sqwarmed/sdk_src/public/mathlib/ssemath.h

4124 lines
135 KiB
C++

//===== Copyright 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: - defines SIMD "structure of arrays" classes and functions.
//
//===========================================================================//
#ifndef SSEMATH_H
#define SSEMATH_H
#if defined( _X360 )
#include <xboxmath.h>
#else
#include <xmmintrin.h>
#ifndef _LINUX
#include <emmintrin.h>
#endif
#endif
#include <mathlib/vector.h>
#include <mathlib/mathlib.h>
#include <mathlib/compressed_vector.h>
#if defined(GNUC)
#define USE_STDC_FOR_SIMD 0
#else
#define USE_STDC_FOR_SIMD 0
#endif
#if (!defined(_X360) && (USE_STDC_FOR_SIMD == 0))
#define _SSE1 1
#endif
// I thought about defining a class/union for the SIMD packed floats instead of using fltx4,
// but decided against it because (a) the nature of SIMD code which includes comparisons is to blur
// the relationship between packed floats and packed integer types and (b) not sure that the
// compiler would handle generating good code for the intrinsics.
#if USE_STDC_FOR_SIMD
#error "hello"
typedef union
{
float m128_f32[4];
uint32 m128_u32[4];
} fltx4;
typedef fltx4 i32x4;
typedef fltx4 u32x4;
#elif ( defined( _X360 ) )
typedef union
{
// This union allows float/int access (which generally shouldn't be done in inner loops)
__vector4 vmx;
float m128_f32[4];
uint32 m128_u32[4];
} fltx4_union;
typedef __vector4 fltx4;
typedef __vector4 i32x4; // a VMX register; just a way of making it explicit that we're doing integer ops.
typedef __vector4 u32x4; // a VMX register; just a way of making it explicit that we're doing unsigned integer ops.
#else
typedef __m128 fltx4;
typedef __m128 i32x4;
typedef __m128 u32x4;
#endif
// The FLTX4 type is a fltx4 used as a parameter to a function.
// On the 360, the best way to do this is pass-by-copy on the registers.
// On the PC, the best way is to pass by const reference.
// The compiler will sometimes, but not always, replace a pass-by-const-ref
// with a pass-in-reg on the 360; to avoid this confusion, you can
// explicitly use a FLTX4 as the parameter type.
#ifdef _X360
typedef __vector4 FLTX4;
#else
typedef const fltx4 & FLTX4;
#endif
// A 16-byte aligned int32 datastructure
// (for use when writing out fltx4's as SIGNED
// ints).
struct ALIGN16 intx4
{
int32 m_i32[4];
inline int & operator[](int which)
{
return m_i32[which];
}
inline const int & operator[](int which) const
{
return m_i32[which];
}
inline int32 *Base() {
return m_i32;
}
inline const int32 *Base() const
{
return m_i32;
}
inline const bool operator==(const intx4 &other) const
{
return m_i32[0] == other.m_i32[0] &&
m_i32[1] == other.m_i32[1] &&
m_i32[2] == other.m_i32[2] &&
m_i32[3] == other.m_i32[3] ;
}
} ALIGN16_POST;
#if defined( _DEBUG ) && defined( _X360 )
FORCEINLINE void TestVPUFlags()
{
// Check that the VPU is in the appropriate (Java-compliant) mode (see 3.2.1 in altivec_pem.pdf on xds.xbox.com)
__vector4 a;
__asm
{
mfvscr a;
}
unsigned int * flags = (unsigned int *)&a;
unsigned int controlWord = flags[3];
Assert(controlWord == 0);
}
#else // _DEBUG
FORCEINLINE void TestVPUFlags() {}
#endif // _DEBUG
// useful constants in SIMD packed float format:
// (note: some of these aren't stored on the 360,
// but are manufactured directly in one or two
// instructions, saving a load and possible L2
// miss.)
#ifndef _X360
extern const fltx4 Four_Zeros; // 0 0 0 0
extern const fltx4 Four_Ones; // 1 1 1 1
extern const fltx4 Four_Twos; // 2 2 2 2
extern const fltx4 Four_Threes; // 3 3 3 3
extern const fltx4 Four_Fours; // guess.
extern const fltx4 Four_Point225s; // .225 .225 .225 .225
extern const fltx4 Four_PointFives; // .5 .5 .5 .5
extern const fltx4 Four_Thirds; // 1/3
extern const fltx4 Four_TwoThirds; // 2/3
extern const fltx4 Four_Epsilons; // FLT_EPSILON FLT_EPSILON FLT_EPSILON FLT_EPSILON
extern const fltx4 Four_2ToThe21s; // (1<<21)..
extern const fltx4 Four_2ToThe22s; // (1<<22)..
extern const fltx4 Four_2ToThe23s; // (1<<23)..
extern const fltx4 Four_2ToThe24s; // (1<<24)..
extern const fltx4 Four_Origin; // 0 0 0 1 (origin point, like vr0 on the PS2)
extern const fltx4 Four_NegativeOnes; // -1 -1 -1 -1
#else
#define Four_Zeros XMVectorZero() // 0 0 0 0
#define Four_Ones XMVectorSplatOne() // 1 1 1 1
extern const fltx4 Four_Twos; // 2 2 2 2
extern const fltx4 Four_Threes; // 3 3 3 3
extern const fltx4 Four_Fours; // guess.
extern const fltx4 Four_Point225s; // .225 .225 .225 .225
extern const fltx4 Four_PointFives; // .5 .5 .5 .5
extern const fltx4 Four_Thirds; // 1/3
extern const fltx4 Four_TwoThirds; // 2/3
extern const fltx4 Four_Epsilons; // FLT_EPSILON FLT_EPSILON FLT_EPSILON FLT_EPSILON
extern const fltx4 Four_2ToThe21s; // (1<<21)..
extern const fltx4 Four_2ToThe22s; // (1<<22)..
extern const fltx4 Four_2ToThe23s; // (1<<23)..
extern const fltx4 Four_2ToThe24s; // (1<<24)..
extern const fltx4 Four_Origin; // 0 0 0 1 (origin point, like vr0 on the PS2)
extern const fltx4 Four_NegativeOnes; // -1 -1 -1 -1
#endif
extern const fltx4 Four_FLT_MAX; // FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX
extern const fltx4 Four_Negative_FLT_MAX; // -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX
extern const fltx4 g_SIMD_0123; // 0 1 2 3 as float
// external aligned integer constants
#ifndef ALIGN16_POST
#define ALIGN16_POST
#endif
extern const ALIGN16 int32 g_SIMD_clear_signmask[] ALIGN16_POST; // 0x7fffffff x 4
extern const ALIGN16 int32 g_SIMD_signmask[] ALIGN16_POST; // 0x80000000 x 4
extern const ALIGN16 int32 g_SIMD_lsbmask[] ALIGN16_POST; // 0xfffffffe x 4
extern const ALIGN16 int32 g_SIMD_clear_wmask[] ALIGN16_POST; // -1 -1 -1 0
extern const ALIGN16 int32 g_SIMD_ComponentMask[4][4] ALIGN16_POST; // [0xFFFFFFFF 0 0 0], [0 0xFFFFFFFF 0 0], [0 0 0xFFFFFFFF 0], [0 0 0 0xFFFFFFFF]
extern const ALIGN16 int32 g_SIMD_AllOnesMask[] ALIGN16_POST; // ~0,~0,~0,~0
extern const ALIGN16 int32 g_SIMD_Low16BitsMask[] ALIGN16_POST; // 0xffff x 4
// this mask is used for skipping the tail of things. If you have N elements in an array, and wish
// to mask out the tail, g_SIMD_SkipTailMask[N & 3] what you want to use for the last iteration.
extern const int32 ALIGN16 g_SIMD_SkipTailMask[4][4] ALIGN16_POST;
extern const int32 ALIGN16 g_SIMD_EveryOtherMask[]; // 0, ~0, 0, ~0
// Define prefetch macros.
// The characteristics of cache and prefetch are completely
// different between the different platforms, so you DO NOT
// want to just define one macro that maps to every platform
// intrinsic under the hood -- you need to prefetch at different
// intervals between x86 and PPC, for example, and that is
// a higher level code change.
// On the other hand, I'm tired of typing #ifdef _X360
// all over the place, so this is just a nop on Intel, PS3.
#ifdef _X360
#define PREFETCH360(address, offset) __dcbt(offset,address)
#else
#define PREFETCH360(x,y) // nothing
#endif
// Here's a handy function to align a pointer to the next
// sixteen byte boundary -- it'll round it up to the nearest
// multiple of 16. This is useful if you're subdividing
// big swaths of allocated memory, but in that case, remember
// to leave yourself the necessary slack in the allocation.
template<class T>
inline T *AlignPointer(void * ptr)
{
unsigned temp = ptr;
temp = ALIGN_VALUE(temp, sizeof(T));
return (T *)temp;
}
// Define prefetch macros.
// The characteristics of cache and prefetch are completely
// different between the different platforms, so you DO NOT
// want to just define one macro that maps to every platform
// intrinsic under the hood -- you need to prefetch at different
// intervals between x86 and PPC, for example, and that is
// a higher level code change.
// On the other hand, I'm tired of typing #ifdef _X360
// all over the place, so this is just a nop on Intel, PS3.
