sqwarmed/sdk_src/public/disp_common.cpp

1631 lines
48 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "disp_common.h"
#include "disp_powerinfo.h"
#include "builddisp.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
class CNodeVert
{
public:
CNodeVert() {}
CNodeVert( int ix, int iy ) {x=ix; y=iy;}
inline int& operator[]( int i ) {return ((int*)this)[i];}
inline int const& operator[]( int i ) const {return ((int*)this)[i];}
int x, y;
};
static CNodeVert const g_NodeChildLookup[4][2] =
{
{CNodeVert(0,0), CNodeVert(1,1)},
{CNodeVert(1,0), CNodeVert(2,1)},
{CNodeVert(0,1), CNodeVert(1,2)},
{CNodeVert(1,1), CNodeVert(2,2)}
};
static CNodeVert const g_NodeTriWinding[9] =
{
CNodeVert(0, 1),
CNodeVert(0, 0),
CNodeVert(1, 0),
CNodeVert(2, 0),
CNodeVert(2, 1),
CNodeVert(2, 2),
CNodeVert(1, 2),
CNodeVert(0, 2),
CNodeVert(0, 1)
};
// Indexed by CORNER_. These store NEIGHBOREDGE_ defines and tell which edges butt up against the corner.
static int g_CornerEdges[4][2] =
{
{ NEIGHBOREDGE_BOTTOM, NEIGHBOREDGE_LEFT }, // CORNER_LOWER_LEFT
{ NEIGHBOREDGE_TOP, NEIGHBOREDGE_LEFT }, // CORNER_UPPER_LEFT
{ NEIGHBOREDGE_TOP, NEIGHBOREDGE_RIGHT }, // CORNER_UPPER_RIGHT
{ NEIGHBOREDGE_BOTTOM, NEIGHBOREDGE_RIGHT } // CORNER_LOWER_RIGHT
};
int g_EdgeDims[4] =
{
0, // NEIGHBOREDGE_LEFT = X
1, // NEIGHBOREDGE_TOP = Y
0, // NEIGHBOREDGE_RIGHT = X
1 // NEIGHBOREDGE_BOTTOM = Y
};
CShiftInfo g_ShiftInfos[3][3] =
{
{
{0, 0, true}, // CORNER_TO_CORNER -> CORNER_TO_CORNER
{0, -1, true}, // CORNER_TO_CORNER -> CORNER_TO_MIDPOINT
{2, -1, true} // CORNER_TO_CORNER -> MIDPOINT_TO_CORNER
},
{
{0, 1, true}, // CORNER_TO_MIDPOINT -> CORNER_TO_CORNER
{0, 0, false}, // CORNER_TO_MIDPOINT -> CORNER_TO_MIDPOINT (invalid)
{0, 0, false} // CORNER_TO_MIDPOINT -> MIDPOINT_TO_CORNER (invalid)
},
{
{-1, 1, true}, // MIDPOINT_TO_CORNER -> CORNER_TO_CORNER
{0, 0, false}, // MIDPOINT_TO_CORNER -> CORNER_TO_MIDPOINT (invalid)
{0, 0, false} // MIDPOINT_TO_CORNER -> MIDPOINT_TO_CORNER (invalid)
}
};
int g_EdgeSideLenMul[4] =
{
0,
1,
1,
0
};
// --------------------------------------------------------------------------------- //
// Helper functions.
// --------------------------------------------------------------------------------- //
inline int SignedBitShift( int val, int shift )
{
if( shift > 0 )
return val << shift;
else
return val >> -shift;
}
static inline void RotateVertIndex(
NeighborOrientation neighor,
int sideLengthMinus1,
CVertIndex const &in,
CVertIndex &out )
{
if( neighor == ORIENTATION_CCW_0 )
{
out = in;
}
else if( neighor == ORIENTATION_CCW_90 )
{
out.x = in.y;
out.y = sideLengthMinus1 - in.x;
}
else if( neighor == ORIENTATION_CCW_180 )
{
out.x = sideLengthMinus1 - in.x;
out.y = sideLengthMinus1 - in.y;
}
else
{
out.x = sideLengthMinus1 - in.y;
out.y = in.x;
}
}
static inline void RotateVertIncrement(
NeighborOrientation neighor,
CVertIndex const &in,
CVertIndex &out )
{
if( neighor == ORIENTATION_CCW_0 )
{
out = in;
}
else if( neighor == ORIENTATION_CCW_90 )
{
out.x = in.y;
out.y = -in.x;
}
else if( neighor == ORIENTATION_CCW_180 )
{
out.x = -in.x;
out.y = -in.y;
}
else
{
out.x = -in.y;
out.y = in.x;
}
}
// --------------------------------------------------------------------------------- //
// CDispHelper functions.
// --------------------------------------------------------------------------------- //
int GetEdgeIndexFromPoint( CVertIndex const &index, int iMaxPower )
{
int sideLengthMinus1 = 1 << iMaxPower;
if( index.x == 0 )
return NEIGHBOREDGE_LEFT;
else if( index.y == sideLengthMinus1 )
return NEIGHBOREDGE_TOP;
else if( index.x == sideLengthMinus1 )
return NEIGHBOREDGE_RIGHT;
else if( index.y == 0 )
return NEIGHBOREDGE_BOTTOM;
else
return -1;
}
int GetCornerIndexFromPoint( CVertIndex const &index, int iPower )
{
int sideLengthMinus1 = 1 << iPower;
if( index.x == 0 && index.y == 0 )
return CORNER_LOWER_LEFT;
else if( index.x == 0 && index.y == sideLengthMinus1 )
return CORNER_UPPER_LEFT;
else if( index.x == sideLengthMinus1 && index.y == sideLengthMinus1 )
return CORNER_UPPER_RIGHT;
else if( index.x == sideLengthMinus1 && index.y == 0 )
return CORNER_LOWER_RIGHT;
else
return -1;
}
int GetNeighborEdgePower( CDispUtilsHelper *pDisp, int iEdge, int iSub )
{
CDispNeighbor *pEdge = pDisp->GetEdgeNeighbor( iEdge );
CDispSubNeighbor *pSub = &pEdge->m_SubNeighbors[iSub];
if ( !pSub->IsValid() )
return -1;
CDispUtilsHelper *pNeighbor = pDisp->GetDispUtilsByIndex( pSub->GetNeighborIndex() );
CShiftInfo *pInfo = &g_ShiftInfos[pSub->m_Span][pSub->m_NeighborSpan];
Assert( pInfo->m_bValid );
return pNeighbor->GetPower() + pInfo->m_PowerShiftAdd;
}
CDispUtilsHelper* SetupEdgeIncrements(
CDispUtilsHelper *pDisp,
int iEdge,
int iSub,
CVertIndex &myIndex,
CVertIndex &myInc,
CVertIndex &nbIndex,
CVertIndex &nbInc,
int &myEnd,
int &iFreeDim )
{
int iEdgeDim = g_EdgeDims[iEdge];
iFreeDim = !iEdgeDim;
CDispNeighbor *pSide = pDisp->GetEdgeNeighbor( iEdge );
CDispSubNeighbor *pSub = &pSide->m_SubNeighbors[iSub];
if ( !pSub->IsValid() )
return NULL;
CDispUtilsHelper *pNeighbor = pDisp->GetDispUtilsByIndex( pSub->m_iNeighbor );
CShiftInfo *pShiftInfo = &g_ShiftInfos[pSub->m_Span][pSub->m_NeighborSpan];
Assert( pShiftInfo->m_bValid );
// Setup a start point and edge increment (NOTE: just precalculate these
// and store them in the CDispSubNeighbors).
