sqwarmed/sdk_src/public/mathlib/vmatrix.h

942 lines
30 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
//
// VMatrix always postmultiply vectors as in Ax = b.
// Given a set of basis vectors ((F)orward, (L)eft, (U)p), and a (T)ranslation,
// a matrix to transform a vector into that space looks like this:
// Fx Lx Ux Tx
// Fy Ly Uy Ty
// Fz Lz Uz Tz
// 0 0 0 1
// Note that concatenating matrices needs to multiply them in reverse order.
// ie: if I want to apply matrix A, B, then C, the equation needs to look like this:
// C * B * A * v
// ie:
// v = A * v;
// v = B * v;
// v = C * v;
//=============================================================================
#ifndef VMATRIX_H
#define VMATRIX_H
#ifdef _WIN32
#pragma once
#endif
#include <string.h>
#include "mathlib/vector.h"
#include "mathlib/vplane.h"
#include "mathlib/vector4d.h"
#include "mathlib/mathlib.h"
struct cplane_t;
class VMatrix
{
public:
VMatrix();
VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
VMatrix( const Vector& forward, const Vector& left, const Vector& up );
// Construct from a 3x4 matrix
VMatrix( const matrix3x4_t& matrix3x4 );
// Set the values in the matrix.
void Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Initialize from a 3x4
void Init( const matrix3x4_t& matrix3x4 );
// array access
inline float* operator[](int i)
{
return m[i];
}
inline const float* operator[](int i) const
{
return m[i];
}
// Get a pointer to m[0][0]
inline float *Base()
{
return &m[0][0];
}
inline const float *Base() const
{
return &m[0][0];
}
void SetLeft(const Vector &vLeft);
void SetUp(const Vector &vUp);
void SetForward(const Vector &vForward);
void GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const;
void SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp);
// Get/set the translation.
Vector & GetTranslation( Vector &vTrans ) const;
void SetTranslation(const Vector &vTrans);
void PreTranslate(const Vector &vTrans);
void PostTranslate(const Vector &vTrans);
matrix3x4_t& As3x4();
const matrix3x4_t& As3x4() const;
void CopyFrom3x4( const matrix3x4_t &m3x4 );
void Set3x4( matrix3x4_t& matrix3x4 ) const;
bool operator==( const VMatrix& src ) const;
bool operator!=( const VMatrix& src ) const { return !( *this == src ); }
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Access the basis vectors.
Vector GetLeft() const;
Vector GetUp() const;
Vector GetForward() const;
Vector GetTranslation() const;
#endif
// Matrix->vector operations.
public:
// Multiply by a 3D vector (same as operator*).
void V3Mul(const Vector &vIn, Vector &vOut) const;
// Multiply by a 4D vector.
void V4Mul(const Vector4D &vIn, Vector4D &vOut) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Applies the rotation (ignores translation in the matrix). (This just calls VMul3x3).
Vector ApplyRotation(const Vector &vVec) const;
// Multiply by a vector (divides by w, assumes input w is 1).
Vector operator*(const Vector &vVec) const;
// Multiply by the upper 3x3 part of the matrix (ie: only apply rotation).
Vector VMul3x3(const Vector &vVec) const;
// Apply the inverse (transposed) rotation (only works on pure rotation matrix)
Vector VMul3x3Transpose(const Vector &vVec) const;
// Multiply by the upper 3 rows.
Vector VMul4x3(const Vector &vVec) const;
// Apply the inverse (transposed) transformation (only works on pure rotation/translation)
Vector VMul4x3Transpose(const Vector &vVec) const;
#endif
// Matrix->plane operations.
public:
// Transform the plane. The matrix can only contain translation and rotation.
void TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Just calls TransformPlane and returns the result.
VPlane operator*(const VPlane &thePlane) const;
#endif
// Matrix->matrix operations.
public:
VMatrix& operator=(const VMatrix &mOther);
// Multiply two matrices (out = this * vm).
void MatrixMul( const VMatrix &vm, VMatrix &out ) const;
// Add two matrices.
const VMatrix& operator+=(const VMatrix &other);
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Just calls MatrixMul and returns the result.
VMatrix operator*(const VMatrix &mOther) const;
// Add/Subtract two matrices.
