Assert(direction.Z(0)*direction.Z(c)>=0);
}
#endif
}
// returns direction sign mask for 4 rays. returns -1 if the rays can not be traced as a
// bundle.
int CalculateDirectionSignMask(void) const;
};
/// The format a triangle is stored in for intersections. size of this structure is important.
/// This structure can be in one of two forms. Before the ray tracing environment is set up, the
/// ProjectedEdgeEquations hold the coordinates of the 3 vertices, for facilitating bounding box
/// checks needed while building the tree. afterwards, they are changed into the projected ege
/// equations for intersection purposes.
enum triangleflags
{
FCACHETRI_TRANSPARENT = 0x01,
FCACHETRI_NEGATIVE_NORMAL = 0x02,
};
struct TriIntersectData_t
{
// this structure is 16longs=64 bytes for cache line packing.
float m_flNx, m_flNy, m_flNz; // plane equation
float m_flD;
int32 m_nTriangleID; // id of the triangle.
float m_ProjectedEdgeEquations[6]; // A,B,C for each edge equation. a
// point is inside the triangle if
// a*c1+b*c2+c is negative for all 3
// edges.
uint8 m_nCoordSelect0,m_nCoordSelect1; // the triangle is projected onto a 2d
// plane for edge testing. These are
// the indices (0..2) of the
// coordinates preserved in the
// projection
uint8 m_nFlags; // triangle flags
uint8 m_unused0; // no longer used
};
struct TriGeometryData_t
{
int32 m_nTriangleID; // id of the triangle.
float m_VertexCoordData[9]; // can't use a vector in a union
uint8 m_nFlags; // triangle flags
signed char m_nTmpData0; // used by kd-tree builder
signed char m_nTmpData1; // used by kd-tree builder
// accessors to get around union annoyance
FORCEINLINE Vector &Vertex(int idx)
{
return * ( reinterpret_cast<Vector *> ( m_VertexCoordData+3*idx ) );
}
};
struct CacheOptimizedTriangle
{
union
{
TriIntersectData_t m_IntersectData;
TriGeometryData_t m_GeometryData;
} m_Data;
// accessors to get around union annoyance
FORCEINLINE Vector &Vertex(int idx)
{
return * ( reinterpret_cast<Vector *> (m_Data.m_GeometryData.m_VertexCoordData+3*idx ) );
}
FORCEINLINE const Vector &Vertex(int idx) const
{
return * ( reinterpret_cast<const Vector *> (m_Data.m_GeometryData.m_VertexCoordData+3*idx ) );
}
void ChangeIntoIntersectionFormat(void); // change information storage format for
// computing intersections.
int ClassifyAgainstAxisSplit(int split_plane, float split_value); // PLANECHECK_xxx below
// Debug - take a triangle that has been converted to intersection format and extract the vertices
// from by intersecting the planes
void ExtractVerticesFromIntersectionFormat( Vector &v0, Vector &v1, Vector &v2 ) const;
};
#define PLANECHECK_POSITIVE 1
#define PLANECHECK_NEGATIVE -1
#define PLANECHECK_STRADDLING 0
#define KDNODE_STATE_XSPLIT 0 // this node is an x split
#define KDNODE_STATE_YSPLIT 1 // this node is a ysplit
#define KDNODE_STATE_ZSPLIT 2 // this node is a zsplit
#define KDNODE_STATE_LEAF 3 // this node is a leaf
struct CacheOptimizedKDNode
{
// this is the cache intensive data structure. "Tricks" are used to fit it into 8 bytes:
//
// A) the right child is always stored after the left child, which means we only need one
// pointer
// B) The type of node (KDNODE_xx) is stored in the lower 2 bits of the pointer.