CVertIndex tempInc;
const CPowerInfo *pPowerInfo = pDisp->GetPowerInfo();
myIndex[iEdgeDim] = g_EdgeSideLenMul[iEdge] * pPowerInfo->m_SideLengthM1;
myIndex[iFreeDim] = pPowerInfo->m_MidPoint * iSub;
TransformIntoSubNeighbor( pDisp, iEdge, iSub, myIndex, nbIndex );
int myPower = pDisp->GetPowerInfo()->m_Power;
int nbPower = pNeighbor->GetPowerInfo()->m_Power + pShiftInfo->m_PowerShiftAdd;
myInc[iEdgeDim] = tempInc[iEdgeDim] = 0;
if( nbPower > myPower )
{
myInc[iFreeDim] = 1;
tempInc[iFreeDim] = 1 << (nbPower - myPower);
}
else
{
myInc[iFreeDim] = 1 << (myPower - nbPower);
tempInc[iFreeDim] = 1;
}
RotateVertIncrement( pSub->GetNeighborOrientation(), tempInc, nbInc );
// Walk along the edge.
if( pSub->m_Span == CORNER_TO_MIDPOINT )
myEnd = pDisp->GetPowerInfo()->m_SideLength >> 1;
else
myEnd = pDisp->GetPowerInfo()->m_SideLength - 1;
return pNeighbor;
}
int GetSubNeighborIndex(
CDispUtilsHelper *pDisp,
int iEdge,
CVertIndex const &nodeIndex )
{
const CPowerInfo *pPowerInfo = pDisp->GetPowerInfo();
const CDispNeighbor *pSide = pDisp->GetEdgeNeighbor( iEdge );
// Figure out if this is a vertical or horizontal edge.
int iEdgeDim = g_EdgeDims[iEdge];
int iFreeDim = !iEdgeDim;
int iFreeIndex = nodeIndex[iFreeDim];
// Figure out which of the (up to two) neighbors it lies in.
int iSub = 0;
if( iFreeIndex == pPowerInfo->m_MidPoint )
{
// If it's in the middle, we only are interested if there's one neighbor
// next to us (so we can enable its middle vert). If there are any neighbors
// that touch the midpoint, then we have no need to return them because it would
// touch their corner verts which are always active.
if( pSide->m_SubNeighbors[0].m_Span != CORNER_TO_CORNER )
return -1;
}
else if ( iFreeIndex > pPowerInfo->m_MidPoint )
{
iSub = 1;
}
// Make sure we get a valid neighbor.
if( !pSide->m_SubNeighbors[iSub].IsValid() )
{
if( iSub == 1 &&
pSide->m_SubNeighbors[0].IsValid() &&
pSide->m_SubNeighbors[0].m_Span == CORNER_TO_CORNER )
{
iSub = 0;
}
else
{
return -1;
}
}
return iSub;
}
void SetupSpan( int iPower, int iEdge, NeighborSpan span, CVertIndex &viStart, CVertIndex &viEnd )
{
int iFreeDim = !g_EdgeDims[iEdge];
const CPowerInfo *pPowerInfo = GetPowerInfo( iPower );
viStart = pPowerInfo->GetCornerPointIndex( iEdge );
viEnd = pPowerInfo->GetCornerPointIndex( (iEdge+1) & 3 );;
if ( iEdge == NEIGHBOREDGE_RIGHT || iEdge == NEIGHBOREDGE_BOTTOM )
{
// CORNER_TO_MIDPOINT and MIDPOINT_CORNER are defined where the edge moves up or right,
// but pPowerInfo->GetCornerPointIndex walks around the edges clockwise, so on the
// bottom and right edges (where GetCornerPointIndex has us moving down and left) we need to
// reverse the sense here to make sure we return the right span.
if ( span == CORNER_TO_MIDPOINT )
viStart[iFreeDim] = pPowerInfo->GetMidPoint();
else if ( span == MIDPOINT_TO_CORNER )
viEnd[iFreeDim] = pPowerInfo->GetMidPoint();
}
else
{
if ( span == CORNER_TO_MIDPOINT )
viEnd[iFreeDim] = pPowerInfo->GetMidPoint();
else if ( span == MIDPOINT_TO_CORNER )
viStart[iFreeDim] = pPowerInfo->GetMidPoint();
}
}
CDispUtilsHelper* TransformIntoSubNeighbor(
CDispUtilsHelper *pDisp,
int iEdge,
int iSub,
CVertIndex const &nodeIndex,
CVertIndex &out
)
{
const CDispSubNeighbor *pSub = &pDisp->GetEdgeNeighbor( iEdge )->m_SubNeighbors[iSub];
// Find the part of pDisp's edge that this neighbor covers.
CVertIndex viSrcStart, viSrcEnd;
SetupSpan( pDisp->GetPower(), iEdge, pSub->GetSpan(), viSrcStart, viSrcEnd );
// Find the corresponding parts on the neighbor.
CDispUtilsHelper *pNeighbor = pDisp->GetDispUtilsByIndex( pSub->GetNeighborIndex() );
int iNBEdge = (iEdge + 2 + pSub->GetNeighborOrientation()) & 3;
CVertIndex viDestStart, viDestEnd;
SetupSpan( pNeighbor->GetPower(), iNBEdge, pSub->GetNeighborSpan(), viDestEnd, viDestStart );
// Now map the one into the other.
int iFreeDim = !g_EdgeDims[iEdge];
int fixedPercent = ((nodeIndex[iFreeDim] - viSrcStart[iFreeDim]) * (1<<16)) / (viSrcEnd[iFreeDim] - viSrcStart[iFreeDim]);
Assert( fixedPercent >= 0 && fixedPercent <= (1<<16) );
int nbDim = g_EdgeDims[iNBEdge];
out[nbDim] = viDestStart[nbDim];
out[!nbDim] = viDestStart[!nbDim] + ((viDestEnd[!nbDim] - viDestStart[!nbDim]) * fixedPercent) / (1<<16);
Assert( out.x >= 0 && out.x < pNeighbor->GetSideLength() );
Assert( out.y >= 0 && out.y < pNeighbor->GetSideLength() );
return pNeighbor;
}
CDispUtilsHelper* TransformIntoNeighbor(
CDispUtilsHelper *pDisp,
int iEdge,
CVertIndex const &nodeIndex,
CVertIndex &out
)
{
if ( iEdge == -1 )
iEdge = GetEdgeIndexFromPoint( nodeIndex, pDisp->GetPower() );
int iSub = GetSubNeighborIndex( pDisp, iEdge, nodeIndex );
if ( iSub == -1 )
return NULL;
CDispUtilsHelper *pRet = TransformIntoSubNeighbor( pDisp, iEdge, iSub, nodeIndex, out );
#if 0
// Debug check.. make sure it comes back to the same point from the other side.