VMatrix operator+(const VMatrix &other) const;
VMatrix operator-(const VMatrix &other) const;
// Negation.
VMatrix operator-() const;
// Return inverse matrix. Be careful because the results are undefined
// if the matrix doesn't have an inverse (ie: InverseGeneral returns false).
VMatrix operator~() const;
#endif
// Matrix operations.
public:
// Set to identity.
void Identity();
bool IsIdentity() const;
// Setup a matrix for origin and angles.
void SetupMatrixOrgAngles( const Vector &origin, const QAngle &vAngles );
// General inverse. This may fail so check the return!
bool InverseGeneral(VMatrix &vInverse) const;
// Does a fast inverse, assuming the matrix only contains translation and rotation.
void InverseTR( VMatrix &mRet ) const;
// Usually used for debug checks. Returns true if the upper 3x3 contains
// unit vectors and they are all orthogonal.
bool IsRotationMatrix() const;
#ifndef VECTOR_NO_SLOW_OPERATIONS
// This calls the other InverseTR and returns the result.
VMatrix InverseTR() const;
// Get the scale of the matrix's basis vectors.
Vector GetScale() const;
// (Fast) multiply by a scaling matrix setup from vScale.
VMatrix Scale(const Vector &vScale);
// Normalize the basis vectors.
VMatrix NormalizeBasisVectors() const;
// Transpose.
VMatrix Transpose() const;
// Transpose upper-left 3x3.
VMatrix Transpose3x3() const;
#endif
public:
// The matrix.
vec_t m[4][4];
};
//-----------------------------------------------------------------------------
// Helper functions.
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
// Setup an identity matrix.
VMatrix SetupMatrixIdentity();
// Setup as a scaling matrix.
VMatrix SetupMatrixScale(const Vector &vScale);
// Setup a translation matrix.
VMatrix SetupMatrixTranslation(const Vector &vTranslation);
// Setup a matrix to reflect around the plane.
VMatrix SetupMatrixReflection(const VPlane &thePlane);
// Setup a matrix to project from vOrigin onto thePlane.
VMatrix SetupMatrixProjection(const Vector &vOrigin, const VPlane &thePlane);
// Setup a matrix to rotate the specified amount around the specified axis.
VMatrix SetupMatrixAxisRot(const Vector &vAxis, vec_t fDegrees);
// Setup a matrix to rotate one axis onto another. Input vectors must be normalized.
VMatrix SetupMatrixAxisToAxisRot(const Vector &vFromAxis, const Vector &vToAxis);
// Setup a matrix from euler angles. Just sets identity and calls MatrixAngles.
VMatrix SetupMatrixAngles(const QAngle &vAngles);
// Setup a matrix for origin and angles.
VMatrix SetupMatrixOrgAngles(const Vector &origin, const QAngle &vAngles);
#endif
#define VMatToString(mat) (static_cast<const char *>(CFmtStr("[ (%f, %f, %f), (%f, %f, %f), (%f, %f, %f), (%f, %f, %f) ]", mat.m[0][0], mat.m[0][1], mat.m[0][2], mat.m[0][3], mat.m[1][0], mat.m[1][1], mat.m[1][2], mat.m[1][3], mat.m[2][0], mat.m[2][1], mat.m[2][2], mat.m[2][3], mat.m[3][0], mat.m[3][1], mat.m[3][2], mat.m[3][3] ))) // ** Note: this generates a temporary, don't hold reference!
//-----------------------------------------------------------------------------
// Returns the point at the intersection on the 3 planes.
// Returns false if it can't be solved (2 or more planes are parallel).