#ifdef _X360
#define PREFETCH360(address, offset) __dcbt(offset,address)
#else
#define PREFETCH360(x,y) // nothing
#endif
#if USE_STDC_FOR_SIMD
//---------------------------------------------------------------------
// Standard C (fallback/Linux) implementation (only there for compat - slow)
//---------------------------------------------------------------------
FORCEINLINE float SubFloat( const fltx4 & a, int idx )
{
return a.m128_f32[ idx ];
}
FORCEINLINE float & SubFloat( fltx4 & a, int idx )
{
return a.m128_f32[idx];
}
FORCEINLINE uint32 SubInt( const fltx4 & a, int idx )
{
return a.m128_u32[idx];
}
FORCEINLINE uint32 & SubInt( fltx4 & a, int idx )
{
return a.m128_u32[idx];
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadZeroSIMD( void )
{
return Four_Zeros;
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadOneSIMD( void )
{
return Four_Ones;
}
FORCEINLINE fltx4 SplatXSIMD( const fltx4 & a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = SubFloat( a, 0 );
SubFloat( retVal, 1 ) = SubFloat( a, 0 );
SubFloat( retVal, 2 ) = SubFloat( a, 0 );
SubFloat( retVal, 3 ) = SubFloat( a, 0 );
return retVal;
}
FORCEINLINE fltx4 SplatYSIMD( fltx4 a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = SubFloat( a, 1 );
SubFloat( retVal, 1 ) = SubFloat( a, 1 );
SubFloat( retVal, 2 ) = SubFloat( a, 1 );
SubFloat( retVal, 3 ) = SubFloat( a, 1 );
return retVal;
}
FORCEINLINE fltx4 SplatZSIMD( fltx4 a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = SubFloat( a, 2 );
SubFloat( retVal, 1 ) = SubFloat( a, 2 );
SubFloat( retVal, 2 ) = SubFloat( a, 2 );
SubFloat( retVal, 3 ) = SubFloat( a, 2 );
return retVal;
}
FORCEINLINE fltx4 SplatWSIMD( fltx4 a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = SubFloat( a, 3 );
SubFloat( retVal, 1 ) = SubFloat( a, 3 );
SubFloat( retVal, 2 ) = SubFloat( a, 3 );
SubFloat( retVal, 3 ) = SubFloat( a, 3 );
return retVal;
}
FORCEINLINE fltx4 SetXSIMD( const fltx4& a, const fltx4& x )
{
fltx4 result = a;
SubFloat( result, 0 ) = SubFloat( x, 0 );
return result;
}
FORCEINLINE fltx4 SetYSIMD( const fltx4& a, const fltx4& y )
{
fltx4 result = a;
SubFloat( result, 1 ) = SubFloat( y, 1 );
return result;
}
FORCEINLINE fltx4 SetZSIMD( const fltx4& a, const fltx4& z )
{
fltx4 result = a;
SubFloat( result, 2 ) = SubFloat( z, 2 );
return result;
}
FORCEINLINE fltx4 SetWSIMD( const fltx4& a, const fltx4& w )
{
fltx4 result = a;
SubFloat( result, 3 ) = SubFloat( w, 3 );
return result;
}
FORCEINLINE fltx4 SetComponentSIMD( const fltx4& a, int nComponent, float flValue )
{
fltx4 result = a;
SubFloat( result, nComponent ) = flValue;
return result;
}
// a b c d -> b c d a
FORCEINLINE fltx4 RotateLeft( const fltx4 & a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = SubFloat( a, 1 );
SubFloat( retVal, 1 ) = SubFloat( a, 2 );
SubFloat( retVal, 2 ) = SubFloat( a, 3 );
SubFloat( retVal, 3 ) = SubFloat( a, 0 );
return retVal;
}
// a b c d -> c d a b
FORCEINLINE fltx4 RotateLeft2( const fltx4 & a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = SubFloat( a, 2 );
SubFloat( retVal, 1 ) = SubFloat( a, 3 );
SubFloat( retVal, 2 ) = SubFloat( a, 0 );
SubFloat( retVal, 3 ) = SubFloat( a, 1 );
return retVal;
}
#define BINOP(op) \
fltx4 retVal; \
SubFloat( retVal, 0 ) = ( SubFloat( a, 0 ) op SubFloat( b, 0 ) ); \
SubFloat( retVal, 1 ) = ( SubFloat( a, 1 ) op SubFloat( b, 1 ) ); \
SubFloat( retVal, 2 ) = ( SubFloat( a, 2 ) op SubFloat( b, 2 ) ); \
SubFloat( retVal, 3 ) = ( SubFloat( a, 3 ) op SubFloat( b, 3 ) ); \
return retVal;
#define IBINOP(op) \
fltx4 retVal; \
SubInt( retVal, 0 ) = ( SubInt( a, 0 ) op SubInt ( b, 0 ) ); \
SubInt( retVal, 1 ) = ( SubInt( a, 1 ) op SubInt ( b, 1 ) ); \
SubInt( retVal, 2 ) = ( SubInt( a, 2 ) op SubInt ( b, 2 ) ); \
SubInt( retVal, 3 ) = ( SubInt( a, 3 ) op SubInt ( b, 3 ) ); \
return retVal;
FORCEINLINE fltx4 AddSIMD( const fltx4 & a, const fltx4 & b )
{
BINOP(+);
}
FORCEINLINE fltx4 SubSIMD( const fltx4 & a, const fltx4 & b ) // a-b
{
BINOP(-);
};
FORCEINLINE fltx4 MulSIMD( const fltx4 & a, const fltx4 & b ) // a*b
{
BINOP(*);
}
FORCEINLINE fltx4 DivSIMD( const fltx4 & a, const fltx4 & b ) // a/b
{
BINOP(/);
}
FORCEINLINE fltx4 MaddSIMD( const fltx4 & a, const fltx4 & b, const fltx4 & c ) // a*b + c
{
return AddSIMD( MulSIMD(a,b), c );
}
FORCEINLINE fltx4 MsubSIMD( const fltx4 & a, const fltx4 & b, const fltx4 & c ) // c - a*b
{
return SubSIMD( c, MulSIMD(a,b) );
};
FORCEINLINE fltx4 SinSIMD( const fltx4 &radians )
{
fltx4 result;
SubFloat( result, 0 ) = sin( SubFloat( radians, 0 ) );
SubFloat( result, 1 ) = sin( SubFloat( radians, 1 ) );
SubFloat( result, 2 ) = sin( SubFloat( radians, 2 ) );
SubFloat( result, 3 ) = sin( SubFloat( radians, 3 ) );
return result;
}
FORCEINLINE void SinCos3SIMD( fltx4 &sine, fltx4 &cosine, const fltx4 &radians )
{
SinCos( SubFloat( radians, 0 ), &SubFloat( sine, 0 ), &SubFloat( cosine, 0 ) );
SinCos( SubFloat( radians, 1 ), &SubFloat( sine, 1 ), &SubFloat( cosine, 1 ) );
SinCos( SubFloat( radians, 2 ), &SubFloat( sine, 2 ), &SubFloat( cosine, 2 ) );
}
FORCEINLINE void SinCosSIMD( fltx4 &sine, fltx4 &cosine, const fltx4 &radians )
{
SinCos( SubFloat( radians, 0 ), &SubFloat( sine, 0 ), &SubFloat( cosine, 0 ) );
SinCos( SubFloat( radians, 1 ), &SubFloat( sine, 1 ), &SubFloat( cosine, 1 ) );
SinCos( SubFloat( radians, 2 ), &SubFloat( sine, 2 ), &SubFloat( cosine, 2 ) );
SinCos( SubFloat( radians, 3 ), &SubFloat( sine, 3 ), &SubFloat( cosine, 3 ) );
}
FORCEINLINE fltx4 ArcSinSIMD( const fltx4 &sine )
{
fltx4 result;
SubFloat( result, 0 ) = asin( SubFloat( sine, 0 ) );
SubFloat( result, 1 ) = asin( SubFloat( sine, 1 ) );
SubFloat( result, 2 ) = asin( SubFloat( sine, 2 ) );
SubFloat( result, 3 ) = asin( SubFloat( sine, 3 ) );
return result;
}
FORCEINLINE fltx4 ArcCosSIMD( const fltx4 &cs )
{
fltx4 result;
SubFloat( result, 0 ) = acos( SubFloat( cs, 0 ) );
SubFloat( result, 1 ) = acos( SubFloat( cs, 1 ) );
SubFloat( result, 2 ) = acos( SubFloat( cs, 2 ) );
SubFloat( result, 3 ) = acos( SubFloat( cs, 3 ) );
return result;
}
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
FORCEINLINE fltx4 ArcTan2SIMD( const fltx4 &a, const fltx4 &b )
{
fltx4 result;
SubFloat( result, 0 ) = atan2( SubFloat( a, 0 ), SubFloat( b, 0 ) );
SubFloat( result, 1 ) = atan2( SubFloat( a, 1 ), SubFloat( b, 1 ) );
SubFloat( result, 2 ) = atan2( SubFloat( a, 2 ), SubFloat( b, 2 ) );
SubFloat( result, 3 ) = atan2( SubFloat( a, 3 ), SubFloat( b, 3 ) );
return result;
}
FORCEINLINE fltx4 MaxSIMD( const fltx4 & a, const fltx4 & b ) // max(a,b)
{
fltx4 retVal;
SubFloat( retVal, 0 ) = max( SubFloat( a, 0 ), SubFloat( b, 0 ) );
SubFloat( retVal, 1 ) = max( SubFloat( a, 1 ), SubFloat( b, 1 ) );
SubFloat( retVal, 2 ) = max( SubFloat( a, 2 ), SubFloat( b, 2 ) );
SubFloat( retVal, 3 ) = max( SubFloat( a, 3 ), SubFloat( b, 3 ) );
return retVal;
}
FORCEINLINE fltx4 MinSIMD( const fltx4 & a, const fltx4 & b ) // min(a,b)
{
fltx4 retVal;
SubFloat( retVal, 0 ) = min( SubFloat( a, 0 ), SubFloat( b, 0 ) );
SubFloat( retVal, 1 ) = min( SubFloat( a, 1 ), SubFloat( b, 1 ) );
SubFloat( retVal, 2 ) = min( SubFloat( a, 2 ), SubFloat( b, 2 ) );
SubFloat( retVal, 3 ) = min( SubFloat( a, 3 ), SubFloat( b, 3 ) );
return retVal;
}
FORCEINLINE fltx4 AndSIMD( const fltx4 & a, const fltx4 & b ) // a & b
{
IBINOP(&);
}
FORCEINLINE fltx4 AndNotSIMD( const fltx4 & a, const fltx4 & b ) // ~a & b
{
fltx4 retVal;
SubInt( retVal, 0 ) = ~SubInt( a, 0 ) & SubInt( b, 0 );
SubInt( retVal, 1 ) = ~SubInt( a, 1 ) & SubInt( b, 1 );
SubInt( retVal, 2 ) = ~SubInt( a, 2 ) & SubInt( b, 2 );
SubInt( retVal, 3 ) = ~SubInt( a, 3 ) & SubInt( b, 3 );
return retVal;
}
FORCEINLINE fltx4 XorSIMD( const fltx4 & a, const fltx4 & b ) // a ^ b
{
IBINOP(^);
}
FORCEINLINE fltx4 OrSIMD( const fltx4 & a, const fltx4 & b ) // a | b
{
IBINOP(|);
}
FORCEINLINE fltx4 NegSIMD(const fltx4 &a) // negate: -a
{
fltx4 retval;
SubFloat( retval, 0 ) = -SubFloat( a, 0 );
SubFloat( retval, 1 ) = -SubFloat( a, 1 );
SubFloat( retval, 2 ) = -SubFloat( a, 2 );
SubFloat( retval, 3 ) = -SubFloat( a, 3 );
return retval;
}
FORCEINLINE bool IsAllZeros( const fltx4 & a ) // all floats of a zero?