#if defined( _DEBUG )
static bool bTesting = false;
if ( pRet && !bTesting )
{
bTesting = true;
// We could let TransformIntoNeighbor figure out the index but if this is a corner vert, then
// it may pick the wrong edge and we'd get a benign assert.
int nbOrientation = pDisp->GetEdgeNeighbor( iEdge )->m_SubNeighbors[iSub].GetNeighborOrientation();
int iNeighborEdge = (iEdge + 2 + nbOrientation) & 3;
CVertIndex testIndex;
CDispUtilsHelper *pTest = TransformIntoNeighbor( pRet, iNeighborEdge, out, testIndex );
Assert( pTest == pDisp );
Assert( testIndex == nodeIndex );
bTesting = false;
}
#endif
#endif
return pRet;
}
bool DoesPointHaveAnyNeighbors(
CDispUtilsHelper *pDisp,
const CVertIndex &index )
{
// See if it connects to a neighbor on the edge.
CVertIndex dummy;
if ( TransformIntoNeighbor( pDisp, -1, index, dummy ) )
return true;
// See if it connects to a neighbor on a corner.
int iCorner = GetCornerIndexFromPoint( index, pDisp->GetPower() );
if ( iCorner == -1 )
return false;
// If there are any neighbors on the specified corner, then the point has neighbors.
if ( pDisp->GetCornerNeighbors( iCorner )->m_nNeighbors > 0 )
return true;
// Since points on corners touch two edges, we actually want to test two edges to see
// if the point has a neighbor on either edge.
for ( int i=0; i < 2; i++ )
{
if ( TransformIntoNeighbor( pDisp, g_CornerEdges[iCorner][i], index, dummy ) )
return true;
}
return false;
}
// ------------------------------------------------------------------------------------ //
// CDispSubEdgeIterator.
// ------------------------------------------------------------------------------------ //
CDispSubEdgeIterator::CDispSubEdgeIterator()
{
m_pNeighbor = 0;
m_FreeDim = m_Index.x = m_Inc.x = m_End = 0; // Setup so Next returns false.
}
void CDispSubEdgeIterator::Start( CDispUtilsHelper *pDisp, int iEdge, int iSub, bool bTouchCorners )
{
m_pNeighbor = SetupEdgeIncrements( pDisp, iEdge, iSub, m_Index, m_Inc, m_NBIndex, m_NBInc, m_End, m_FreeDim );
if ( m_pNeighbor )
{
if ( bTouchCorners )
{
// Back up our current position by 1 so we hit the corner first, and extend the endpoint
// so we hit the other corner too.
m_Index -= m_Inc;
m_NBIndex -= m_NBInc;
m_End += m_Inc[m_FreeDim];
}
}
else
{
m_FreeDim = m_Index.x = m_Inc.x = m_End = 0; // Setup so Next returns false.
}
}
bool CDispSubEdgeIterator::Next()
{
m_Index += m_Inc;
m_NBIndex += m_NBInc;
// Were we just at the last point on the edge?
return m_Index[m_FreeDim] < m_End;
}
bool CDispSubEdgeIterator::IsLastVert() const
{
return (m_Index[m_FreeDim] + m_Inc[m_FreeDim]) >= m_End;
}
// ------------------------------------------------------------------------------------ //
// CDispEdgeIterator.
// ------------------------------------------------------------------------------------ //
CDispEdgeIterator::CDispEdgeIterator( CDispUtilsHelper *pDisp, int iEdge )
{
m_pDisp = pDisp;
m_iEdge = iEdge;
m_iCurSub = -1;
}
bool CDispEdgeIterator::Next()
{
while ( !m_It.Next() )
{
// Ok, move up to the next sub.
if ( m_iCurSub == 1 )
return false;
++m_iCurSub;
m_It.Start( m_pDisp, m_iEdge, m_iCurSub );
}
return true;
}
// ------------------------------------------------------------------------------------ //
// CDispCircumferenceIterator.
// ------------------------------------------------------------------------------------ //
CDispCircumferenceIterator::CDispCircumferenceIterator( int sideLength )
{
m_iCurEdge = -1;
m_SideLengthM1 = sideLength - 1;
}
bool CDispCircumferenceIterator::Next()
{
switch ( m_iCurEdge )
{
case -1:
{
m_iCurEdge = NEIGHBOREDGE_LEFT;
m_VertIndex.Init( 0, 0 );
}
break;
case NEIGHBOREDGE_LEFT:
{
++m_VertIndex.y;
if ( m_VertIndex.y == m_SideLengthM1 )
m_iCurEdge = NEIGHBOREDGE_TOP;
}
break;
case NEIGHBOREDGE_TOP:
{
++m_VertIndex.x;
if ( m_VertIndex.x == m_SideLengthM1 )
m_iCurEdge = NEIGHBOREDGE_RIGHT;
}
break;
case NEIGHBOREDGE_RIGHT:
{
--m_VertIndex.y;
if ( m_VertIndex.y == 0 )
m_iCurEdge = NEIGHBOREDGE_BOTTOM;
}
break;
case NEIGHBOREDGE_BOTTOM:
{
--m_VertIndex.x;
if ( m_VertIndex.x == 0 )
return false; // Done!
}
break;
}
return true;
}
// Helper function to setup an index either on the edges or the center
// of the box defined by [bottomleft,topRight].
static inline void SetupCoordXY( CNodeVert &out, CNodeVert const &bottomLeft, CNodeVert const &topRight, CNodeVert const &info )
{
for( int i=0; i < 2; i++ )
{
if( info[i] == 0 )
out[i] = bottomLeft[i];
else if( info[i] == 1 )
out[i] = (bottomLeft[i] + topRight[i]) >> 1;
else
out[i] = topRight[i];
}
}
static unsigned short* DispCommon_GenerateTriIndices_R(
CNodeVert const &bottomLeft,
CNodeVert const &topRight,
unsigned short *indices,
int power,
int sideLength )
{
if( power == 1 )
{
// Ok, add triangles. All we do here is follow a list of verts (g_NodeTriWinding)
// around the center vert of this node and make triangles.
int iCurTri = 0;
CNodeVert verts[3];
// verts[0] is always the center vert.
