346 lines
9.5 KiB
C++
346 lines
9.5 KiB
C++
//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======//
|
|
//
|
|
// Purpose: A fast stack memory allocator that uses virtual memory if available
|
|
//
|
|
//===========================================================================//
|
|
|
|
#ifndef MEMSTACK_H
|
|
#define MEMSTACK_H
|
|
|
|
#if defined( _WIN32 )
|
|
#pragma once
|
|
#endif
|
|
|
|
#include "tier1/utlvector.h"
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
typedef unsigned MemoryStackMark_t;
|
|
|
|
class CMemoryStack
|
|
{
|
|
public:
|
|
CMemoryStack();
|
|
~CMemoryStack();
|
|
|
|
bool Init( unsigned maxSize = 0, unsigned commitSize = 0, unsigned initialCommit = 0, unsigned alignment = 16 );
|
|
#ifdef _X360
|
|
bool InitPhysical( uint size, uint nBaseAddrAlignment, uint alignment = 16, uint32 nAdditionalFlags = 0 );
|
|
#endif
|
|
void Term();
|
|
|
|
int GetSize();
|
|
int GetMaxSize();
|
|
int GetUsed();
|
|
|
|
void *Alloc( unsigned bytes, bool bClear = false ) RESTRICT;
|
|
|
|
MemoryStackMark_t GetCurrentAllocPoint();
|
|
void FreeToAllocPoint( MemoryStackMark_t mark, bool bDecommit = true );
|
|
void FreeAll( bool bDecommit = true );
|
|
|
|
void Access( void **ppRegion, unsigned *pBytes );
|
|
|
|
void PrintContents();
|
|
|
|
void *GetBase();
|
|
const void *GetBase() const { return const_cast<CMemoryStack *>(this)->GetBase(); }
|
|
|
|
bool CommitSize( int );
|
|
|
|
private:
|
|
bool CommitTo( byte * ) RESTRICT;
|
|
void RegisterAllocation();
|
|
void RegisterDeallocation();
|
|
|
|
byte *m_pNextAlloc;
|
|
byte *m_pCommitLimit;
|
|
byte *m_pAllocLimit;
|
|
|
|
byte *m_pBase;
|
|
bool m_bRegisteredAllocation;
|
|
|
|
unsigned m_maxSize;
|
|
unsigned m_alignment;
|
|
#ifdef _WIN32
|
|
unsigned m_commitSize;
|
|
unsigned m_minCommit;
|
|
#endif
|
|
#ifdef _X360
|
|
bool m_bPhysical;
|
|
#endif
|
|
};
|
|
|
|
//-------------------------------------
|
|
|
|
FORCEINLINE void *CMemoryStack::Alloc( unsigned bytes, bool bClear ) RESTRICT
|
|
{
|
|
Assert( m_pBase );
|
|
|
|
int alignment = m_alignment;
|
|
if ( bytes )
|
|
{
|
|
bytes = AlignValue( bytes, alignment );
|
|
}
|
|
else
|
|
{
|
|
bytes = alignment;
|
|
}
|
|
|
|
|
|
void *pResult = m_pNextAlloc;
|
|
byte *pNextAlloc = m_pNextAlloc + bytes;
|
|
|
|
if ( pNextAlloc > m_pCommitLimit )
|
|
{
|
|
if ( !CommitTo( pNextAlloc ) )
|
|
{
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if ( bClear )
|
|
{
|
|
memset( pResult, 0, bytes );
|
|
}
|
|
|
|
m_pNextAlloc = pNextAlloc;
|
|
|
|
return pResult;
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
inline bool CMemoryStack::CommitSize( int nBytes )
|
|
{
|
|
if ( GetSize() != nBytes )
|
|
{
|
|
return CommitTo( m_pBase + nBytes );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
inline int CMemoryStack::GetMaxSize()
|
|
{
|
|
return m_maxSize;
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
inline int CMemoryStack::GetUsed()
|
|
{
|
|
return ( m_pNextAlloc - m_pBase );
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
inline void *CMemoryStack::GetBase()
|
|
{
|
|
return m_pBase;
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
inline MemoryStackMark_t CMemoryStack::GetCurrentAllocPoint()
|
|
{
|
|
return ( m_pNextAlloc - m_pBase );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The CUtlMemoryStack class:
|
|
// A fixed memory class
|
|
//-----------------------------------------------------------------------------
|
|
template< typename T, typename I, size_t MAX_SIZE, size_t COMMIT_SIZE = 0, size_t INITIAL_COMMIT = 0 >
|
|
class CUtlMemoryStack
|
|
{
|
|
public:
|
|
// constructor, destructor
|
|
CUtlMemoryStack( int nGrowSize = 0, int nInitSize = 0 ) { m_MemoryStack.Init( MAX_SIZE * sizeof(T), COMMIT_SIZE * sizeof(T), INITIAL_COMMIT * sizeof(T), 4 ); COMPILE_TIME_ASSERT( sizeof(T) % 4 == 0 ); }
|
|
CUtlMemoryStack( T* pMemory, int numElements ) { Assert( 0 ); }
|
|
|
|
// Can we use this index?