//-----------------------------------------------------------------------------
bool PlaneIntersection( const VPlane &vp1, const VPlane &vp2, const VPlane &vp3, Vector &vOut );
//-----------------------------------------------------------------------------
// These methods are faster. Use them if you want faster code
//-----------------------------------------------------------------------------
void MatrixSetIdentity( VMatrix &dst );
void MatrixTranspose( const VMatrix& src, VMatrix& dst );
void MatrixCopy( const VMatrix& src, VMatrix& dst );
void MatrixMultiply( const VMatrix& src1, const VMatrix& src2, VMatrix& dst );
// Accessors
void MatrixGetColumn( const VMatrix &src, int nCol, Vector *pColumn );
void MatrixSetColumn( VMatrix &src, int nCol, const Vector &column );
void MatrixGetRow( const VMatrix &src, int nCol, Vector *pColumn );
void MatrixSetRow( VMatrix &src, int nCol, const Vector &column );
// Vector3DMultiply treats src2 as if it's a direction vector
void Vector3DMultiply( const VMatrix& src1, const Vector& src2, Vector& dst );
// Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation)
inline void Vector3DMultiplyPosition( const VMatrix& src1, const VectorByValue src2, Vector& dst );
// Vector3DMultiplyPositionProjective treats src2 as if it's a point
// and does the perspective divide at the end
void Vector3DMultiplyPositionProjective( const VMatrix& src1, const Vector &src2, Vector& dst );
// Vector3DMultiplyPosition treats src2 as if it's a direction
// and does the perspective divide at the end
// NOTE: src1 had better be an inverse transpose to use this correctly
void Vector3DMultiplyProjective( const VMatrix& src1, const Vector &src2, Vector& dst );
void Vector4DMultiply( const VMatrix& src1, const Vector4D& src2, Vector4D& dst );
// Same as Vector4DMultiply except that src2 has an implicit W of 1
void Vector4DMultiplyPosition( const VMatrix& src1, const Vector &src2, Vector4D& dst );
// Multiplies the vector by the transpose of the matrix
void Vector3DMultiplyTranspose( const VMatrix& src1, const Vector& src2, Vector& dst );
void Vector4DMultiplyTranspose( const VMatrix& src1, const Vector4D& src2, Vector4D& dst );
// Transform a plane
void MatrixTransformPlane( const VMatrix &src, const cplane_t &inPlane, cplane_t &outPlane );
// Transform a plane that has an axis-aligned normal
void MatrixTransformAxisAlignedPlane( const VMatrix &src, int nDim, float flSign, float flDist, cplane_t &outPlane );
void MatrixBuildTranslation( VMatrix& dst, float x, float y, float z );
void MatrixBuildTranslation( VMatrix& dst, const Vector &translation );
inline void MatrixTranslate( VMatrix& dst, const Vector &translation )
{
VMatrix matTranslation, temp;
MatrixBuildTranslation( matTranslation, translation );
MatrixMultiply( dst, matTranslation, temp );
dst = temp;
}
void MatrixBuildRotationAboutAxis( VMatrix& dst, const Vector& vAxisOfRot, float angleDegrees );
void MatrixBuildRotateZ( VMatrix& dst, float angleDegrees );
inline void MatrixRotate( VMatrix& dst, const Vector& vAxisOfRot, float angleDegrees )
{
VMatrix rotation, temp;
MatrixBuildRotationAboutAxis( rotation, vAxisOfRot, angleDegrees );
MatrixMultiply( dst, rotation, temp );
dst = temp;
}
// Builds a rotation matrix that rotates one direction vector into another
void MatrixBuildRotation( VMatrix &dst, const Vector& initialDirection, const Vector& finalDirection );
// Builds a scale matrix
void MatrixBuildScale( VMatrix &dst, float x, float y, float z );
void MatrixBuildScale( VMatrix &dst, const Vector& scale );
// Build a perspective matrix.
// zNear and zFar are assumed to be positive.
// You end up looking down positive Z, X is to the right, Y is up.
// X range: [0..1]
// Y range: [0..1]
// Z range: [0..1]
void MatrixBuildPerspective( VMatrix &dst, float fovX, float fovY, float zNear, float zFar );
//-----------------------------------------------------------------------------
// Given a projection matrix, take the extremes of the space in transformed into world space and
// get a bounding box.
//-----------------------------------------------------------------------------
void CalculateAABBFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pMins, Vector *pMaxs );
//-----------------------------------------------------------------------------
// Given a projection matrix, take the extremes of the space in transformed into world space and
// get a bounding sphere.
//-----------------------------------------------------------------------------
void CalculateSphereFromProjectionMatrix( const VMatrix &worldToVolume, Vector *pCenter, float *pflRadius );
//-----------------------------------------------------------------------------
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
// get a bounding box.