SetupCoordXY( verts[0], bottomLeft, topRight, CNodeVert(1,1) );
int iCurVert = 1;
for( int i=0; i < 9; i++ )
{
SetupCoordXY( verts[iCurVert], bottomLeft, topRight, g_NodeTriWinding[i] );
++iCurVert;
if( iCurVert == 3 )
{
for( int iTriVert=2; iTriVert >= 0; iTriVert-- )
{
int index = verts[iTriVert].y * sideLength + verts[iTriVert].x;
*indices = index;
++indices;
}
// Setup for the next triangle.
verts[1] = verts[2];
iCurVert = 2;
iCurTri++;
}
}
}
else
{
// Recurse into the children.
for( int i=0; i < 4; i++ )
{
CNodeVert childBottomLeft, childTopRight;
SetupCoordXY( childBottomLeft, bottomLeft, topRight, g_NodeChildLookup[i][0] );
SetupCoordXY( childTopRight, bottomLeft, topRight, g_NodeChildLookup[i][1] );
indices = DispCommon_GenerateTriIndices_R( childBottomLeft, childTopRight, indices, power-1, sideLength );
}
}
return indices;
}
// ------------------------------------------------------------------------------------------- //
// CDispUtilsHelper functions.
// ------------------------------------------------------------------------------------------- //
int CDispUtilsHelper::GetPower() const
{
return GetPowerInfo()->GetPower();
}
int CDispUtilsHelper::GetSideLength() const
{
return GetPowerInfo()->GetSideLength();
}
const CVertIndex& CDispUtilsHelper::GetCornerPointIndex( int iCorner ) const
{
return GetPowerInfo()->GetCornerPointIndex( iCorner );
}
int CDispUtilsHelper::VertIndexToInt( const CVertIndex &i ) const
{
Assert( i.x >= 0 && i.x < GetSideLength() && i.y >= 0 && i.y < GetSideLength() );
return i.y * GetSideLength() + i.x;
}
CVertIndex CDispUtilsHelper::GetEdgeMidPoint( int iEdge ) const
{
int end = GetSideLength() - 1;
int mid = GetPowerInfo()->GetMidPoint();
if ( iEdge == NEIGHBOREDGE_LEFT )
return CVertIndex( 0, mid );
else if ( iEdge == NEIGHBOREDGE_TOP )
return CVertIndex( mid, end );
else if ( iEdge == NEIGHBOREDGE_RIGHT )
return CVertIndex( end, mid );
else if ( iEdge == NEIGHBOREDGE_BOTTOM )
return CVertIndex( mid, 0 );
Assert( false );
return CVertIndex( 0, 0 );
}
int DispCommon_GetNumTriIndices( int power )
{
return (1<<power) * (1<<power) * 2 * 3;
}
void DispCommon_GenerateTriIndices( int power, unsigned short *indices )
{
int sideLength = 1 << power;
DispCommon_GenerateTriIndices_R(
CNodeVert( 0, 0 ),
CNodeVert( sideLength, sideLength ),
indices,
power,
sideLength+1 );
}
//=============================================================================
//
// Finding neighbors.
//
// This table swaps MIDPOINT_TO_CORNER and CORNER_TO_MIDPOINT.
static NeighborSpan g_SpanFlip[3] = {CORNER_TO_CORNER, MIDPOINT_TO_CORNER, CORNER_TO_MIDPOINT};
static bool g_bEdgeNeighborFlip[4] = {false, false, true, true};
// These map CCoreDispSurface neighbor orientations (which are actually edge indices)
// into our 'degrees of rotation' representation.
static int g_CoreDispNeighborOrientationMap[4][4] =
{
{ORIENTATION_CCW_180, ORIENTATION_CCW_270, ORIENTATION_CCW_0, ORIENTATION_CCW_90},
{ORIENTATION_CCW_90, ORIENTATION_CCW_180, ORIENTATION_CCW_270, ORIENTATION_CCW_0},
{ORIENTATION_CCW_0, ORIENTATION_CCW_90, ORIENTATION_CCW_180, ORIENTATION_CCW_270},
{ORIENTATION_CCW_270, ORIENTATION_CCW_0, ORIENTATION_CCW_90, ORIENTATION_CCW_180}
};
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void ClearNeighborData( CCoreDispInfo *pDisp )
{
for ( int i=0; i < 4; i++ )
{
pDisp->GetEdgeNeighbor( i )->SetInvalid();
pDisp->GetCornerNeighbors( i )->SetInvalid();
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void GetDispBox( CCoreDispInfo *pDisp, CDispBox &box )
{
// Calculate the bbox for this displacement.
Vector vMin( 1e24, 1e24, 1e24 );
Vector vMax( -1e24, -1e24, -1e24 );
for ( int iVert = 0; iVert < 4; ++iVert )
{
const Vector &vTest = pDisp->GetSurface()->GetPoint( iVert );
VectorMin( vTest, vMin, vMin );
VectorMax( vTest, vMax, vMax );
}
// Puff the box out a little.
static float flPuff = 0.1f;
vMin -= Vector( flPuff, flPuff, flPuff );
vMax += Vector( flPuff, flPuff, flPuff );
box.m_Min = vMin;
box.m_Max = vMax;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void SetupDispBoxes( CCoreDispInfo **ppListBase, int nListSize, CUtlVector<CDispBox> &out )
{
out.SetSize( nListSize );
for ( int iDisp = 0; iDisp < nListSize; ++iDisp )
{
CCoreDispInfo *pDisp = ppListBase[iDisp];
GetDispBox( pDisp, out[iDisp] );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
inline bool DoBBoxesTouch( const CDispBox &a, const CDispBox &b )
{
for ( int i=0; i < 3; i++ )
{
if ( a.m_Max[i] < b.m_Min[i] )
return false;
if ( a.m_Min[i] > b.m_Max[i] )
return false;
}
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool FindEdge( CCoreDispInfo *pInfo, Vector const &vPoint1, Vector const &vPoint2, int &iEdge )
{
CCoreDispSurface *pSurface = pInfo->GetSurface();
for( iEdge=0; iEdge < 4; iEdge++ )
{
if( VectorsAreEqual( vPoint1, pSurface->GetPoint( iEdge ), 0.01f ) &&
VectorsAreEqual( vPoint2, pSurface->GetPoint( (iEdge+1) & 3), 0.01f ) )
{
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
NeighborSpan NeighborSpanFlip( int iEdge, NeighborSpan span )
{
if ( g_bEdgeNeighborFlip[iEdge] )
return g_SpanFlip[span];
else
return span;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void AddNeighbor( CCoreDispInfo *pMain,
int iEdge, // Which of pMain's sides this is on.
int iSub, // Which sub neighbor this takes up in pSide.
NeighborSpan span, // What span this fills in pMain.
CCoreDispInfo *pOther, int iNeighborEdge, NeighborSpan nbSpan )
{
// The edge iteration before coming in here goes 0-1, 1-2, 2-3, 3-4.
// This flips the sense of CORNER_TO_MIDPOINT/MIDPOINT_TO_CORNER on the right and
// bottom edges and is undone here.
span = NeighborSpanFlip( iEdge, span );
nbSpan = NeighborSpanFlip( iNeighborEdge, nbSpan );
// Get the subspan this fills on our displacement.
CDispSubNeighbor *pSub = &pMain->GetEdgeNeighbor(iEdge)->m_SubNeighbors[iSub];
// Which subspan does this use in the neighbor?