{
return ( SubFloat( a, 0 ) == 0.0 ) &&
( SubFloat( a, 1 ) == 0.0 ) &&
( SubFloat( a, 2 ) == 0.0 ) &&
( SubFloat( a, 3 ) == 0.0 ) ;
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAllGreaterThan( const fltx4 &a, const fltx4 &b )
{
return SubFloat(a,0) > SubFloat(b,0) &&
SubFloat(a,1) > SubFloat(b,1) &&
SubFloat(a,2) > SubFloat(b,2) &&
SubFloat(a,3) > SubFloat(b,3);
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAllGreaterThanOrEq( const fltx4 &a, const fltx4 &b )
{
return SubFloat(a,0) >= SubFloat(b,0) &&
SubFloat(a,1) >= SubFloat(b,1) &&
SubFloat(a,2) >= SubFloat(b,2) &&
SubFloat(a,3) >= SubFloat(b,3);
}
// For branching if all a.xyzw == b.xyzw
FORCEINLINE bool IsAllEqual( const fltx4 & a, const fltx4 & b )
{
return SubFloat(a,0) == SubFloat(b,0) &&
SubFloat(a,1) == SubFloat(b,1) &&
SubFloat(a,2) == SubFloat(b,2) &&
SubFloat(a,3) == SubFloat(b,3);
}
// For branching if a.x == b.x || a.y == b.y || a.z == b.z || a.w == b.w
FORCEINLINE bool IsAnyEqual( const fltx4 & a, const fltx4 & b )
{
return SubFloat(a,0) == SubFloat(b,0) ||
SubFloat(a,1) == SubFloat(b,1) ||
SubFloat(a,2) == SubFloat(b,2) ||
SubFloat(a,3) == SubFloat(b,3);
}
FORCEINLINE int TestSignSIMD( const fltx4 & a ) // mask of which floats have the high bit set
{
int nRet = 0;
nRet |= ( SubInt( a, 0 ) & 0x80000000 ) >> 31; // sign(x) -> bit 0
nRet |= ( SubInt( a, 1 ) & 0x80000000 ) >> 30; // sign(y) -> bit 1
nRet |= ( SubInt( a, 2 ) & 0x80000000 ) >> 29; // sign(z) -> bit 2
nRet |= ( SubInt( a, 3 ) & 0x80000000 ) >> 28; // sign(w) -> bit 3
return nRet;
}
FORCEINLINE bool IsAnyNegative( const fltx4 & a ) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
{
return (0 != TestSignSIMD( a ));
}
FORCEINLINE fltx4 CmpEqSIMD( const fltx4 & a, const fltx4 & b ) // (a==b) ? ~0:0
{
fltx4 retVal;
SubInt( retVal, 0 ) = ( SubFloat( a, 0 ) == SubFloat( b, 0 )) ? ~0 : 0;
SubInt( retVal, 1 ) = ( SubFloat( a, 1 ) == SubFloat( b, 1 )) ? ~0 : 0;
SubInt( retVal, 2 ) = ( SubFloat( a, 2 ) == SubFloat( b, 2 )) ? ~0 : 0;
SubInt( retVal, 3 ) = ( SubFloat( a, 3 ) == SubFloat( b, 3 )) ? ~0 : 0;
return retVal;
}
FORCEINLINE fltx4 CmpGtSIMD( const fltx4 & a, const fltx4 & b ) // (a>b) ? ~0:0
{
fltx4 retVal;
SubInt( retVal, 0 ) = ( SubFloat( a, 0 ) > SubFloat( b, 0 )) ? ~0 : 0;
SubInt( retVal, 1 ) = ( SubFloat( a, 1 ) > SubFloat( b, 1 )) ? ~0 : 0;
SubInt( retVal, 2 ) = ( SubFloat( a, 2 ) > SubFloat( b, 2 )) ? ~0 : 0;
SubInt( retVal, 3 ) = ( SubFloat( a, 3 ) > SubFloat( b, 3 )) ? ~0 : 0;
return retVal;
}
FORCEINLINE fltx4 CmpGeSIMD( const fltx4 & a, const fltx4 & b ) // (a>=b) ? ~0:0
{
fltx4 retVal;
SubInt( retVal, 0 ) = ( SubFloat( a, 0 ) >= SubFloat( b, 0 )) ? ~0 : 0;
SubInt( retVal, 1 ) = ( SubFloat( a, 1 ) >= SubFloat( b, 1 )) ? ~0 : 0;
SubInt( retVal, 2 ) = ( SubFloat( a, 2 ) >= SubFloat( b, 2 )) ? ~0 : 0;
SubInt( retVal, 3 ) = ( SubFloat( a, 3 ) >= SubFloat( b, 3 )) ? ~0 : 0;
return retVal;
}
FORCEINLINE fltx4 CmpLtSIMD( const fltx4 & a, const fltx4 & b ) // (a<b) ? ~0:0
{
fltx4 retVal;
SubInt( retVal, 0 ) = ( SubFloat( a, 0 ) < SubFloat( b, 0 )) ? ~0 : 0;
SubInt( retVal, 1 ) = ( SubFloat( a, 1 ) < SubFloat( b, 1 )) ? ~0 : 0;
SubInt( retVal, 2 ) = ( SubFloat( a, 2 ) < SubFloat( b, 2 )) ? ~0 : 0;
SubInt( retVal, 3 ) = ( SubFloat( a, 3 ) < SubFloat( b, 3 )) ? ~0 : 0;
return retVal;
}
FORCEINLINE fltx4 CmpLeSIMD( const fltx4 & a, const fltx4 & b ) // (a<=b) ? ~0:0
{
fltx4 retVal;
SubInt( retVal, 0 ) = ( SubFloat( a, 0 ) <= SubFloat( b, 0 )) ? ~0 : 0;
SubInt( retVal, 1 ) = ( SubFloat( a, 1 ) <= SubFloat( b, 1 )) ? ~0 : 0;
SubInt( retVal, 2 ) = ( SubFloat( a, 2 ) <= SubFloat( b, 2 )) ? ~0 : 0;
SubInt( retVal, 3 ) = ( SubFloat( a, 3 ) <= SubFloat( b, 3 )) ? ~0 : 0;
return retVal;
}
FORCEINLINE fltx4 CmpInBoundsSIMD( const fltx4 & a, const fltx4 & b ) // (a <= b && a >= -b) ? ~0 : 0
{
fltx4 retVal;
SubInt( retVal, 0 ) = ( SubFloat( a, 0 ) <= SubFloat( b, 0 ) && SubFloat( a, 0 ) >= -SubFloat( b, 0 ) ) ? ~0 : 0;
SubInt( retVal, 1 ) = ( SubFloat( a, 1 ) <= SubFloat( b, 1 ) && SubFloat( a, 1 ) >= -SubFloat( b, 1 ) ) ? ~0 : 0;
SubInt( retVal, 2 ) = ( SubFloat( a, 2 ) <= SubFloat( b, 2 ) && SubFloat( a, 2 ) >= -SubFloat( b, 2 ) ) ? ~0 : 0;
SubInt( retVal, 3 ) = ( SubFloat( a, 3 ) <= SubFloat( b, 3 ) && SubFloat( a, 3 ) >= -SubFloat( b, 3 ) ) ? ~0 : 0;
return retVal;
}
FORCEINLINE fltx4 MaskedAssign( const fltx4 & ReplacementMask, const fltx4 & NewValue, const fltx4 & OldValue )
{
return OrSIMD(
AndSIMD( ReplacementMask, NewValue ),
AndNotSIMD( ReplacementMask, OldValue ) );
}
FORCEINLINE fltx4 ReplicateX4( float flValue ) // a,a,a,a
{
fltx4 retVal;
SubFloat( retVal, 0 ) = flValue;
SubFloat( retVal, 1 ) = flValue;
SubFloat( retVal, 2 ) = flValue;
SubFloat( retVal, 3 ) = flValue;
return retVal;
}
/// replicate a single 32 bit integer value to all 4 components of an m128
FORCEINLINE fltx4 ReplicateIX4( int nValue )
{
fltx4 retVal;
SubInt( retVal, 0 ) = nValue;
SubInt( retVal, 1 ) = nValue;
SubInt( retVal, 2 ) = nValue;
SubInt( retVal, 3 ) = nValue;
return retVal;
}
// Round towards positive infinity
FORCEINLINE fltx4 CeilSIMD( const fltx4 &a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = ceil( SubFloat( a, 0 ) );
SubFloat( retVal, 1 ) = ceil( SubFloat( a, 1 ) );
SubFloat( retVal, 2 ) = ceil( SubFloat( a, 2 ) );
SubFloat( retVal, 3 ) = ceil( SubFloat( a, 3 ) );
return retVal;
}
// Round towards negative infinity
FORCEINLINE fltx4 FloorSIMD( const fltx4 &a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = floor( SubFloat( a, 0 ) );
SubFloat( retVal, 1 ) = floor( SubFloat( a, 1 ) );
SubFloat( retVal, 2 ) = floor( SubFloat( a, 2 ) );
SubFloat( retVal, 3 ) = floor( SubFloat( a, 3 ) );
return retVal;
}
FORCEINLINE fltx4 SqrtEstSIMD( const fltx4 & a ) // sqrt(a), more or less
{
fltx4 retVal;
SubFloat( retVal, 0 ) = sqrt( SubFloat( a, 0 ) );
SubFloat( retVal, 1 ) = sqrt( SubFloat( a, 1 ) );
SubFloat( retVal, 2 ) = sqrt( SubFloat( a, 2 ) );
SubFloat( retVal, 3 ) = sqrt( SubFloat( a, 3 ) );
return retVal;
}
FORCEINLINE fltx4 SqrtSIMD( const fltx4 & a ) // sqrt(a)
{
fltx4 retVal;
SubFloat( retVal, 0 ) = sqrt( SubFloat( a, 0 ) );
SubFloat( retVal, 1 ) = sqrt( SubFloat( a, 1 ) );
SubFloat( retVal, 2 ) = sqrt( SubFloat( a, 2 ) );
SubFloat( retVal, 3 ) = sqrt( SubFloat( a, 3 ) );
return retVal;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD( const fltx4 & a ) // 1/sqrt(a), more or less
{
fltx4 retVal;
SubFloat( retVal, 0 ) = 1.0 / sqrt( SubFloat( a, 0 ) );
SubFloat( retVal, 1 ) = 1.0 / sqrt( SubFloat( a, 1 ) );
SubFloat( retVal, 2 ) = 1.0 / sqrt( SubFloat( a, 2 ) );
SubFloat( retVal, 3 ) = 1.0 / sqrt( SubFloat( a, 3 ) );
return retVal;
}
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD( const fltx4 & a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = 1.0 / sqrt( SubFloat( a, 0 ) != 0.0f ? SubFloat( a, 0 ) : FLT_EPSILON );
SubFloat( retVal, 1 ) = 1.0 / sqrt( SubFloat( a, 1 ) != 0.0f ? SubFloat( a, 1 ) : FLT_EPSILON );
SubFloat( retVal, 2 ) = 1.0 / sqrt( SubFloat( a, 2 ) != 0.0f ? SubFloat( a, 2 ) : FLT_EPSILON );
SubFloat( retVal, 3 ) = 1.0 / sqrt( SubFloat( a, 3 ) != 0.0f ? SubFloat( a, 3 ) : FLT_EPSILON );
return retVal;
}
FORCEINLINE fltx4 ReciprocalSqrtSIMD( const fltx4 & a ) // 1/sqrt(a)
{
fltx4 retVal;
SubFloat( retVal, 0 ) = 1.0 / sqrt( SubFloat( a, 0 ) );
SubFloat( retVal, 1 ) = 1.0 / sqrt( SubFloat( a, 1 ) );
SubFloat( retVal, 2 ) = 1.0 / sqrt( SubFloat( a, 2 ) );
SubFloat( retVal, 3 ) = 1.0 / sqrt( SubFloat( a, 3 ) );
return retVal;
}
FORCEINLINE fltx4 ReciprocalEstSIMD( const fltx4 & a ) // 1/a, more or less
{
fltx4 retVal;
SubFloat( retVal, 0 ) = 1.0 / SubFloat( a, 0 );
SubFloat( retVal, 1 ) = 1.0 / SubFloat( a, 1 );
SubFloat( retVal, 2 ) = 1.0 / SubFloat( a, 2 );
SubFloat( retVal, 3 ) = 1.0 / SubFloat( a, 3 );
return retVal;
}
FORCEINLINE fltx4 ReciprocalSIMD( const fltx4 & a ) // 1/a
{
fltx4 retVal;
SubFloat( retVal, 0 ) = 1.0 / SubFloat( a, 0 );
SubFloat( retVal, 1 ) = 1.0 / SubFloat( a, 1 );
SubFloat( retVal, 2 ) = 1.0 / SubFloat( a, 2 );
SubFloat( retVal, 3 ) = 1.0 / SubFloat( a, 3 );
return retVal;
}
/// 1/x for all 4 values.