//-----------------------------------------------------------------------------
void CalculateAABBFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pMins, Vector *pMaxs );
//-----------------------------------------------------------------------------
// Given an inverse projection matrix, take the extremes of the space in transformed into world space and
// get a bounding sphere.
//-----------------------------------------------------------------------------
void CalculateSphereFromProjectionMatrixInverse( const VMatrix &volumeToWorld, Vector *pCenter, float *pflRadius );
//-----------------------------------------------------------------------------
// Calculate frustum planes given a clip->world space transform.
//-----------------------------------------------------------------------------
void FrustumPlanesFromMatrix( const VMatrix &clipToWorld, Frustum_t &frustum );
//-----------------------------------------------------------------------------
// Setup a matrix from euler angles.
//-----------------------------------------------------------------------------
void MatrixFromAngles( const QAngle& vAngles, VMatrix& dst );
//-----------------------------------------------------------------------------
// Creates euler angles from a matrix
//-----------------------------------------------------------------------------
void MatrixToAngles( const VMatrix& src, QAngle& vAngles );
//-----------------------------------------------------------------------------
// Does a fast inverse, assuming the matrix only contains translation and rotation.
//-----------------------------------------------------------------------------
void MatrixInverseTR( const VMatrix& src, VMatrix &dst );
//-----------------------------------------------------------------------------
// Inverts any matrix at all
//-----------------------------------------------------------------------------
bool MatrixInverseGeneral(const VMatrix& src, VMatrix& dst);
//-----------------------------------------------------------------------------
// Computes the inverse transpose
//-----------------------------------------------------------------------------
void MatrixInverseTranspose( const VMatrix& src, VMatrix& dst );
//-----------------------------------------------------------------------------
// VMatrix inlines.
//-----------------------------------------------------------------------------
inline VMatrix::VMatrix()
{
}
inline VMatrix::VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33)
{
Init(
m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33
);
}
inline VMatrix::VMatrix( const matrix3x4_t& matrix3x4 )
{
Init( matrix3x4 );
}
//-----------------------------------------------------------------------------
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
//-----------------------------------------------------------------------------
inline VMatrix::VMatrix( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis )
{
Init(
xAxis.x, yAxis.x, zAxis.x, 0.0f,
xAxis.y, yAxis.y, zAxis.y, 0.0f,
xAxis.z, yAxis.z, zAxis.z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
}
inline void VMatrix::Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
)
{
m[0][0] = m00;
m[0][1] = m01;
m[0][2] = m02;
m[0][3] = m03;
m[1][0] = m10;
m[1][1] = m11;
m[1][2] = m12;
m[1][3] = m13;
m[2][0] = m20;
m[2][1] = m21;
m[2][2] = m22;
m[2][3] = m23;
m[3][0] = m30;
m[3][1] = m31;
m[3][2] = m32;
m[3][3] = m33;
}
//-----------------------------------------------------------------------------
// Initialize from a 3x4
//-----------------------------------------------------------------------------
inline void VMatrix::Init( const matrix3x4_t& matrix3x4 )
{
memcpy(m, matrix3x4.Base(), sizeof( matrix3x4_t ) );
m[3][0] = 0.0f;
m[3][1] = 0.0f;
m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
//-----------------------------------------------------------------------------
// Methods related to the basis vectors of the matrix
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::GetForward() const
{
return Vector(m[0][0], m[1][0], m[2][0]);
}
inline Vector VMatrix::GetLeft() const
{
return Vector(m[0][1], m[1][1], m[2][1]);
}