CDispSubNeighbor *pNeighborSub;
if ( nbSpan == MIDPOINT_TO_CORNER )
{
pNeighborSub = &pOther->GetEdgeNeighbor(iNeighborEdge)->m_SubNeighbors[1];
}
else
{
pNeighborSub = &pOther->GetEdgeNeighbor(iNeighborEdge)->m_SubNeighbors[0];
}
// Make sure this slot isn't used on either displacement.
if ( pSub->IsValid() || pNeighborSub->IsValid() )
{
ExecuteOnce( Warning( "Found a displacement edge abutting multiple other edges.\n" ) );
return;
}
// Now just copy the data into each displacement.
pSub->m_iNeighbor = pOther->GetListIndex();
pSub->m_NeighborOrientation = g_CoreDispNeighborOrientationMap[iEdge][iNeighborEdge];
pSub->m_Span = span;
pSub->m_NeighborSpan = nbSpan;
pNeighborSub->m_iNeighbor = pMain->GetListIndex();
pNeighborSub->m_NeighborOrientation = g_CoreDispNeighborOrientationMap[iNeighborEdge][iEdge];
pNeighborSub->m_Span = nbSpan;
pNeighborSub->m_NeighborSpan = span;
#if defined( _DEBUG )
// Walk an iterator over the new connection to make sure it works.
CDispSubEdgeIterator it;
it.Start( pMain, iEdge, iSub );
while ( it.Next() )
{
CVertIndex nbIndex;
TransformIntoNeighbor( pMain, iEdge, it.GetVertIndex(), nbIndex );
}
#endif
}
//-----------------------------------------------------------------------------
// This function is symmetric wrt pMain and pOther. It sets up valid neighboring data for
// the relationship between both of them.
//-----------------------------------------------------------------------------
void SetupEdgeNeighbors( CCoreDispInfo *pMain, CCoreDispInfo *pOther )
{
// Initialize..
for( int iEdge=0; iEdge < 4; iEdge++ )
{
// Setup the edge points and the midpoint.
Vector pt[2], mid;
pMain->GetSurface()->GetPoint( iEdge, pt[0] );
pMain->GetSurface()->GetPoint( (iEdge + 1) & 3, pt[1] );
mid = (pt[0] + pt[1]) * 0.5f;
// Find neighbors.
int iNBEdge;
if( FindEdge( pOther, pt[1], pt[0], iNBEdge ) )
{
AddNeighbor( pMain, iEdge, 0, CORNER_TO_CORNER, pOther, iNBEdge, CORNER_TO_CORNER );
}
else
{
// Look for one that takes up our whole side.
if( FindEdge( pOther, pt[1], pt[0]*2 - pt[1], iNBEdge ) )
{
AddNeighbor( pMain, iEdge, 0, CORNER_TO_CORNER, pOther, iNBEdge, CORNER_TO_MIDPOINT );
}
else if( FindEdge( pOther, pt[1]*2 - pt[0], pt[0], iNBEdge ) )
{
AddNeighbor( pMain, iEdge, 0, CORNER_TO_CORNER, pOther, iNBEdge, MIDPOINT_TO_CORNER );
}
else
{
// Ok, look for 1 or two that abut this side.
if( FindEdge( pOther, mid, pt[0], iNBEdge ) )
{
AddNeighbor( pMain, iEdge, g_bEdgeNeighborFlip[iEdge], CORNER_TO_MIDPOINT, pOther, iNBEdge, CORNER_TO_CORNER );
}
if( FindEdge( pOther, pt[1], mid, iNBEdge ) )
{
AddNeighbor( pMain, iEdge, !g_bEdgeNeighborFlip[iEdge], MIDPOINT_TO_CORNER, pOther, iNBEdge, CORNER_TO_CORNER );
}
}
}
}
}
//-----------------------------------------------------------------------------
// Returns true if the displacement has an edge neighbor with the given index.
//-----------------------------------------------------------------------------
bool HasEdgeNeighbor( const CCoreDispInfo *pMain, int iNeighbor )
{
for ( int i=0; i < 4; i++ )
{
const CDispCornerNeighbors *pCorner = pMain->GetCornerNeighbors( i );
for ( int iNB=0; iNB < pCorner->m_nNeighbors; iNB++ )
if ( pCorner->m_Neighbors[iNB] == iNeighbor )
return true;
const CDispNeighbor *pEdge = pMain->GetEdgeNeighbor( i );
if ( pEdge->m_SubNeighbors[0].GetNeighborIndex() == iNeighbor ||
pEdge->m_SubNeighbors[1].GetNeighborIndex() == iNeighbor )
{
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void SetupCornerNeighbors( CCoreDispInfo *pMain, CCoreDispInfo *pOther, int *nOverflows )
{
if ( HasEdgeNeighbor( pMain, pOther->GetListIndex() ) )
return;
// Do these two share a vertex?
int nShared = 0;
int iMainSharedCorner = -1;
int iOtherSharedCorner = -1;
for ( int iMainCorner=0; iMainCorner < 4; iMainCorner++ )
{
Vector const &vMainCorner = pMain->GetCornerPoint( iMainCorner );
for ( int iOtherCorner=0; iOtherCorner < 4; iOtherCorner++ )
{
Vector const &vOtherCorner = pOther->GetCornerPoint( iOtherCorner );
if ( VectorsAreEqual( vMainCorner, vOtherCorner, 0.001f ) )
{
iMainSharedCorner = iMainCorner;
iOtherSharedCorner = iOtherCorner;
++nShared;
}
}
}
if ( nShared == 1 )
{
CDispCornerNeighbors *pMainCorner = pMain->GetCornerNeighbors( iMainSharedCorner );
CDispCornerNeighbors *pOtherCorner = pOther->GetCornerNeighbors( iOtherSharedCorner );
if ( pMainCorner->m_nNeighbors < MAX_DISP_CORNER_NEIGHBORS &&
pOtherCorner->m_nNeighbors < MAX_DISP_CORNER_NEIGHBORS )
{
pMainCorner->m_Neighbors[pMainCorner->m_nNeighbors++] = pOther->GetListIndex();
pOtherCorner->m_Neighbors[pOtherCorner->m_nNeighbors++] = pMain->GetListIndex();
}
else
{
++(*nOverflows);
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool VerifyNeighborVertConnection( CDispUtilsHelper *pDisp, const CVertIndex &nodeIndex,
const CDispUtilsHelper *pTestNeighbor, const CVertIndex &testNeighborIndex,
int mySide )
{
CVertIndex nbIndex( -1, -1 );
CDispUtilsHelper *pNeighbor = NULL;
if( (pNeighbor = TransformIntoNeighbor( pDisp, mySide, nodeIndex, nbIndex ) ) != NULL )
{
if ( pTestNeighbor != pNeighbor || nbIndex != testNeighborIndex )
return false;
CVertIndex testIndex( -1, -1 );
int iSide = GetEdgeIndexFromPoint( nbIndex, pNeighbor->GetPowerInfo()->m_Power );
if ( iSide == -1 )
{
return false;
}
CDispUtilsHelper *pTest = TransformIntoNeighbor( pNeighbor, iSide, nbIndex, testIndex );
if( pTest != pDisp || nodeIndex != testIndex )
{
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void VerifyNeighborConnections( CCoreDispInfo **ppListBase, int nDisps )
{
while ( 1 )
{
bool bHappy = true;
int iDisp;
for ( iDisp = 0; iDisp < nDisps; ++iDisp )
{
CCoreDispInfo *pDisp = ppListBase[iDisp];
CDispUtilsHelper *pHelper = pDisp;
for ( int iEdge=0; iEdge < 4; iEdge++ )
{
CDispEdgeIterator it( pHelper, iEdge );
while ( it.Next() )
{
if ( !VerifyNeighborVertConnection( pHelper, it.GetVertIndex(), it.GetCurrentNeighbor(), it.GetNBVertIndex(), iEdge ) )
{
pDisp->GetEdgeNeighbor( iEdge )->SetInvalid();
Warning( "Warning: invalid neighbor connection on displacement near (%.2f %.2f %.2f)\n", VectorExpand( pDisp->GetCornerPoint(0) ) );
bHappy = false;
}
}
}
}
if ( bHappy )
break;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void FindNeighboringDispSurfs( CCoreDispInfo **ppListBase, int nListSize )
{
// First, clear all neighboring data.