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD( const fltx4 & a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = 1.0 / (SubFloat( a, 0 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 0 ));
SubFloat( retVal, 1 ) = 1.0 / (SubFloat( a, 1 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 1 ));
SubFloat( retVal, 2 ) = 1.0 / (SubFloat( a, 2 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 2 ));
SubFloat( retVal, 3 ) = 1.0 / (SubFloat( a, 3 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 3 ));
return retVal;
}
FORCEINLINE fltx4 ReciprocalSaturateSIMD( const fltx4 & a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = 1.0 / (SubFloat( a, 0 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 0 ));
SubFloat( retVal, 1 ) = 1.0 / (SubFloat( a, 1 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 1 ));
SubFloat( retVal, 2 ) = 1.0 / (SubFloat( a, 2 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 2 ));
SubFloat( retVal, 3 ) = 1.0 / (SubFloat( a, 3 ) == 0.0f ? FLT_EPSILON : SubFloat( a, 3 ));
return retVal;
}
// 2^x for all values (the antilog)
FORCEINLINE fltx4 ExpSIMD( const fltx4 &toPower )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = powf( 2, SubFloat(toPower, 0) );
SubFloat( retVal, 1 ) = powf( 2, SubFloat(toPower, 1) );
SubFloat( retVal, 2 ) = powf( 2, SubFloat(toPower, 2) );
SubFloat( retVal, 3 ) = powf( 2, SubFloat(toPower, 3) );
return retVal;
}
FORCEINLINE fltx4 Dot3SIMD( const fltx4 &a, const fltx4 &b )
{
float flDot = SubFloat( a, 0 ) * SubFloat( b, 0 ) +
SubFloat( a, 1 ) * SubFloat( b, 1 ) +
SubFloat( a, 2 ) * SubFloat( b, 2 );
return ReplicateX4( flDot );
}
FORCEINLINE fltx4 Dot4SIMD( const fltx4 &a, const fltx4 &b )
{
float flDot = SubFloat( a, 0 ) * SubFloat( b, 0 ) +
SubFloat( a, 1 ) * SubFloat( b, 1 ) +
SubFloat( a, 2 ) * SubFloat( b, 2 ) +
SubFloat( a, 3 ) * SubFloat( b, 3 );
return ReplicateX4( flDot );
}
// Clamps the components of a vector to a specified minimum and maximum range.
FORCEINLINE fltx4 ClampVectorSIMD( FLTX4 in, FLTX4 min, FLTX4 max)
{
return MaxSIMD( min, MinSIMD( max, in ) );
}
// Squelch the w component of a vector to +0.0.
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
FORCEINLINE fltx4 SetWToZeroSIMD( const fltx4 & a )
{
fltx4 retval;
retval = a;
SubFloat( retval, 0 ) = 0;
return retval;
}
FORCEINLINE fltx4 LoadUnalignedSIMD( const void *pSIMD )
{
return *( reinterpret_cast< const fltx4 *> ( pSIMD ) );
}
FORCEINLINE fltx4 LoadUnaligned3SIMD( const void *pSIMD )
{
return *( reinterpret_cast< const fltx4 *> ( pSIMD ) );
}
// load a single unaligned float into the x component of a SIMD word
FORCEINLINE fltx4 LoadUnalignedFloatSIMD( const float *pFlt )
{
fltx4 retval;
SubFloat( retval, 0 ) = *pFlt;
return retval;
}
FORCEINLINE fltx4 LoadAlignedSIMD( const void *pSIMD )
{
return *( reinterpret_cast< const fltx4 *> ( pSIMD ) );
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD( const VectorAligned & pSIMD )
{
fltx4 retval = LoadAlignedSIMD(pSIMD.Base());
// squelch w
SubInt( retval, 3 ) = 0;
return retval;
}
FORCEINLINE void StoreAlignedSIMD( float *pSIMD, const fltx4 & a )
{
*( reinterpret_cast< fltx4 *> ( pSIMD ) ) = a;
}
FORCEINLINE void StoreUnalignedSIMD( float *pSIMD, const fltx4 & a )
{
*( reinterpret_cast< fltx4 *> ( pSIMD ) ) = a;
}
FORCEINLINE void StoreUnaligned3SIMD( float *pSIMD, const fltx4 & a )
{
*pSIMD = SubFloat(a, 0);
*(pSIMD+1) = SubFloat(a, 1);
*(pSIMD+2) = SubFloat(a, 2);
}
// strongly typed -- syntactic castor oil used for typechecking as we transition to SIMD
FORCEINLINE void StoreAligned3SIMD( VectorAligned * RESTRICT pSIMD, const fltx4 & a )
{
StoreAlignedSIMD(pSIMD->Base(),a);
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination[0], pDestination[1], pDestination[2], pDestination[3]
// The Vectors are assumed to be unaligned.
FORCEINLINE void StoreFourUnalignedVector3SIMD( fltx4 a, fltx4 b, fltx4 c, FLTX4 d, // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD( pDestination->Base(), a );
StoreUnaligned3SIMD( (pDestination+1)->Base(), b );
StoreUnaligned3SIMD( (pDestination+2)->Base(), c );
StoreUnaligned3SIMD( (pDestination+3)->Base(), d );
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination , pDestination + 1, pDestination + 2, pDestination + 3
// The Vectors are assumed to start on an ALIGNED address, that is,
// pDestination is 16-byte aligned (thhough obviously pDestination+1 is not).
FORCEINLINE void StoreFourAlignedVector3SIMD( fltx4 a, fltx4 b, fltx4 c, FLTX4 d, // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD( pDestination->Base(), a );
StoreUnaligned3SIMD( (pDestination+1)->Base(), b );
StoreUnaligned3SIMD( (pDestination+2)->Base(), c );
StoreUnaligned3SIMD( (pDestination+3)->Base(), d );
}
FORCEINLINE void TransposeSIMD( fltx4 & x, fltx4 & y, fltx4 & z, fltx4 & w )
{
#define SWAP_FLOATS( _a_, _ia_, _b_, _ib_ ) { float tmp = SubFloat( _a_, _ia_ ); SubFloat( _a_, _ia_ ) = SubFloat( _b_, _ib_ ); SubFloat( _b_, _ib_ ) = tmp; }
SWAP_FLOATS( x, 1, y, 0 );
SWAP_FLOATS( x, 2, z, 0 );
SWAP_FLOATS( x, 3, w, 0 );
SWAP_FLOATS( y, 2, z, 1 );
SWAP_FLOATS( y, 3, w, 1 );
SWAP_FLOATS( z, 3, w, 2 );
}
// find the lowest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
FORCEINLINE fltx4 FindLowestSIMD3( const fltx4 & a )
{
float lowest = min( min( SubFloat(a, 0), SubFloat(a, 1) ), SubFloat(a, 2));
return ReplicateX4(lowest);
}
// find the highest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
FORCEINLINE fltx4 FindHighestSIMD3( const fltx4 & a )
{
float highest = max( max( SubFloat(a, 0), SubFloat(a, 1) ), SubFloat(a, 2));
return ReplicateX4(highest);
}
// Fixed-point conversion and save as SIGNED INTS.
// pDest->x = Int (vSrc.x)
// note: some architectures have means of doing
// fixed point conversion when the fix depth is
// specified as an immediate.. but there is no way
// to guarantee an immediate as a parameter to function
// like this.
FORCEINLINE void ConvertStoreAsIntsSIMD(intx4 * RESTRICT pDest, const fltx4 &vSrc)
{
(*pDest)[0] = SubFloat(vSrc, 0);
(*pDest)[1] = SubFloat(vSrc, 1);
(*pDest)[2] = SubFloat(vSrc, 2);
(*pDest)[3] = SubFloat(vSrc, 3);
}
// ------------------------------------
// INTEGER SIMD OPERATIONS.