// C) for leaf nodes, we store the number of triangles in the leaf in the same place as the floating
// point splitting parameter is stored in a non-leaf node
int32 Children; // child idx, or'ed with flags above
float SplittingPlaneValue; // for non-leaf nodes, the nodes on the
// "high" side of the splitting plane
// are on the right
#ifdef DEBUG_RAYTRACE
Vector vecMins;
Vector vecMaxs;
#endif
inline int NodeType(void) const
{
return Children & 3;
}
inline int32 TriangleIndexStart(void) const
{
assert(NodeType()==KDNODE_STATE_LEAF);
return Children>>2;
}
inline int LeftChild(void) const
{
assert(NodeType()!=KDNODE_STATE_LEAF);
return Children>>2;
}
inline int RightChild(void) const
{
return LeftChild()+1;
}
inline int NumberOfTrianglesInLeaf(void) const
{
assert(NodeType()==KDNODE_STATE_LEAF);
return *((int32 *) &SplittingPlaneValue);
}
inline void SetNumberOfTrianglesInLeafNode(int n)
{
*((int32 *) &SplittingPlaneValue)=n;
}
protected:
};
struct RayTracingSingleResult
{
Vector surface_normal; // surface normal at intersection
int32 HitID; // -1=no hit. otherwise, triangle index
float HitDistance; // distance to intersection
float ray_length; // leng of initial ray
};
struct RayTracingResult
{
FourVectors surface_normal; // surface normal at intersection
ALIGN16 int32 HitIds[4] ALIGN16_POST; // -1=no hit. otherwise, triangle index
fltx4 HitDistance; // distance to intersection
};
class RayTraceLight
{
public:
FourVectors Position;
FourVectors Intensity;
};
#define RTE_FLAGS_FAST_TREE_GENERATION 1
#define RTE_FLAGS_DONT_STORE_TRIANGLE_COLORS 2 // saves memory if not needed
#define RTE_FLAGS_DONT_STORE_TRIANGLE_MATERIALS 4
enum RayTraceLightingMode_t {
DIRECT_LIGHTING, // just dot product lighting
DIRECT_LIGHTING_WITH_SHADOWS, // with shadows
GLOBAL_LIGHTING // global light w/ shadows
};
class RayStream
{
friend class RayTracingEnvironment;
RayTracingSingleResult *PendingStreamOutputs[8][4];
int n_in_stream[8];
FourRays PendingRays[8];
public:
RayStream(void)
{
memset(n_in_stream,0,sizeof(n_in_stream));
}
};
// When transparent triangles are in the list, the caller can provide a callback that will get called at each triangle
// allowing the callback to stop processing if desired.
// UNDONE: This is not currently SIMD - it really only supports single rays
// Also for efficiency FourRays really needs some kind of active mask for the cases where rays get unbundled
class ITransparentTriangleCallback
{
public:
virtual bool VisitTriangle_ShouldContinue( const TriIntersectData_t &triangle, const FourRays &rays, fltx4 *hitMask, fltx4 *b0, fltx4 *b1, fltx4 *b2, int32 hitID ) = 0;
};
enum RTECullMode_t
{
RTE_CULL_NONE = 0,
RTE_CULL_FRONT,
RTE_CULL_BACK
};
// serialization flag bits and defines
#define RT_ENV_SERIALIZE_COLORS 1
class RayTracingEnvironment
{
public:
uint32 Flags; // RTE_FLAGS_xxx above
Vector m_MinBound;
Vector m_MaxBound;
FourVectors BackgroundColor; //< color where no intersection
CUtlVector<CacheOptimizedKDNode> OptimizedKDTree; //< the packed kdtree. root is 0
CUtlBlockVector<CacheOptimizedTriangle> OptimizedTriangleList; //< the packed triangles
CUtlVector<int32> TriangleIndexList; //< the list of triangle indices.
CUtlVector<LightDesc_t> LightList; //< the list of lights
CUtlVector<Vector> TriangleColors; //< color of tries
CUtlVector<int32> TriangleMaterials; //< material index of tries
public:
RayTracingEnvironment() : OptimizedTriangleList( 1024 )
{
BackgroundColor.DuplicateVector(Vector(1,0,0)); // red
Flags=0;
}
#if !( defined ( _DEBUG ) && defined ( HAMMER_RAYTRACE ) )
inline void* operator new( size_t size ) { MEM_ALLOC_CREDIT_( "RayTracingEnvironment" ); return MemAlloc_AllocAligned( size, 16 ); }
inline void* operator new( size_t size, int nBlockUse, const char *pFileName, int nLine ) { MEM_ALLOC_CREDIT_( "RayTracingEnvironment" ); return MemAlloc_AllocAligned( size, 16 ); }
inline void operator delete( void* p ) { MemAlloc_FreeAligned( p ); }
inline void operator delete( void* p, int nBlockUse, const char *pFileName, int nLine ) { MemAlloc_FreeAligned( p ); }
#endif
// call AddTriangle to set up the world
void AddTriangle(int32 id, const Vector &v1, const Vector &v2, const Vector &v3,
const Vector &color);
// Adds a triangle with flags & material
void AddTriangle(int32 id, const Vector &v1, const Vector &v2, const Vector &v3,
const Vector &color, uint16 flags, int32 materialIndex);
void AddQuad(int32 id, const Vector &v1, const Vector &v2, const Vector &v3,
const Vector &v4, // specify vertices in cw or ccw order
const Vector &color);
// for ease of testing.