inline Vector VMatrix::GetUp() const
{
return Vector(m[0][2], m[1][2], m[2][2]);
}
#endif
inline void VMatrix::SetForward(const Vector &vForward)
{
m[0][0] = vForward.x;
m[1][0] = vForward.y;
m[2][0] = vForward.z;
}
inline void VMatrix::SetLeft(const Vector &vLeft)
{
m[0][1] = vLeft.x;
m[1][1] = vLeft.y;
m[2][1] = vLeft.z;
}
inline void VMatrix::SetUp(const Vector &vUp)
{
m[0][2] = vUp.x;
m[1][2] = vUp.y;
m[2][2] = vUp.z;
}
inline void VMatrix::GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const
{
vForward.Init( m[0][0], m[1][0], m[2][0] );
vLeft.Init( m[0][1], m[1][1], m[2][1] );
vUp.Init( m[0][2], m[1][2], m[2][2] );
}
inline void VMatrix::SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp)
{
SetForward(vForward);
SetLeft(vLeft);
SetUp(vUp);
}
//-----------------------------------------------------------------------------
// Methods related to the translation component of the matrix
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::GetTranslation() const
{
return Vector(m[0][3], m[1][3], m[2][3]);
}
#endif
inline Vector& VMatrix::GetTranslation( Vector &vTrans ) const
{
vTrans.x = m[0][3];
vTrans.y = m[1][3];
vTrans.z = m[2][3];
return vTrans;
}
inline void VMatrix::SetTranslation(const Vector &vTrans)
{
m[0][3] = vTrans.x;
m[1][3] = vTrans.y;
m[2][3] = vTrans.z;
}
//-----------------------------------------------------------------------------
// appply translation to this matrix in the input space
//-----------------------------------------------------------------------------
inline void VMatrix::PreTranslate(const Vector &vTrans)
{
Vector tmp;
Vector3DMultiplyPosition( *this, vTrans, tmp );
m[0][3] = tmp.x;
m[1][3] = tmp.y;
m[2][3] = tmp.z;
}
//-----------------------------------------------------------------------------
// appply translation to this matrix in the output space
//-----------------------------------------------------------------------------
inline void VMatrix::PostTranslate(const Vector &vTrans)
{
m[0][3] += vTrans.x;
m[1][3] += vTrans.y;
m[2][3] += vTrans.z;
}
inline const matrix3x4_t& VMatrix::As3x4() const
{
return *((const matrix3x4_t*)this);
}
inline matrix3x4_t& VMatrix::As3x4()
{
return *((matrix3x4_t*)this);
}
inline void VMatrix::CopyFrom3x4( const matrix3x4_t &m3x4 )
{
memcpy( m, m3x4.Base(), sizeof( matrix3x4_t ) );
m[3][0] = m[3][1] = m[3][2] = 0;
m[3][3] = 1;
}
inline void VMatrix::Set3x4( matrix3x4_t& matrix3x4 ) const
{
memcpy(matrix3x4.Base(), m, sizeof( matrix3x4_t ) );
}
//-----------------------------------------------------------------------------
// Matrix math operations
//-----------------------------------------------------------------------------
inline const VMatrix& VMatrix::operator+=(const VMatrix &other)
{
for(int i=0; i < 4; i++)
{
for(int j=0; j < 4; j++)
{
m[i][j] += other.m[i][j];
}
}
return *this;
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline VMatrix VMatrix::operator+(const VMatrix &other) const
{
VMatrix ret;
for(int i=0; i < 16; i++)
{
((float*)ret.m)[i] = ((float*)m)[i] + ((float*)other.m)[i];
}
return ret;
}
inline VMatrix VMatrix::operator-(const VMatrix &other) const
{
VMatrix ret;
for(int i=0; i < 4; i++)
{
for(int j=0; j < 4; j++)
{
ret.m[i][j] = m[i][j] - other.m[i][j];
}
}
return ret;
}
inline VMatrix VMatrix::operator-() const
{
VMatrix ret;
for( int i=0; i < 16; i++ )
{
((float*)ret.m)[i] = -((float*)m)[i];
}
return ret;
}
#endif // VECTOR_NO_SLOW_OPERATIONS
//-----------------------------------------------------------------------------
// Vector transformation
//-----------------------------------------------------------------------------
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::operator*(const Vector &vVec) const
{
Vector vRet;
vRet.x = m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z + m[0][3];
vRet.y = m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z + m[1][3];
vRet.z = m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z + m[2][3];
return vRet;
}
inline Vector VMatrix::VMul4x3(const Vector &vVec) const
{
Vector vResult;
Vector3DMultiplyPosition( *this, vVec, vResult );
return vResult;
}
inline Vector VMatrix::VMul4x3Transpose(const Vector &vVec) const