// ------------------------------------
// splat all components of a vector to a signed immediate int number.
FORCEINLINE fltx4 IntSetImmediateSIMD( int nValue )
{
fltx4 retval;
SubInt( retval, 0 ) = SubInt( retval, 1 ) = SubInt( retval, 2 ) = SubInt( retval, 3) = nValue;
return retval;
}
// Load 4 aligned words into a SIMD register
FORCEINLINE i32x4 LoadAlignedIntSIMD(const void * RESTRICT pSIMD)
{
return *( reinterpret_cast< const i32x4 *> ( pSIMD ) );
}
// Load 4 unaligned words into a SIMD register
FORCEINLINE i32x4 LoadUnalignedIntSIMD( const void * RESTRICT pSIMD)
{
return *( reinterpret_cast< const i32x4 *> ( pSIMD ) );
}
// save into four words, 16-byte aligned
FORCEINLINE void StoreAlignedIntSIMD( int32 *pSIMD, const fltx4 & a )
{
*( reinterpret_cast< i32x4 *> ( pSIMD ) ) = a;
}
FORCEINLINE void StoreAlignedIntSIMD( intx4 &pSIMD, const fltx4 & a )
{
*( reinterpret_cast< i32x4 *> ( pSIMD.Base() ) ) = a;
}
FORCEINLINE void StoreUnalignedIntSIMD( int32 *pSIMD, const fltx4 & a )
{
*( reinterpret_cast< i32x4 *> ( pSIMD ) ) = a;
}
// Load four consecutive uint16's, and turn them into floating point numbers.
// This function isn't especially fast and could be made faster if anyone is
// using it heavily.
FORCEINLINE fltx4 LoadAndConvertUint16SIMD( const uint16 *pInts )
{
fltx4 retval;
SubFloat( retval, 0 ) = pInts[0];
SubFloat( retval, 1 ) = pInts[1];
SubFloat( retval, 2 ) = pInts[2];
SubFloat( retval, 3 ) = pInts[3];
}
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD( const u32x4 &vSrcA )
{
Assert(0); /* pc has no such operation */
fltx4 retval;
SubFloat( retval, 0 ) = ( (float) SubInt( vSrcA, 0 ) );
SubFloat( retval, 1 ) = ( (float) SubInt( vSrcA, 1 ) );
SubFloat( retval, 2 ) = ( (float) SubInt( vSrcA, 2 ) );
SubFloat( retval, 3 ) = ( (float) SubInt( vSrcA, 3 ) );
return retval;
}
#if 0 /* pc has no such op */
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 SignedIntConvertToFltSIMD( const i32x4 &vSrcA )
{
fltx4 retval;
SubFloat( retval, 0 ) = ( (float) (reinterpret_cast<int32 *>(&vSrcA.m128_s32[0])) );
SubFloat( retval, 1 ) = ( (float) (reinterpret_cast<int32 *>(&vSrcA.m128_s32[1])) );
SubFloat( retval, 2 ) = ( (float) (reinterpret_cast<int32 *>(&vSrcA.m128_s32[2])) );
SubFloat( retval, 3 ) = ( (float) (reinterpret_cast<int32 *>(&vSrcA.m128_s32[3])) );
return retval;
}
/*
works on fltx4's as if they are four uints.
the first parameter contains the words to be shifted,
the second contains the amount to shift by AS INTS
for i = 0 to 3
shift = vSrcB_i*32:(i*32)+4
vReturned_i*32:(i*32)+31 = vSrcA_i*32:(i*32)+31 << shift
*/
FORCEINLINE i32x4 IntShiftLeftWordSIMD(const i32x4 &vSrcA, const i32x4 &vSrcB)
{
i32x4 retval;
SubInt(retval, 0) = SubInt(vSrcA, 0) << SubInt(vSrcB, 0);
SubInt(retval, 1) = SubInt(vSrcA, 1) << SubInt(vSrcB, 1);
SubInt(retval, 2) = SubInt(vSrcA, 2) << SubInt(vSrcB, 2);
SubInt(retval, 3) = SubInt(vSrcA, 3) << SubInt(vSrcB, 3);
return retval;
}
#endif
#elif ( defined( _X360 ) )
//---------------------------------------------------------------------
// X360 implementation
//---------------------------------------------------------------------
FORCEINLINE float & FloatSIMD( fltx4 & a, int idx )
{
fltx4_union & a_union = (fltx4_union &)a;
return a_union.m128_f32[idx];
}
FORCEINLINE unsigned int & UIntSIMD( fltx4 & a, int idx )
{
fltx4_union & a_union = (fltx4_union &)a;
return a_union.m128_u32[idx];
}
FORCEINLINE fltx4 AddSIMD( const fltx4 & a, const fltx4 & b )
{
return __vaddfp( a, b );
}
FORCEINLINE fltx4 SubSIMD( const fltx4 & a, const fltx4 & b ) // a-b
{
return __vsubfp( a, b );
}
FORCEINLINE fltx4 MulSIMD( const fltx4 & a, const fltx4 & b ) // a*b
{
return __vmulfp( a, b );
}
FORCEINLINE fltx4 MaddSIMD( const fltx4 & a, const fltx4 & b, const fltx4 & c ) // a*b + c
{
return __vmaddfp( a, b, c );
}
FORCEINLINE fltx4 MsubSIMD( const fltx4 & a, const fltx4 & b, const fltx4 & c ) // c - a*b
{
return __vnmsubfp( a, b, c );
};
FORCEINLINE fltx4 Dot3SIMD( const fltx4 &a, const fltx4 &b )
{
return __vmsum3fp( a, b );
}
FORCEINLINE fltx4 Dot4SIMD( const fltx4 &a, const fltx4 &b )
{
return __vmsum4fp( a, b );
}
FORCEINLINE fltx4 SinSIMD( const fltx4 &radians )
{
return XMVectorSin( radians );
}
FORCEINLINE void SinCos3SIMD( fltx4 &sine, fltx4 &cosine, const fltx4 &radians )
{
XMVectorSinCos( &sine, &cosine, radians );
}
FORCEINLINE void SinCosSIMD( fltx4 &sine, fltx4 &cosine, const fltx4 &radians )
{
XMVectorSinCos( &sine, &cosine, radians );
}
FORCEINLINE void CosSIMD( fltx4 &cosine, const fltx4 &radians )
{
cosine = XMVectorCos( radians );
}
FORCEINLINE fltx4 ArcSinSIMD( const fltx4 &sine )
{
return XMVectorASin( sine );
}
FORCEINLINE fltx4 ArcCosSIMD( const fltx4 &cs )
{
return XMVectorACos( cs );
}
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
FORCEINLINE fltx4 ArcTan2SIMD( const fltx4 &a, const fltx4 &b )
{
return XMVectorATan2( a, b );
}
// DivSIMD defined further down, since it uses ReciprocalSIMD
FORCEINLINE fltx4 MaxSIMD( const fltx4 & a, const fltx4 & b ) // max(a,b)
{
return __vmaxfp( a, b );
}
FORCEINLINE fltx4 MinSIMD( const fltx4 & a, const fltx4 & b ) // min(a,b)
{
return __vminfp( a, b );
}
FORCEINLINE fltx4 AndSIMD( const fltx4 & a, const fltx4 & b ) // a & b
{
return __vand( a, b );
}
FORCEINLINE fltx4 AndNotSIMD( const fltx4 & a, const fltx4 & b ) // ~a & b
{
// NOTE: a and b are swapped in the call: SSE complements the first argument, VMX the second
return __vandc( b, a );
}
FORCEINLINE fltx4 XorSIMD( const fltx4 & a, const fltx4 & b ) // a ^ b
{
return __vxor( a, b );
}
FORCEINLINE fltx4 OrSIMD( const fltx4 & a, const fltx4 & b ) // a | b
{
return __vor( a, b );
}
FORCEINLINE fltx4 NegSIMD(const fltx4 &a) // negate: -a
{
return XMVectorNegate(a);
}
FORCEINLINE bool IsAllZeros( const fltx4 & a ) // all floats of a zero?
{
unsigned int equalFlags = 0;
__vcmpeqfpR( a, Four_Zeros, &equalFlags );
return XMComparisonAllTrue( equalFlags );
}
FORCEINLINE bool IsAnyZeros( const fltx4 & a ) // any floats are zero?
{
unsigned int conditionregister;
XMVectorEqualR(&conditionregister, a, XMVectorZero());
return XMComparisonAnyTrue(conditionregister);
}
FORCEINLINE bool IsAnyXYZZero( const fltx4 &a ) // are any of x,y,z zero?
{
// copy a's x component into w, in case w was zero.
fltx4 temp = __vrlimi(a, a, 1, 1);
unsigned int conditionregister;
XMVectorEqualR(&conditionregister, temp, XMVectorZero());
return XMComparisonAnyTrue(conditionregister);
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAllGreaterThan( const fltx4 &a, const fltx4 &b )
{
unsigned int cr;
XMVectorGreaterR(&cr,a,b);
return XMComparisonAllTrue(cr);
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAllGreaterThanOrEq( const fltx4 &a, const fltx4 &b )
{
unsigned int cr;
XMVectorGreaterOrEqualR(&cr,a,b);
return XMComparisonAllTrue(cr);
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAnyGreaterThan( const fltx4 &a, const fltx4 &b )
{
unsigned int cr;
XMVectorGreaterR(&cr,a,b);
return XMComparisonAnyTrue(cr);
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAnyGreaterThanOrEq( const fltx4 &a, const fltx4 &b )
{
unsigned int cr;
XMVectorGreaterOrEqualR(&cr,a,b);
return XMComparisonAnyTrue(cr);
}
// For branching if all a.xyzw == b.xyzw
FORCEINLINE bool IsAllEqual( const fltx4 & a, const fltx4 & b )
{
unsigned int cr;
XMVectorEqualR(&cr,a,b);
return XMComparisonAllTrue(cr);
}
FORCEINLINE int TestSignSIMD( const fltx4 & a ) // mask of which floats have the high bit set
{
// NOTE: this maps to SSE way better than it does to VMX (most code uses IsAnyNegative(), though)
int nRet = 0;
const fltx4_union & a_union = (const fltx4_union &)a;
nRet |= ( a_union.m128_u32[0] & 0x80000000 ) >> 31; // sign(x) -> bit 0
nRet |= ( a_union.m128_u32[1] & 0x80000000 ) >> 30; // sign(y) -> bit 1
nRet |= ( a_union.m128_u32[2] & 0x80000000 ) >> 29; // sign(z) -> bit 2
nRet |= ( a_union.m128_u32[3] & 0x80000000 ) >> 28; // sign(w) -> bit 3
return nRet;
}
// Squelch the w component of a vector to +0.0.