int iDisp;
for ( iDisp = 0; iDisp < nListSize; ++iDisp )
{
ClearNeighborData( ppListBase[iDisp] );
}
CUtlVector<CDispBox> boxes;
SetupDispBoxes( ppListBase, nListSize, boxes );
int nCornerOverflows = 0;
// Now test all pairs of displacements and setup neighboring relations between them.
for( iDisp = 0; iDisp < nListSize; ++iDisp )
{
CCoreDispInfo *pMain = ppListBase[iDisp];
for ( int iDisp2 = iDisp+1; iDisp2 < nListSize; ++iDisp2 )
{
CCoreDispInfo *pOther = ppListBase[iDisp2];
// Trivial reject.
if ( !DoBBoxesTouch( boxes[iDisp], boxes[iDisp2] ) )
continue;
SetupEdgeNeighbors( pMain, pOther );
// NOTE: this must come after SetupEdgeNeighbors because it makes sure not to add
// corner neighbors for disps that are already edge neighbors.
SetupCornerNeighbors( pMain, pOther, &nCornerOverflows );
}
}
if ( nCornerOverflows )
{
Warning( "Warning: overflowed %d displacement corner-neighbor lists.", nCornerOverflows );
}
// Debug check.. make sure the neighbor connections are intact (make sure that any
// edge vert that gets mapped into a neighbor gets mapped back the same way).
VerifyNeighborConnections( ppListBase, nListSize );
}
//=============================================================================
//
// Allowable verts.
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int IsCorner( CVertIndex const &index, int sideLength )
{
if ( index.x == 0 )
{
if ( index.y == 0 )
return true;
else if ( index.y == sideLength-1 )
return true;
}
else if ( index.x == sideLength-1 )
{
if ( index.y == 0 )
return true;
else if ( index.y == sideLength-1 )
return true;
}
return false;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool IsVertAllowed( CDispUtilsHelper *pDisp, CVertIndex const &sideVert, int iLevel )
{
if ( IsCorner( sideVert, pDisp->GetPowerInfo()->GetSideLength() ) )
return true;
int iSide = GetEdgeIndexFromPoint( sideVert, pDisp->GetPowerInfo()->GetPower() );
if ( iSide == -1 )
return true;
int iSub = GetSubNeighborIndex( pDisp, iSide, sideVert );
if ( iSub == -1 )
return true;
CDispSubNeighbor *pSub = &pDisp->GetEdgeNeighbor( iSide )->m_SubNeighbors[iSub];
CDispUtilsHelper *pNeighbor = pDisp->GetDispUtilsByIndex( pSub->m_iNeighbor );
Assert( pNeighbor );
// Ok, there is a neighbor.. see if this vertex exists in the neighbor.
CShiftInfo *pShiftInfo = &g_ShiftInfos[pSub->m_Span][pSub->m_NeighborSpan];
Assert( pShiftInfo->m_bValid );
if ( ( pNeighbor->GetPowerInfo()->GetPower() + pShiftInfo->m_PowerShiftAdd ) < ( iLevel+1 ) )
{
return false;
}
// Ok, it exists. Make sure the neighbor hasn't disallowed it.
CVertIndex nbIndex;
TransformIntoSubNeighbor( pDisp, iSide, iSub, sideVert, nbIndex );
CBitVec<MAX_DISPVERTS> &allowedVerts = CCoreDispInfo::FromDispUtils( pNeighbor )->GetAllowedVerts();
return !!allowedVerts.Get( pNeighbor->VertIndexToInt( nbIndex ) );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void UnallowVerts_R( CDispUtilsHelper *pDisp, CVertIndex const &nodeIndex, int &nUnallowed )
{
int iNodeIndex = pDisp->VertIndexToInt( nodeIndex );
CCoreDispInfo *pCoreDisp = CCoreDispInfo::FromDispUtils( pDisp );
if ( !pCoreDisp->GetAllowedVerts().Get( iNodeIndex ) )
return;
nUnallowed++;
pCoreDisp->GetAllowedVerts().Clear( iNodeIndex );
for ( int iDep=0; iDep < CVertInfo::NUM_REVERSE_DEPENDENCIES; iDep++ )
{
CVertDependency &dep = pDisp->GetPowerInfo()->m_pVertInfo[iNodeIndex].m_ReverseDependencies[iDep];
if( dep.m_iVert.x != -1 && dep.m_iNeighbor == -1 )
{
UnallowVerts_R( pDisp, dep.m_iVert, nUnallowed );
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void DisableUnallowedVerts_R( CDispUtilsHelper *pDisp, CVertIndex const &nodeIndex, int iLevel, int &nUnallowed )
{
int iNodeIndex = pDisp->VertIndexToInt( nodeIndex );
// This vertex is not allowed if it is on an edge with a neighbor
// that does not have this vertex.
// Test side verts.
for( int iSide=0; iSide < 4; iSide++ )
{
CVertIndex const &sideVert = pDisp->GetPowerInfo()->m_pSideVerts[iNodeIndex].m_Verts[iSide];
if( !IsVertAllowed( pDisp, sideVert, iLevel ) )
{
// This vert (and its dependencies) can't exist.