{
Vector tmp = vVec;
tmp.x -= m[0][3];
tmp.y -= m[1][3];
tmp.z -= m[2][3];
return Vector(
m[0][0]*tmp.x + m[1][0]*tmp.y + m[2][0]*tmp.z,
m[0][1]*tmp.x + m[1][1]*tmp.y + m[2][1]*tmp.z,
m[0][2]*tmp.x + m[1][2]*tmp.y + m[2][2]*tmp.z
);
}
inline Vector VMatrix::VMul3x3(const Vector &vVec) const
{
return Vector(
m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z,
m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z,
m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z
);
}
inline Vector VMatrix::VMul3x3Transpose(const Vector &vVec) const
{
return Vector(
m[0][0]*vVec.x + m[1][0]*vVec.y + m[2][0]*vVec.z,
m[0][1]*vVec.x + m[1][1]*vVec.y + m[2][1]*vVec.z,
m[0][2]*vVec.x + m[1][2]*vVec.y + m[2][2]*vVec.z
);
}
#endif // VECTOR_NO_SLOW_OPERATIONS
inline void VMatrix::V3Mul(const Vector &vIn, Vector &vOut) const
{
vec_t rw;
rw = 1.0f / (m[3][0]*vIn.x + m[3][1]*vIn.y + m[3][2]*vIn.z + m[3][3]);
vOut.x = (m[0][0]*vIn.x + m[0][1]*vIn.y + m[0][2]*vIn.z + m[0][3]) * rw;
vOut.y = (m[1][0]*vIn.x + m[1][1]*vIn.y + m[1][2]*vIn.z + m[1][3]) * rw;
vOut.z = (m[2][0]*vIn.x + m[2][1]*vIn.y + m[2][2]*vIn.z + m[2][3]) * rw;
}
inline void VMatrix::V4Mul(const Vector4D &vIn, Vector4D &vOut) const
{
vOut[0] = m[0][0]*vIn[0] + m[0][1]*vIn[1] + m[0][2]*vIn[2] + m[0][3]*vIn[3];
vOut[1] = m[1][0]*vIn[0] + m[1][1]*vIn[1] + m[1][2]*vIn[2] + m[1][3]*vIn[3];
vOut[2] = m[2][0]*vIn[0] + m[2][1]*vIn[1] + m[2][2]*vIn[2] + m[2][3]*vIn[3];
vOut[3] = m[3][0]*vIn[0] + m[3][1]*vIn[1] + m[3][2]*vIn[2] + m[3][3]*vIn[3];
}
//-----------------------------------------------------------------------------
// Plane transformation
//-----------------------------------------------------------------------------
inline void VMatrix::TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const
{
Vector vTrans;
Vector3DMultiply( *this, inPlane.m_Normal, outPlane.m_Normal );
outPlane.m_Dist = inPlane.m_Dist * DotProduct( outPlane.m_Normal, outPlane.m_Normal );
outPlane.m_Dist += DotProduct( outPlane.m_Normal, GetTranslation( vTrans ) );
}
//-----------------------------------------------------------------------------
// Other random stuff
//-----------------------------------------------------------------------------
inline void VMatrix::Identity()
{
MatrixSetIdentity( *this );
}
inline bool VMatrix::IsIdentity() const
{
return
m[0][0] == 1.0f && m[0][1] == 0.0f && m[0][2] == 0.0f && m[0][3] == 0.0f &&
m[1][0] == 0.0f && m[1][1] == 1.0f && m[1][2] == 0.0f && m[1][3] == 0.0f &&
m[2][0] == 0.0f && m[2][1] == 0.0f && m[2][2] == 1.0f && m[2][3] == 0.0f &&
m[3][0] == 0.0f && m[3][1] == 0.0f && m[3][2] == 0.0f && m[3][3] == 1.0f;
}
#ifndef VECTOR_NO_SLOW_OPERATIONS
inline Vector VMatrix::ApplyRotation(const Vector &vVec) const
{
return VMul3x3(vVec);
}
inline VMatrix VMatrix::operator~() const
{
VMatrix mRet;
InverseGeneral(mRet);
return mRet;
}
#endif
//-----------------------------------------------------------------------------
// Accessors
//-----------------------------------------------------------------------------
inline void MatrixGetColumn( const VMatrix &src, int nCol, Vector *pColumn )
{
Assert( (nCol >= 0) && (nCol <= 3) );
pColumn->x = src[0][nCol];
pColumn->y = src[1][nCol];
pColumn->z = src[2][nCol];
}
inline void MatrixSetColumn( VMatrix &src, int nCol, const Vector &column )
{
Assert( (nCol >= 0) && (nCol <= 3) );
src.m[0][nCol] = column.x;
src.m[1][nCol] = column.y;
src.m[2][nCol] = column.z;
}
inline void MatrixGetRow( const VMatrix &src, int nRow, Vector *pRow )
{
Assert( (nRow >= 0) && (nRow <= 3) );
*pRow = *(Vector*)src[nRow];
}
inline void MatrixSetRow( VMatrix &dst, int nRow, const Vector &row )
{
Assert( (nRow >= 0) && (nRow <= 3) );
*(Vector*)dst[nRow] = row;
}
//-----------------------------------------------------------------------------
// Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation)
//-----------------------------------------------------------------------------
// NJS: src2 is passed in as a full vector rather than a reference to prevent the need
// for 2 branches and a potential copy in the body. (ie, handling the case when the src2
// reference is the same as the dst reference ).