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
FORCEINLINE fltx4 SetWToZeroSIMD( const fltx4 & a )
{
return __vrlimi( a, __vzero(), 1, 0 );
}
FORCEINLINE bool IsAnyNegative( const fltx4 & a ) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
{
// NOTE: this tests the top bits of each vector element using integer math
// (so it ignores NaNs - it will return true for "-NaN")
unsigned int equalFlags = 0;
fltx4 signMask = __vspltisw( -1 ); // 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF (low order 5 bits of each element = 31)
signMask = __vslw( signMask, signMask ); // 0x80000000 0x80000000 0x80000000 0x80000000
__vcmpequwR( Four_Zeros, __vand( signMask, a ), &equalFlags );
return !XMComparisonAllTrue( equalFlags );
}
FORCEINLINE fltx4 CmpEqSIMD( const fltx4 & a, const fltx4 & b ) // (a==b) ? ~0:0
{
return __vcmpeqfp( a, b );
}
FORCEINLINE fltx4 CmpGtSIMD( const fltx4 & a, const fltx4 & b ) // (a>b) ? ~0:0
{
return __vcmpgtfp( a, b );
}
FORCEINLINE fltx4 CmpGeSIMD( const fltx4 & a, const fltx4 & b ) // (a>=b) ? ~0:0
{
return __vcmpgefp( a, b );
}
FORCEINLINE fltx4 CmpLtSIMD( const fltx4 & a, const fltx4 & b ) // (a<b) ? ~0:0
{
return __vcmpgtfp( b, a );
}
FORCEINLINE fltx4 CmpLeSIMD( const fltx4 & a, const fltx4 & b ) // (a<=b) ? ~0:0
{
return __vcmpgefp( b, a );
}
FORCEINLINE fltx4 CmpInBoundsSIMD( const fltx4 & a, const fltx4 & b ) // (a <= b && a >= -b) ? ~0 : 0
{
return XMVectorInBounds( a, b );
}
// returned[i] = ReplacementMask[i] == 0 ? OldValue : NewValue
FORCEINLINE fltx4 MaskedAssign( const fltx4 & ReplacementMask, const fltx4 & NewValue, const fltx4 & OldValue )
{
return __vsel( OldValue, NewValue, ReplacementMask );
}
// AKA "Broadcast", "Splat"
FORCEINLINE fltx4 ReplicateX4( float flValue ) // a,a,a,a
{
// NOTE: if flValue comes from a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
float * pValue = &flValue;
Assert( pValue );
Assert( ((unsigned int)pValue & 3) == 0);
return __vspltw( __lvlx( pValue, 0 ), 0 );
}
FORCEINLINE fltx4 ReplicateX4( const float *pValue ) // a,a,a,a
{
Assert( pValue );
return __vspltw( __lvlx( pValue, 0 ), 0 );
}
/// replicate a single 32 bit integer value to all 4 components of an m128
FORCEINLINE fltx4 ReplicateIX4( int nValue )
{
// NOTE: if nValue comes from a register, this causes a Load-Hit-Store stall (should not mix ints with fltx4s!)
int * pValue = &nValue;
Assert( pValue );
Assert( ((unsigned int)pValue & 3) == 0);
return __vspltw( __lvlx( pValue, 0 ), 0 );
}
// Round towards positive infinity
FORCEINLINE fltx4 CeilSIMD( const fltx4 &a )
{
return __vrfip(a);
}
// Round towards nearest integer
FORCEINLINE fltx4 RoundSIMD( const fltx4 &a )
{
return __vrfin(a);
}
// Round towards negative infinity
FORCEINLINE fltx4 FloorSIMD( const fltx4 &a )
{
return __vrfim(a);
}
FORCEINLINE fltx4 SqrtEstSIMD( const fltx4 & a ) // sqrt(a), more or less
{
// This is emulated from rsqrt
return XMVectorSqrtEst( a );
}
FORCEINLINE fltx4 SqrtSIMD( const fltx4 & a ) // sqrt(a)
{
// This is emulated from rsqrt
return XMVectorSqrt( a );
}
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD( const fltx4 & a ) // 1/sqrt(a), more or less
{
return __vrsqrtefp( a );
}
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD( const fltx4 & a )
{
// Convert zeros to epsilons
fltx4 zero_mask = CmpEqSIMD( a, Four_Zeros );
fltx4 a_safe = OrSIMD( a, AndSIMD( Four_Epsilons, zero_mask ) );
return ReciprocalSqrtEstSIMD( a_safe );
}
FORCEINLINE fltx4 ReciprocalSqrtSIMD( const fltx4 & a ) // 1/sqrt(a)
{
// This uses Newton-Raphson to improve the HW result
return XMVectorReciprocalSqrt( a );
}
FORCEINLINE fltx4 ReciprocalEstSIMD( const fltx4 & a ) // 1/a, more or less
{
return __vrefp( a );
}
/// 1/x for all 4 values. uses reciprocal approximation instruction plus newton iteration.
/// No error checking!
FORCEINLINE fltx4 ReciprocalSIMD( const fltx4 & a ) // 1/a
{
// This uses Newton-Raphson to improve the HW result
return XMVectorReciprocal( a );
}
// FIXME: on 360, this is very slow, since it uses ReciprocalSIMD (do we need DivEstSIMD?)
FORCEINLINE fltx4 DivSIMD( const fltx4 & a, const fltx4 & b ) // a/b
{
return MulSIMD( ReciprocalSIMD( b ), a );
}
/// 1/x for all 4 values.
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD( const fltx4 & a )
{
// Convert zeros to epsilons
fltx4 zero_mask = CmpEqSIMD( a, Four_Zeros );
fltx4 a_safe = OrSIMD( a, AndSIMD( Four_Epsilons, zero_mask ) );
return ReciprocalEstSIMD( a_safe );
}
FORCEINLINE fltx4 ReciprocalSaturateSIMD( const fltx4 & a )
{
// Convert zeros to epsilons
fltx4 zero_mask = CmpEqSIMD( a, Four_Zeros );
fltx4 a_safe = OrSIMD( a, AndSIMD( Four_Epsilons, zero_mask ) );
return ReciprocalSIMD( a_safe );
// FIXME: This could be faster (BUT: it doesn't preserve the sign of -0.0, whereas the above does)
// fltx4 zeroMask = CmpEqSIMD( Four_Zeros, a );
// fltx4 a_safe = XMVectorSelect( a, Four_Epsilons, zeroMask );
// return ReciprocalSIMD( a_safe );
}
// CHRISG: is it worth doing integer bitfiddling for this?
// 2^x for all values (the antilog)
FORCEINLINE fltx4 ExpSIMD( const fltx4 &toPower )
{
return XMVectorExp(toPower);
}
// Clamps the components of a vector to a specified minimum and maximum range.
FORCEINLINE fltx4 ClampVectorSIMD( FLTX4 in, FLTX4 min, FLTX4 max)
{
return XMVectorClamp(in, min, max);
}
FORCEINLINE fltx4 LoadUnalignedSIMD( const void *pSIMD )
{
return XMLoadVector4( pSIMD );
}
// load a 3-vector (as opposed to LoadUnalignedSIMD, which loads a 4-vec).
FORCEINLINE fltx4 LoadUnaligned3SIMD( const void *pSIMD )
{
return XMLoadVector3( pSIMD );
}
// load a single unaligned float into the x component of a SIMD word
FORCEINLINE fltx4 LoadUnalignedFloatSIMD( const float *pFlt )
{
return __lvlx( pFlt, 0 );
}
FORCEINLINE fltx4 LoadAlignedSIMD( const void *pSIMD )
{
return *( reinterpret_cast< const fltx4 *> ( pSIMD ) );
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD( const VectorAligned & pSIMD )
{
fltx4 out = XMLoadVector3A(pSIMD.Base());
// squelch w
return __vrlimi( out, __vzero(), 1, 0 );
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD( const VectorAligned * RESTRICT pSIMD )
{
fltx4 out = XMLoadVector3A(pSIMD);
// squelch w
return __vrlimi( out, __vzero(), 1, 0 );
}
FORCEINLINE void StoreAlignedSIMD( float *pSIMD, const fltx4 & a )
{
*( reinterpret_cast< fltx4 *> ( pSIMD ) ) = a;
}
FORCEINLINE void StoreUnalignedSIMD( float *pSIMD, const fltx4 & a )
{
XMStoreVector4( pSIMD, a );
}
FORCEINLINE void StoreUnaligned3SIMD( float *pSIMD, const fltx4 & a )
{
XMStoreVector3( pSIMD, a );
}
// strongly typed -- for typechecking as we transition to SIMD
FORCEINLINE void StoreAligned3SIMD( VectorAligned * RESTRICT pSIMD, const fltx4 & a )
{
XMStoreVector3A(pSIMD->Base(),a);
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination[0], pDestination[1], pDestination[2], pDestination[3]
// The Vectors are assumed to be unaligned.
FORCEINLINE void StoreFourUnalignedVector3SIMD( fltx4 a, fltx4 b, fltx4 c, FLTX4 d, // first three passed by copy (deliberate)
Vector * const pDestination )
{
// since four Vec3s == 48 bytes, we can use full-vector stores here, so long as
// we arrange the data properly first.
// The vrlimi ops trash the destination param which is why we require
// pass-by-copy. I'm counting on the compiler to schedule these properly.
b = __vrlimi( b, b, 15, 1 ); // b = y1z1__x1
c = __vrlimi( c, c, 15, 2 ); // c = z2__x2y2
a = __vrlimi( a, b, 1, 0 ); // a = x0y0z0x1
b = __vrlimi( b, c, 2|1, 0 ); // b = y1z1x2y2
c = __vrlimi( c, d, 4|2|1, 3 ); // c = z2x3y3z3
float *RESTRICT pOut = pDestination->Base();
StoreUnalignedSIMD( pOut + 0, a );
StoreUnalignedSIMD( pOut + 4, b );
StoreUnalignedSIMD( pOut + 8, c );
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination , pDestination + 1, pDestination + 2, pDestination + 3
// The Vectors are assumed to start on an ALIGNED address, that is,
// pDestination is 16-byte aligned (thhough obviously pDestination+1 is not).