UnallowVerts_R( pDisp, sideVert, nUnallowed );
}
}
#if 0
// Test dependencies.
for( int iDep=0; iDep < 2; iDep++ )
{
CVertDependency const &dep = pDisp->GetPowerInfo()->m_pVertInfo[iNodeIndex].m_Dependencies[iDep];
if( dep.m_iNeighbor == -1 && !IsVertAllowed( pDisp, dep.m_iVert, iLevel ) )
{
UnallowVerts_R( pDisp, nodeIndex, nUnallowed );
}
}
#endif
// Recurse.
if( iLevel+1 < pDisp->GetPower() )
{
for( int iChild=0; iChild < 4; iChild++ )
{
DisableUnallowedVerts_R( pDisp, pDisp->GetPowerInfo()->m_pChildVerts[iNodeIndex].m_Verts[iChild], iLevel+1, nUnallowed );
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void SetupAllowedVerts( CCoreDispInfo **ppListBase, int nListSize )
{
// Set all verts to allowed to start with.
int iDisp;
for ( iDisp = 0; iDisp < nListSize; ++iDisp )
{
ppListBase[iDisp]->GetAllowedVerts().SetAll();
}
// Disable verts that need to be disabled so higher-powered displacements remove
// the necessary triangles when bordering lower-powered displacements.
// It is necessary to loop around here because disabling verts can accumulate into
// neighbors.
bool bContinue;
do
{
bContinue = false;
for( iDisp = 0; iDisp < nListSize; ++iDisp )
{
CDispUtilsHelper *pDisp = ppListBase[iDisp];
int nUnallowed = 0;
DisableUnallowedVerts_R( pDisp, pDisp->GetPowerInfo()->m_RootNode, 0, nUnallowed );
if ( nUnallowed )
bContinue = true;
}
} while( bContinue );
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pDisp -
// &vecPoint -
// Output : int
//-----------------------------------------------------------------------------
static int FindNeighborCornerVert( CCoreDispInfo *pDisp, const Vector &vecPoint )
{
CDispUtilsHelper *pDispHelper = pDisp;
int iClosest = 0;
float flClosest = 1e24;
for ( int iCorner = 0; iCorner < 4; ++iCorner )
{
// Has it been touched?
CVertIndex viCornerVert = pDispHelper->GetPowerInfo()->GetCornerPointIndex( iCorner );
int iCornerVert = pDispHelper->VertIndexToInt( viCornerVert );
const Vector &vecCornerVert = pDisp->GetVert( iCornerVert );
float flDist = vecCornerVert.DistTo( vecPoint );
if ( flDist < flClosest )
{
iClosest = iCorner;
flClosest = flDist;
}
}
if ( flClosest <= 0.1f )
return iClosest;
else
return -1;
}
// sets a new normal/tangentS, recomputes tangent T
static void UpdateTangentSpace(CCoreDispInfo *pDisp, int iVert, const Vector &vNormal, const Vector &vTanS)
{
Vector tanT;
pDisp->SetNormal( iVert, vNormal );
CrossProduct( vTanS, vNormal, tanT );
pDisp->SetTangentS(iVert, vTanS);
pDisp->SetTangentT(iVert, tanT);
}
static void UpdateTangentSpace(CCoreDispInfo *pDisp, const CVertIndex &index, const Vector &vNormal, const Vector &vTanS)
{
UpdateTangentSpace(pDisp, pDisp->VertIndexToInt(index), vNormal, vTanS);
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : **ppListBase -
// nListSize -
//-----------------------------------------------------------------------------
static void BlendSubNeighbors( CCoreDispInfo **ppListBase, int nListSize )
{
// Loop through all of the displacements in the list.
for ( int iDisp = 0; iDisp < nListSize; ++iDisp )
{
// Get the current displacement.
CCoreDispInfo *pDisp = ppListBase[iDisp];
if ( !pDisp )
continue;
// Loop through all the edges of the displacement.
for ( int iEdge = 0; iEdge < 4; ++iEdge )
{
// Find valid neighbors along the edge.
CDispNeighbor *pEdge = pDisp->GetEdgeNeighbor( iEdge );
if ( !pEdge )
continue;
// Check to see if we have sub-neighbors - defines a t-junction in this world. If not,
// then the normal blend edges function will catch it all.
if ( !pEdge->m_SubNeighbors[0].IsValid() || !pEdge->m_SubNeighbors[1].IsValid() )
continue;
// Get the mid-point of the current displacement.
CVertIndex viMidPoint = pDisp->GetEdgeMidPoint( iEdge );
int iMidPoint = pDisp->VertIndexToInt( viMidPoint );
const Vector &vecMidPoint = pDisp->GetVert( iMidPoint );
// Get the current sub-neighbors along the edge.
CCoreDispInfo *pNeighbor1 = ppListBase[pEdge->m_SubNeighbors[0].GetNeighborIndex()];
CCoreDispInfo *pNeighbor2 = ppListBase[pEdge->m_SubNeighbors[1].GetNeighborIndex()];
// Get the current sub-neighbor corners.
int iCorners[2];
iCorners[0] = FindNeighborCornerVert( pNeighbor1, vecMidPoint );
iCorners[1] = FindNeighborCornerVert( pNeighbor2, vecMidPoint );
if ( iCorners[0] != -1 && iCorners[1] != -1 )
{
CVertIndex viCorners[2] = { pNeighbor1->GetCornerPointIndex( iCorners[0] ),pNeighbor2->GetCornerPointIndex( iCorners[1] ) };
// Accumulate the normals at the mid-point of the primary edge and corners of the sub-neighbors.
Vector vecAverage = pDisp->GetNormal( iMidPoint );
vecAverage += pNeighbor1->GetNormal( viCorners[0] );
vecAverage += pNeighbor2->GetNormal( viCorners[1] );
// Re-normalize.
VectorNormalize( vecAverage );
Vector vAvgTanS = pDisp->GetTangentS(iMidPoint);
vAvgTanS += pNeighbor1->GetTangentS(viCorners[0]);
vAvgTanS += pNeighbor2->GetTangentS(viCorners[1]);
VectorNormalize(vAvgTanS);
//vecAverage.Init( 0.0f, 0.0f, 1.0f );
// Set the new normal value back.
UpdateTangentSpace( pDisp, iMidPoint, vecAverage, vAvgTanS );
UpdateTangentSpace( pNeighbor1, viCorners[0], vecAverage, vAvgTanS );
UpdateTangentSpace( pNeighbor2, viCorners[1], vecAverage, vAvgTanS );
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pDisp -
// iNeighbors[512] -
// Output : int
//-----------------------------------------------------------------------------
static int GetAllNeighbors( const CCoreDispInfo *pDisp, int iNeighbors[512] )
{
int nNeighbors = 0;
// Check corner neighbors.
for ( int iCorner=0; iCorner < 4; iCorner++ )
{
const CDispCornerNeighbors *pCorner = pDisp->GetCornerNeighbors( iCorner );
for ( int i=0; i < pCorner->m_nNeighbors; i++ )
{
if ( nNeighbors < _ARRAYSIZE( iNeighbors ) )
iNeighbors[nNeighbors++] = pCorner->m_Neighbors[i];
}
}
for ( int iEdge=0; iEdge < 4; iEdge++ )
{
const CDispNeighbor *pEdge = pDisp->GetEdgeNeighbor( iEdge );
for ( int i=0; i < 2; i++ )
{
if ( pEdge->m_SubNeighbors[i].IsValid() )
if ( nNeighbors < 512 )
iNeighbors[nNeighbors++] = pEdge->m_SubNeighbors[i].GetNeighborIndex();
}
}
return nNeighbors;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : **ppListBase -
// listSize -
//-----------------------------------------------------------------------------
static void BlendCorners( CCoreDispInfo **ppListBase, int nListSize )
{
CUtlVector<int> nbCornerVerts;
for ( int iDisp = 0; iDisp < nListSize; ++iDisp )
{
CCoreDispInfo *pDisp = ppListBase[iDisp];
int iNeighbors[512];
int nNeighbors = GetAllNeighbors( pDisp, iNeighbors );
// Make sure we have room for all the neighbors.
nbCornerVerts.RemoveAll();
nbCornerVerts.EnsureCapacity( nNeighbors );
nbCornerVerts.AddMultipleToTail( nNeighbors );
// For each corner.
for ( int iCorner=0; iCorner < 4; iCorner++ )
{
// Has it been touched?