|
|
bool IsIdxValid( I i ) const { long x=i; return (x >= 0) && (x < m_nAllocated); }
|
|
|
|
// Specify the invalid ('null') index that we'll only return on failure
|
|
static const I INVALID_INDEX = ( I )-1; // For use with COMPILE_TIME_ASSERT
|
|
static I InvalidIndex() { return INVALID_INDEX; }
|
|
|
|
class Iterator_t
|
|
{
|
|
Iterator_t( I i ) : index( i ) {}
|
|
I index;
|
|
friend class CUtlMemoryStack<T,I,MAX_SIZE, COMMIT_SIZE, INITIAL_COMMIT>;
|
|
public:
|
|
bool operator==( const Iterator_t it ) const { return index == it.index; }
|
|
bool operator!=( const Iterator_t it ) const { return index != it.index; }
|
|
};
|
|
Iterator_t First() const { return Iterator_t( m_nAllocated ? 0 : InvalidIndex() ); }
|
|
Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( it.index < m_nAllocated ? it.index + 1 : InvalidIndex() ); }
|
|
I GetIndex( const Iterator_t &it ) const { return it.index; }
|
|
bool IsIdxAfter( I i, const Iterator_t &it ) const { return i > it.index; }
|
|
bool IsValidIterator( const Iterator_t &it ) const { long x=it.index; return x >= 0 && x < m_nAllocated; }
|
|
Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex() ); }
|
|
|
|
// Gets the base address
|
|
T* Base() { return (T*)m_MemoryStack.GetBase(); }
|
|
const T* Base() const { return (const T*)m_MemoryStack.GetBase(); }
|
|
|
|
// element access
|
|
T& operator[]( I i ) { Assert( IsIdxValid(i) ); return Base()[i]; }
|
|
const T& operator[]( I i ) const { Assert( IsIdxValid(i) ); return Base()[i]; }
|
|
T& Element( I i ) { Assert( IsIdxValid(i) ); return Base()[i]; }
|
|
const T& Element( I i ) const { Assert( IsIdxValid(i) ); return Base()[i]; }
|
|
|
|
// Attaches the buffer to external memory....
|
|
void SetExternalBuffer( T* pMemory, int numElements ) { Assert( 0 ); }
|
|
|
|
// Size
|
|
int NumAllocated() const { return m_nAllocated; }
|
|
int Count() const { return m_nAllocated; }
|
|
|
|
// Grows the memory, so that at least allocated + num elements are allocated
|
|
void Grow( int num = 1 ) { Assert( num > 0 ); m_nAllocated += num; m_MemoryStack.Alloc( num * sizeof(T) ); }
|
|
|
|
// Makes sure we've got at least this much memory
|
|
void EnsureCapacity( int num ) { Assert( num <= MAX_SIZE ); if ( m_nAllocated < num ) Grow( num - m_nAllocated ); }
|
|
|
|
// Memory deallocation
|
|
void Purge() { m_MemoryStack.FreeAll(); m_nAllocated = 0; }
|
|
|
|
// is the memory externally allocated?
|
|
bool IsExternallyAllocated() const { return false; }
|
|
|
|
// Set the size by which the memory grows
|
|
void SetGrowSize( int size ) {}
|
|
|
|
private:
|
|
CMemoryStack m_MemoryStack;
|
|
int m_nAllocated;
|
|
};
|
|
|
|
|
|
#ifdef _X360
|
|
//-----------------------------------------------------------------------------
|
|
// A memory stack used for allocating physical memory on the 360
|
|
// Usage pattern anticipates we usually never go over the initial allocation
|
|
// When we do so, we're ok with slightly slower allocation
|
|
//-----------------------------------------------------------------------------
|
|
class CPhysicalMemoryStack
|
|
{
|
|
public:
|
|
CPhysicalMemoryStack();
|
|
~CPhysicalMemoryStack();
|
|
|
|
// The physical memory stack is allocated in chunks. We will initially
|
|
// allocate nInitChunkCount chunks, which will always be in memory.