FORCEINLINE void StoreFourAlignedVector3SIMD( fltx4 a, fltx4 b, fltx4 c, FLTX4 d, // first three passed by copy (deliberate)
Vector * const pDestination )
{
// since four Vec3s == 48 bytes, we can use full-vector stores here, so long as
// we arrange the data properly first.
// The vrlimi ops trash the destination param which is why we require
// pass-by-copy. I'm counting on the compiler to schedule these properly.
b = __vrlimi( b, b, 15, 1 ); // b = y1z1__x1
c = __vrlimi( c, c, 15, 2 ); // c = z2__x2y2
a = __vrlimi( a, b, 1, 0 ); // a = x0y0z0x1
b = __vrlimi( b, c, 2|1, 0 ); // b = y1z1x2y2
c = __vrlimi( c, d, 4|2|1, 3 ); // c = z2x3y3z3
float *RESTRICT pOut = pDestination->Base();
StoreAlignedSIMD( pOut + 0, a );
StoreAlignedSIMD( pOut + 4, b );
StoreAlignedSIMD( pOut + 8, c );
}
// Fixed-point conversion and save as SIGNED INTS.
// pDest->x = Int (vSrc.x)
// note: some architectures have means of doing
// fixed point conversion when the fix depth is
// specified as an immediate.. but there is no way
// to guarantee an immediate as a parameter to function
// like this.
FORCEINLINE void ConvertStoreAsIntsSIMD(intx4 * RESTRICT pDest, const fltx4 &vSrc)
{
fltx4 asInt = __vctsxs( vSrc, 0 );
XMStoreVector4A(pDest->Base(), asInt);
}
FORCEINLINE void TransposeSIMD( fltx4 & x, fltx4 & y, fltx4 & z, fltx4 & w )
{
XMMATRIX xyzwMatrix = _XMMATRIX( x, y, z, w );
xyzwMatrix = XMMatrixTranspose( xyzwMatrix );
x = xyzwMatrix.r[0];
y = xyzwMatrix.r[1];
z = xyzwMatrix.r[2];
w = xyzwMatrix.r[3];
}
// Return one in the fastest way -- faster even than loading.
FORCEINLINE fltx4 LoadZeroSIMD( void )
{
return XMVectorZero();
}
// Return one in the fastest way -- faster even than loading.
FORCEINLINE fltx4 LoadOneSIMD( void )
{
return XMVectorSplatOne();
}
FORCEINLINE fltx4 SplatXSIMD( fltx4 a )
{
return XMVectorSplatX( a );
}
FORCEINLINE fltx4 SplatYSIMD( fltx4 a )
{
return XMVectorSplatY( a );
}
FORCEINLINE fltx4 SplatZSIMD( fltx4 a )
{
return XMVectorSplatZ( a );
}
FORCEINLINE fltx4 SplatWSIMD( fltx4 a )
{
return XMVectorSplatW( a );
}
FORCEINLINE fltx4 SetXSIMD( const fltx4& a, const fltx4& x )
{
fltx4 result = __vrlimi(a, x, 8, 0);
return result;
}
FORCEINLINE fltx4 SetYSIMD( const fltx4& a, const fltx4& y )
{
fltx4 result = __vrlimi(a, y, 4, 0);
return result;
}
FORCEINLINE fltx4 SetZSIMD( const fltx4& a, const fltx4& z )
{
fltx4 result = __vrlimi(a, z, 2, 0);
return result;
}
FORCEINLINE fltx4 SetWSIMD( const fltx4& a, const fltx4& w )
{
fltx4 result = __vrlimi(a, w, 1, 0);
return result;
}
FORCEINLINE fltx4 SetComponentSIMD( const fltx4& a, int nComponent, float flValue )
{
static int s_nVrlimiMask[4] = { 8, 4, 2, 1 };
fltx4 val = ReplicateX4( flValue );
fltx4 result = __vrlimi(a, val, s_nVrlimiMask[nComponent], 0);
return result;
}
FORCEINLINE fltx4 RotateLeft( const fltx4 & a )
{
fltx4 compareOne = a;
return __vrlimi( compareOne, a, 8 | 4 | 2 | 1, 1 );
}
FORCEINLINE fltx4 RotateLeft2( const fltx4 & a )
{
fltx4 compareOne = a;
return __vrlimi( compareOne, a, 8 | 4 | 2 | 1, 2 );
}
FORCEINLINE fltx4 RotateRight( const fltx4 & a )
{
fltx4 compareOne = a;
return __vrlimi( compareOne, a, 8 | 4 | 2 | 1, 3 );
}
FORCEINLINE fltx4 RotateRight2( const fltx4 & a )
{
fltx4 compareOne = a;
return __vrlimi( compareOne, a, 8 | 4 | 2 | 1, 2 );
}
//// Compressed vector formats: unpack Vector48 and Quaternion48 onto SIMD registers.
// Only available on 360 for now because SSE1 lacks the necessary operations. SSE2 could
// do it but we can't count on that yet.
// If you have many v48's or q48's to stream, please note the functions designed to
// work on them many at a time.
extern const uint16 ALIGN16 g_SIMD_Quat48_Unpack_Shift[]; //< Shuffles the z component of the quat48 left by one bit.
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute0[16];
extern const fltx4 g_SIMD_Quat48_Unpack_Magic_Constants;
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute1[16];
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute2[16];
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute3[16];
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute4[16];
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute5[16];
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute6[16];
extern const uint8 ALIGN16 g_SIMD_Quat48_Unpack_Permute7[16];
// unpack a single vector48 at the pointer into the x,y,z components of a fltx4.
// the w is total garbage.
FORCEINLINE fltx4 UnpackVector48SIMD( const Vector48 *pVec )
{
// load the three 16-bit floats into the first 48 bits of ret:
fltx4 ret = XMLoadVector4((const void *)&pVec->x);
// shuffle the top 64 bits of ret down to the least significant (the z,w) -- 16 of those bits are garbage.
ret = __vrlimi( ret, ret, 2 | 1, 2 ); // rotate left by 2 words and insert into z,w components
// now unpack the 16-bit floats into 32-bit floats. This is a hardware op, woohoo!
ret = __vupkd3d( ret , VPACK_FLOAT16_4 );
return ret;
}
// unpack a single Quaternion48 at the pointer into the x,y,z,w components of a fltx4
FORCEINLINE fltx4 UnpackQuaternion48SIMD( const Quaternion48 * RESTRICT pVec )
{
// A quaternion 48 stores the x and y components as 0..65535 , which is almost mapped onto -1.0..1.0 via (x - 32768) / 32768.5 .
// z is stored as 0..32767, which is almost mapped onto -1..1 via (z - 16384) / 16384.5 .
// w is inferred from 1 - the dot product of the other tree components. the top bit of what would otherwise be the 16-bit z is
// w's sign bit.
fltx4 q16s = XMLoadVector3((const void *)pVec);
fltx4 shift = __lvx(&g_SIMD_Quat48_Unpack_Shift, 0); // load the aligned shift mask that we use to shuffle z.
fltx4 permute = __lvx(&g_SIMD_Quat48_Unpack_Permute0, 0); // load the permute word that shuffles x,y,z into their own words
bool wneg = pVec->wneg; // loading pVec into two different kinds of registers -- but not shuffling between (I hope!) so no LHS.
q16s = __vperm( q16s, Four_Threes, permute ); // permute so that x, y, and z are now each in their own words. The top half is the floating point rep of 3.0f
q16s = __vslh(q16s, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
// each word of q16s contains 3.0 + n * 2^-22 -- convert this so that we get numbers on the range -1..1
const fltx4 vUpkMul = SplatXSIMD(g_SIMD_Quat48_Unpack_Magic_Constants); // { UnpackMul16s, UnpackMul16s, UnpackMul16s, UnpackMul16s };
const fltx4 vUpkAdd = SplatYSIMD(g_SIMD_Quat48_Unpack_Magic_Constants);
/*
fltx4 ret = __vcfux( q16s, 0 ); // convert from uint16 to floats.
// scale from 0..65535 to -1..1 : tmp.x = ((int)x - 32768) * (1 / 32768.0);
ret = __vmaddfp( ret, g_SIMD_Quat48_DivByU15, Four_NegativeOnes );
*/
fltx4 ret = __vmaddfp( q16s, vUpkMul, vUpkAdd );
// now, work out what w must be.
fltx4 dotxyz = Dot3SIMD( ret, ret ); // all components are dot product of ret w/ self.
dotxyz = ClampVectorSIMD( dotxyz, Four_Zeros, Four_Ones );
fltx4 ww = SubSIMD( Four_Ones, dotxyz ); // all components are 1 - dotxyz
ww = SqrtSIMD(ww); // all components are sqrt(1-dotxyz)
if (wneg)
{
ret = __vrlimi( ret, NegSIMD(ww), 1, 0 ); // insert one element from the ww vector into the w component of ret
}
else
{
ret = __vrlimi( ret, ww, 1, 0 ); // insert one element from the ww vector into the w component of ret
}
return ret;
}
// Many-at-a-time unpackers.
/// Unpack eight consecutive Vector48's in memory onto eight SIMD registers.
/// The Vector48 pointer must be 16-byte aligned. Eight Vector48s add up
/// to 48 bytes long. You should maybe think about prefetching.
FORCEINLINE void UnpackEightVector48SIMD( fltx4 &out1, fltx4 &out2, fltx4 &out3, fltx4 &out4,
fltx4 &out5, fltx4 &out6, fltx4 &out7, fltx4 &out8,
Vector48 * RESTRICT pVecs )
{
AssertMsg((reinterpret_cast<unsigned int>(pVecs) & 0x0F) == 0, "Input to UnpackEightVector48SIMD is not 16-byte aligned." );
// first load the data onto three packed SIMD vectors, which contain eight Vector48s between them.
// I've named them very explicitly so you can follow the movement of the input data.
fltx4 x0y0z0x1y1z1x2y2, z2x3y3z3x4y4z4x5, y5z5x6y6z6x7y7z7;
x0y0z0x1y1z1x2y2 = __lvx( pVecs, 0 ); // load reintrepret_cast<fltx 4 *>(pVecs) + 0
z2x3y3z3x4y4z4x5 = __lvx( pVecs, 16 ); // load reintrepret_cast<fltx 4 *>(pVecs) + 1
y5z5x6y6z6x7y7z7 = __lvx( pVecs, 32 ); // load reintrepret_cast<fltx 4 *>(pVecs) + 2
// Now, start unpacking. The __vupkd3d operation can turn 16-bit floats into 32-bit floats in a single op!