CVertIndex cornerVert = pDisp->GetCornerPointIndex( iCorner );
int iCornerVert = pDisp->VertIndexToInt( cornerVert );
const Vector &vCornerVert = pDisp->GetVert( iCornerVert );
// For each displacement sharing this corner..
Vector vAverage = pDisp->GetNormal( iCornerVert );
Vector vAvgTanS;
pDisp->GetTangentS( iCornerVert, vAvgTanS );
for ( int iNeighbor=0; iNeighbor < nNeighbors; iNeighbor++ )
{
int iNBListIndex = iNeighbors[iNeighbor];
CCoreDispInfo *pNeighbor = ppListBase[iNBListIndex];
// Find out which vert it is on the neighbor.
int iNBCorner = FindNeighborCornerVert( pNeighbor, vCornerVert );
if ( iNBCorner == -1 )
{
nbCornerVerts[iNeighbor] = -1; // remove this neighbor from the list.
}
else
{
CVertIndex viNBCornerVert = pNeighbor->GetCornerPointIndex( iNBCorner );
int iNBVert = pNeighbor->VertIndexToInt( viNBCornerVert );
nbCornerVerts[iNeighbor] = iNBVert;
vAverage += pNeighbor->GetNormal( iNBVert );
vAvgTanS += pNeighbor->GetTangentS( iNBVert );
}
}
// Blend all the neighbor normals with this one.
VectorNormalize( vAverage );
VectorNormalize( vAvgTanS );
UpdateTangentSpace(pDisp, iCornerVert, vAverage, vAvgTanS );
for ( int iNeighbor=0; iNeighbor < nNeighbors; iNeighbor++ )
{
int iNBListIndex = iNeighbors[iNeighbor];
if ( nbCornerVerts[iNeighbor] == -1 )
continue;
CCoreDispInfo *pNeighbor = ppListBase[iNBListIndex];
UpdateTangentSpace(pNeighbor, nbCornerVerts[iNeighbor], vAverage, vAvgTanS);
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : **ppListBase -
// listSize -
//-----------------------------------------------------------------------------
static void BlendEdges( CCoreDispInfo **ppListBase, int nListSize )
{
// Loop through all the displacements in the list.
for ( int iDisp = 0; iDisp < nListSize; ++iDisp )
{
// Get the current displacement.
CCoreDispInfo *pDisp = ppListBase[iDisp];
if ( !pDisp )
continue;
// Loop through all of the edges on a displacement.
for ( int iEdge = 0; iEdge < 4; ++iEdge )
{
// Get the current displacement edge.
CDispNeighbor *pEdge = pDisp->GetEdgeNeighbor( iEdge );
if ( !pEdge )
continue;
// Check for sub-edges.
for ( int iSubEdge = 0; iSubEdge < 2; ++iSubEdge )
{
// Get the current sub-edge.
CDispSubNeighbor *pSubEdge = &pEdge->m_SubNeighbors[iSubEdge];
if ( !pSubEdge->IsValid() )
continue;
// Get the current neighbor.
CCoreDispInfo *pNeighbor = ppListBase[pSubEdge->GetNeighborIndex()];
if ( !pNeighbor )
continue;
// Get the edge dimension.
int iEdgeDim = g_EdgeDims[iEdge];
CDispSubEdgeIterator it;
it.Start( pDisp, iEdge, iSubEdge, true );
// Get setup on the first corner vert.
it.Next();
CVertIndex viPrevPos = it.GetVertIndex();
while ( it.Next() )
{
// Blend the two.
if ( !it.IsLastVert() )
{
Vector vecAverage = pDisp->GetNormal( it.GetVertIndex() ) + pNeighbor->GetNormal( it.GetNBVertIndex() );
Vector vAvgTanS = pDisp->GetTangentS( it.GetVertIndex() ) + pNeighbor->GetTangentS( it.GetNBVertIndex() );
VectorNormalize( vecAverage );
VectorNormalize( vAvgTanS );
UpdateTangentSpace(pDisp, it.GetVertIndex(), vecAverage, vAvgTanS );
UpdateTangentSpace(pNeighbor, it.GetNBVertIndex(), vecAverage, vAvgTanS );
}
// Now blend the in-between verts (if this edge is high-res).
int iPrevPos = viPrevPos[!iEdgeDim];
int iCurPos = it.GetVertIndex()[!iEdgeDim];
for ( int iTween = iPrevPos+1; iTween < iCurPos; iTween++ )
{
float flPercent = RemapVal( iTween, iPrevPos, iCurPos, 0, 1 );
Vector vecNormal;
VectorLerp( pDisp->GetNormal( viPrevPos ), pDisp->GetNormal( it.GetVertIndex() ), flPercent, vecNormal );
VectorNormalize( vecNormal );
Vector vAvgTanS;
VectorLerp( pDisp->GetTangentS( viPrevPos ), pDisp->GetTangentS( it.GetVertIndex() ), flPercent, vAvgTanS );
VectorNormalize( vAvgTanS );
CVertIndex viTween;
viTween[iEdgeDim] = it.GetVertIndex()[iEdgeDim];
viTween[!iEdgeDim] = iTween;
UpdateTangentSpace(pDisp, viTween, vecNormal, vAvgTanS);
}
viPrevPos = it.GetVertIndex();
}
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : **pListBase -
// listSize -
// NOTE: todo - this is almost the same code as found in vrad, should probably
// move it up into common code at some point if the feature
// continues to get used
//-----------------------------------------------------------------------------
void SmoothDispSurfNormals( CCoreDispInfo **ppListBase, int nListSize )
{
// Setup helper list for iteration.
for ( int iDisp = 0; iDisp < nListSize; ++iDisp )
{
ppListBase[iDisp]->SetDispUtilsHelperInfo( ppListBase, nListSize );
}
// Blend normals along t-junctions, corners, and edges.
BlendSubNeighbors( ppListBase, nListSize );
BlendCorners( ppListBase, nListSize );
BlendEdges( ppListBase, nListSize );
}