void AddAxisAlignedRectangularSolid(int id,Vector mincoord, Vector Maxcoord,
const Vector &color);
// SetupAccelerationStructure to prepare for tracing
void SetupAccelerationStructure(void);
// lowest level intersection routine - fire 4 rays through the scene. all 4 rays must pass the
// Check() function, and t extents must be initialized. skipid can be set to exclude a
// particular id (such as the origin surface). This function finds the closest intersection.
template <RTECullMode_t cullMode>
void Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax,int DirectionSignMask,
RayTracingResult *rslt_out,
int32 skip_id=-1, ITransparentTriangleCallback *pCallback = NULL );
// wrapper for the low level trace4 rays routine
void Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax,int DirectionSignMask,
RayTracingResult *rslt_out,
int32 skip_id=-1, ITransparentTriangleCallback *pCallback = NULL, RTECullMode_t cullMode = RTE_CULL_NONE );
// higher level intersection routine that handles computing the mask and handling rays which do not match in direciton sign
void Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax,
RayTracingResult *rslt_out,
int32 skip_id=-1, ITransparentTriangleCallback *pCallback = NULL, RTECullMode_t cullMode = RTE_CULL_NONE );
// compute virtual light sources to model inter-reflection
void ComputeVirtualLightSources(void);
// high level interface - pass viewing parameters, rendering flags, and a destination frame
// buffer, and get a ray traced scene in 32-bit rgba format
void RenderScene(int width, int height, // width and height of desired rendering
int stride, // actual width in pixels of target buffer
uint32 *output_buffer, // pointer to destination
Vector CameraOrigin, // eye position
Vector ULCorner, // word space coordinates of upper left
// monitor corner
Vector URCorner, // top right corner
Vector LLCorner, // lower left
Vector LRCorner, // lower right
RayTraceLightingMode_t lightmode=DIRECT_LIGHTING);
/// raytracing stream - lets you trace an array of rays by feeding them to this function.
/// results will not be returned until FinishStream is called. This function handles sorting
/// the rays by direction, tracing them 4 at a time, and de-interleaving the results.
void AddToRayStream(RayStream &s,
Vector const &start,Vector const &end,RayTracingSingleResult *rslt_out,
RTECullMode_t cullMode = RTE_CULL_NONE);
inline void FlushStreamEntry(RayStream &s, int msk, RTECullMode_t cullMode = RTE_CULL_NONE);
/// call this when you are done. handles all cleanup. After this is called, all rslt ptrs
/// previously passed to AddToRaySteam will have been filled in.
void FinishRayStream(RayStream &s, RTECullMode_t cullMode = RTE_CULL_NONE);
int MakeLeafNode(int first_tri, int last_tri);
float CalculateCostsOfSplit(
int split_plane,int32 const *tri_list,int ntris,
Vector MinBound,Vector MaxBound, float &split_value,
int &nleft, int &nright, int &nboth);
void RefineNode(int node_number,int32 const *tri_list,int ntris,
Vector MinBound,Vector MaxBound, int depth);
void CalculateTriangleListBounds(int32 const *tris,int ntris,
Vector &minout, Vector &maxout);
void AddInfinitePointLight(Vector position, // light center
Vector intensity); // rgb amount
// use the global variables set by LoadBSPFile to populated the RayTracingEnvironment with
// faces.
void InitializeFromLoadedBSP(void);
void AddBSPFace(int id,dface_t const &face);
// MakeRoomForTriangles - a hint telling it how many triangles we are going to add so that
// the utl vectors used can be pre-allocated
void MakeRoomForTriangles( int ntriangles );
const CacheOptimizedTriangle &GetTriangle( int32 triID )
{
return OptimizedTriangleList[triID];
}
int32 GetTriangleMaterial( int32 triID )
{
return TriangleMaterials[triID];
}
const Vector &GetTriangleColor( int triID )
{
return TriangleColors[triID];
}
// (un)serialization
size_t GetSerializationNumBytes( uint32 nSerializationFlags = 0 ) const;
void Serialize( CUtlBuffer &outbuf, uint32 nSerializationFlags = 0 ) const;
void UnSerialize( CUtlBuffer &inbuf );
};
#endif