inline void Vector3DMultiplyPosition( const VMatrix& src1, const VectorByValue src2, Vector& dst )
{
dst[0] = src1[0][0] * src2.x + src1[0][1] * src2.y + src1[0][2] * src2.z + src1[0][3];
dst[1] = src1[1][0] * src2.x + src1[1][1] * src2.y + src1[1][2] * src2.z + src1[1][3];
dst[2] = src1[2][0] * src2.x + src1[2][1] * src2.y + src1[2][2] * src2.z + src1[2][3];
}
//-----------------------------------------------------------------------------
// Transform a plane that has an axis-aligned normal
//-----------------------------------------------------------------------------
inline void MatrixTransformAxisAlignedPlane( const VMatrix &src, int nDim, float flSign, float flDist, cplane_t &outPlane )
{
// See MatrixTransformPlane in the .cpp file for an explanation of the algorithm.
MatrixGetColumn( src, nDim, &outPlane.normal );
outPlane.normal *= flSign;
outPlane.dist = flDist * DotProduct( outPlane.normal, outPlane.normal );
// NOTE: Writing this out by hand because it doesn't inline (inline depth isn't large enough)
// This should read outPlane.dist += DotProduct( outPlane.normal, src.GetTranslation );
outPlane.dist += outPlane.normal.x * src.m[0][3] + outPlane.normal.y * src.m[1][3] + outPlane.normal.z * src.m[2][3];
}
//-----------------------------------------------------------------------------
// Matrix equality test
//-----------------------------------------------------------------------------
inline bool MatricesAreEqual( const VMatrix &src1, const VMatrix &src2, float flTolerance )
{
for ( int i = 0; i < 3; ++i )
{
for ( int j = 0; j < 3; ++j )
{
if ( fabs( src1[i][j] - src2[i][j] ) > flTolerance )
return false;
}
}
return true;
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void MatrixBuildOrtho( VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar );
void MatrixBuildPerspectiveX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar );
void MatrixBuildPerspectiveOffCenterX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right );
inline void MatrixOrtho( VMatrix& dst, double left, double top, double right, double bottom, double zNear, double zFar )
{
VMatrix mat;
MatrixBuildOrtho( mat, left, top, right, bottom, zNear, zFar );
VMatrix temp;
MatrixMultiply( dst, mat, temp );
dst = temp;
}
inline void MatrixPerspectiveX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar )
{
VMatrix mat;
MatrixBuildPerspectiveX( mat, flFovX, flAspect, flZNear, flZFar );
VMatrix temp;
MatrixMultiply( dst, mat, temp );
dst = temp;
}
inline void MatrixPerspectiveOffCenterX( VMatrix& dst, double flFovX, double flAspect, double flZNear, double flZFar, double bottom, double top, double left, double right )
{
VMatrix mat;
MatrixBuildPerspectiveOffCenterX( mat, flFovX, flAspect, flZNear, flZFar, bottom, top, left, right );
VMatrix temp;
MatrixMultiply( dst, mat, temp );
dst = temp;
}
#endif