|
|
// When FreeAll() is called, it will free down to the initial chunk count
|
|
// but not below it.
|
|
bool Init( size_t nChunkSizeInBytes, size_t nAlignment, int nInitialChunkCount, uint32 nAdditionalFlags );
|
|
void Term();
|
|
|
|
size_t GetSize() const;
|
|
size_t GetPeakUsed() const;
|
|
size_t GetUsed() const;
|
|
size_t GetFramePeakUsed() const;
|
|
|
|
MemoryStackMark_t GetCurrentAllocPoint() const;
|
|
void FreeToAllocPoint( MemoryStackMark_t mark, bool bUnused = true ); // bUnused is for interface compat with CMemoryStack
|
|
void *Alloc( size_t nSizeInBytes, bool bClear = false ) RESTRICT;
|
|
void FreeAll( bool bUnused = true ); // bUnused is for interface compat with CMemoryStack
|
|
|
|
void PrintContents();
|
|
|
|
private:
|
|
void *AllocFromOverflow( size_t nSizeInBytes );
|
|
|
|
struct PhysicalChunk_t
|
|
{
|
|
uint8 *m_pBase;
|
|
uint8 *m_pNextAlloc;
|
|
uint8 *m_pAllocLimit;
|
|
};
|
|
|
|
PhysicalChunk_t m_InitialChunk;
|
|
CUtlVector< PhysicalChunk_t > m_ExtraChunks;
|
|
size_t m_nUsage;
|
|
size_t m_nFramePeakUsage;
|
|
size_t m_nPeakUsage;
|
|
size_t m_nAlignment;
|
|
size_t m_nChunkSizeInBytes;
|
|
int m_nFirstAvailableChunk;
|
|
int m_nAdditionalFlags;
|
|
PhysicalChunk_t *m_pLastAllocedChunk;
|
|
};
|
|
|
|
//-------------------------------------
|
|
|
|
FORCEINLINE void *CPhysicalMemoryStack::Alloc( size_t nSizeInBytes, bool bClear ) RESTRICT
|
|
{
|
|
if ( nSizeInBytes )
|
|
{
|
|
nSizeInBytes = AlignValue( nSizeInBytes, m_nAlignment );
|
|
}
|
|
else
|
|
{
|
|
nSizeInBytes = m_nAlignment;
|
|
}
|
|
|
|
// Can't do an allocation bigger than the chunk size
|
|
Assert( nSizeInBytes <= m_nChunkSizeInBytes );
|
|
|
|
void *pResult = m_InitialChunk.m_pNextAlloc;
|
|
uint8 *pNextAlloc = m_InitialChunk.m_pNextAlloc + nSizeInBytes;
|
|
if ( pNextAlloc <= m_InitialChunk.m_pAllocLimit )
|
|
{
|
|
m_InitialChunk.m_pNextAlloc = pNextAlloc;
|
|
m_pLastAllocedChunk = &m_InitialChunk;
|
|
}
|
|
else
|
|
{
|
|
pResult = AllocFromOverflow( nSizeInBytes );
|
|
}
|
|
|
|
m_nUsage += nSizeInBytes;
|
|
m_nFramePeakUsage = MAX( m_nUsage, m_nFramePeakUsage );
|
|
m_nPeakUsage = MAX( m_nUsage, m_nPeakUsage );
|
|
|
|
if ( bClear )
|
|
{
|
|
memset( pResult, 0, nSizeInBytes );
|
|
}
|
|
|
|
return pResult;
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
inline size_t CPhysicalMemoryStack::GetPeakUsed() const
|
|
{
|
|
return m_nPeakUsage;
|
|
}
|
|
|
|
//-------------------------------------
|
|
|
|
inline size_t CPhysicalMemoryStack::GetUsed() const
|
|
{
|
|
return m_nUsage;
|
|
}
|
|
|
|
inline size_t CPhysicalMemoryStack::GetFramePeakUsed() const
|
|
{
|
|
return m_nFramePeakUsage;
|
|
}
|
|
|
|
inline MemoryStackMark_t CPhysicalMemoryStack::GetCurrentAllocPoint() const
|
|
{
|
|
Assert( m_pLastAllocedChunk );
|
|
return ( m_pLastAllocedChunk->m_pNextAlloc - m_pLastAllocedChunk->m_pBase );
|
|
}
|
|
|
|
#endif // _X360
|
|
|
|
#endif // MEMSTACK_H
|