// It converts the contents of the z and w words of the input fltx4 , so we need to process a word to do
// one half, then rotate it to do the other half.
fltx4 y1z1x2y2 = __vupkd3d( x0y0z0x1y1z1x2y2 , VPACK_FLOAT16_4 );
x0y0z0x1y1z1x2y2 = __vrlimi( x0y0z0x1y1z1x2y2, x0y0z0x1y1z1x2y2, 0xf, 2 ); // actually y1z1x2y2x0y0z0x1 now. For perf it's important that the first param to vrlimi also be the assignee.
fltx4 x4y4z4x5 = __vupkd3d( z2x3y3z3x4y4z4x5 , VPACK_FLOAT16_4 );
z2x3y3z3x4y4z4x5 = __vrlimi( z2x3y3z3x4y4z4x5, z2x3y3z3x4y4z4x5, 0xf, 2 );
fltx4 z6x7y7z7 = __vupkd3d( y5z5x6y6z6x7y7z7 , VPACK_FLOAT16_4 );
y5z5x6y6z6x7y7z7 = __vrlimi( y5z5x6y6z6x7y7z7, y5z5x6y6z6x7y7z7, 0xf, 2 );
fltx4 x0y0z0x1 = __vupkd3d( x0y0z0x1y1z1x2y2 , VPACK_FLOAT16_4 );
fltx4 z2x3y3z3 = __vupkd3d( z2x3y3z3x4y4z4x5 , VPACK_FLOAT16_4 );
fltx4 y5z5x6y6 = __vupkd3d( y5z5x6y6z6x7y7z7 , VPACK_FLOAT16_4 );
// permute to populate the out-registers with part of their vectors:
out1 = x0y0z0x1; // DONE
out2 = __vpermwi( y1z1x2y2, VPERMWI_CONST(0, 0, 1, 0) ); // __y1z1__
out3 = __vpermwi( y1z1x2y2, VPERMWI_CONST(2, 3, 0, 0) ); // x2y2____
out4 = __vpermwi( z2x3y3z3, VPERMWI_CONST(1, 2, 3, 0) ); // x3y3z3__ // DONE
out5 = x4y4z4x5; // DONE
out6 = __vpermwi( y5z5x6y6, VPERMWI_CONST(0, 0, 1, 0) ); // __y5z5__
out7 = __vpermwi( y5z5x6y6, VPERMWI_CONST(2, 3, 0, 0) ); // x6y6____
out8 = __vpermwi( z6x7y7z7, VPERMWI_CONST(1, 2, 3, 0) ); // x7y7z7__ // DONE
// there are four more to finish, which we do with a masked insert
out2 = __vrlimi( out2, x0y0z0x1, 8, 3 ); // x1y1z1__
out3 = __vrlimi( out3, z2x3y3z3, 2, 2 ); // x2y2x2__
out6 = __vrlimi( out6, x4y4z4x5, 8, 3 ); // x5y5z5__
out7 = __vrlimi( out7, z6x7y7z7, 2, 2 ); // x6y6z6__
// and we're done!
}
/// Unpack eight consecutive Quaternion48's in memory onto eight SIMD registers.
/// The Quaternion48 pointer must be 16-byte aligned. Eight Quaternion48s add up
/// to 48 bytes long. You should maybe think about prefetching.
//
// This could be improved with verticalization, so that the W sqrts happen
// on two rather than eight vectors, and then transposing. This would make
// the initial permuatation even more complicated.
FORCEINLINE void UnpackEightQuaternion48SIMD( fltx4 &out0, fltx4 &out1, fltx4 &out2, fltx4 &out3,
fltx4 &out4, fltx4 &out5, fltx4 &out6, fltx4 &out7,
Quaternion48 * RESTRICT pVecs )
{
AssertMsg((reinterpret_cast<unsigned int>(pVecs) & 0x0F) == 0, "Input to UnpackEightQuaternion48SIMD is not 16-byte aligned." );
// each word of q16s contains 3.0 + n * 2^-22 -- convert this so that we get numbers on the range -1..1
const fltx4 vUpkMul = SplatXSIMD(g_SIMD_Quat48_Unpack_Magic_Constants); // { UnpackMul16s, UnpackMul16s, UnpackMul16s, UnpackMul16s };
const fltx4 vUpkAdd = SplatYSIMD(g_SIMD_Quat48_Unpack_Magic_Constants);
const fltx4 shift = __lvx(&g_SIMD_Quat48_Unpack_Shift, 0); // load the aligned shift mask that we use to shuffle z left by one bit.
// first load the data onto three packed SIMD vectors, which contain eight Quaternion48s between them.
// I've named them very explicitly so you can follow the movement of the input data.
fltx4 x0y0z0x1y1z1x2y2, z2x3y3z3x4y4z4x5, y5z5x6y6z6x7y7z7;
x0y0z0x1y1z1x2y2 = __lvx( pVecs, 0 ); // load reintrepret_cast<fltx 4 *>(pVecs) + 0
z2x3y3z3x4y4z4x5 = __lvx( pVecs, 16 ); // load reintrepret_cast<fltx 4 *>(pVecs) + 1
y5z5x6y6z6x7y7z7 = __lvx( pVecs, 32 ); // load reintrepret_cast<fltx 4 *>(pVecs) + 2
// shove each quat onto its own fltx4, by using the permute operation
// each halfword argument goes into the bottom 16 bits of the floating
// point rep of 3.0f, then we use a magic constant to scale them.
out0 = __vperm( x0y0z0x1y1z1x2y2, Four_Threes, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute0) ); // __x0__y0__z0____
out1 = __vperm( x0y0z0x1y1z1x2y2, Four_Threes, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute1) ); // __x1__y1__z1____
// postpone 2 since it straddles two words, we'll get back to it
out3 = __vperm( z2x3y3z3x4y4z4x5, Four_Threes, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute3) ); // __x3__y3__z3__z2 // z2 is important, goes into out2
out4 = __vperm( z2x3y3z3x4y4z4x5, Four_Threes, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute4) ); // __x4__y4__z4__x5 // x5 is important, goes into out5
// 5 straddles two words
out6 = __vperm( y5z5x6y6z6x7y7z7, Four_Threes, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute6) ); // __x6__y6__z6____
out7 = __vperm( y5z5x6y6z6x7y7z7, Four_Threes, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute7) ); // __x7__y7__z7____
// now get back to the straddlers, which we make by blending together a prior output and the other source word
out2 = __vperm( x0y0z0x1y1z1x2y2, out3, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute2) ); // __x2__y2__z2____
out5 = __vperm( y5z5x6y6z6x7y7z7, out4, *reinterpret_cast<const fltx4 *>(&g_SIMD_Quat48_Unpack_Permute5) ); // __x5__y5__z5____
// the top bit of the z component in each word isn't part of the number; it's
// a flag indicating whether the eventual w component should be negative.
// so, we need to move the 0x00008000 bit of the z word onto the top bit
// of the w word, which is a rotation two bytes right, or 14 bytes left.
fltx4 wneg[8];
// juggle all the z halfwords left one bit (toss the wneg sign bit, multiply by two)
wneg[0] = __vsldoi( out0, out0, 14 );
out0 = __vslh(out0, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg[1] = __vsldoi( out1, out1, 14 );
out1 = __vslh(out1, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg[2] = __vsldoi( out2, out2, 14 );
out2 = __vslh(out2, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg[3] = __vsldoi( out3, out3, 14 );
out3 = __vslh(out3, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg[4] = __vsldoi( out4, out4, 14 );
out4 = __vslh(out4, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg[5] = __vsldoi( out5, out5, 14 );
out5 = __vslh(out5, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg[6] = __vsldoi( out6, out6, 14 );
out6 = __vslh(out6, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
wneg[7] = __vsldoi( out7, out7, 14 );
out7 = __vslh(out7, shift); // shift the z component left by one bit, tossing out the wneg sign bit and mapping z from [0..2^15) to [0..2^16)
// create a mask that is just the sign bit of the w word.
fltx4 vAllOneBits = __vspltisw(-1); // Shift 31
fltx4 signMask = __vslw(vAllOneBits, vAllOneBits); // all the sign bits
signMask = __vrlimi( signMask, Four_Zeros, 14, 0 ); // zero out x,y,z words
// this macro defines the operations that will be performed on each of the eight words:
// * scale from 0..65535 to -1..1 : tmp.x = ((int)x - 32768) * (1 / 32768.0);
// * take the xyz dot product to get 1 - w^2
// * subtract from one to get w^2
// * square root to get zero
// * OR in the wneg sign mask to get sign for zero.
// though the macro makes it look like these are being done in serial,
// in fact the compiler will reorder them to minimize stalls.
fltx4 ONE = Four_Ones;
fltx4 dotxyz[8];
fltx4 ww[8];
// out0 = __vmaddfp( out0, vUpkMul, vUpkAdd );
// dotxyz[0] = Dot3SIMD( out0, out0 );
// clamnp dotxyz if it's more than 1.0
// all components are 1 - dotxyz
// clear all but w's sign bit in wneg
// all components are sqrt(1-dotxyz)
// toggle w's sign where necessary
// insert one element from the ww vector into the w component of ret
#define COMPUTE( target, number ) \
target ## number = __vmaddfp( target ## number, vUpkMul, vUpkAdd ); \
dotxyz[number] = Dot3SIMD( target ## number, target ## number ); \
dotxyz[number] = __vminfp( dotxyz[number], ONE ); \
ww[number] = SubSIMD( ONE, dotxyz[number] ); \
wneg[number] = AndSIMD( wneg[number], signMask ) ; \
ww[number] = SqrtSIMD(ww[number]); \
ww[number] = OrSIMD( ww[number], wneg[number] ); \
target ## number = __vrlimi( target ## number, ww[number], 1, 0 );
COMPUTE(out, 0);
COMPUTE(out, 1);
COMPUTE(out, 2);
COMPUTE(out, 3);
COMPUTE(out, 4);
COMPUTE(out, 5);
COMPUTE(out, 6);
COMPUTE(out, 7);
#undef COMPUTE
}
// find the lowest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
// ignores a.w.
// Though this is only five instructions long,
// they are all dependent, making this stall city.
// Forcing this inline should hopefully help with scheduling.
FORCEINLINE fltx4 FindLowestSIMD3( const fltx4 & a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = a ;
compareOne = __vrlimi( compareOne, a, 8 | 4 , 1 );
// compareOne is [y,z,G,G]
fltx4 retval = MinSIMD( a, compareOne );
// retVal is [min(x,y), min(y,z), G, G]
compareOne = __vrlimi( compareOne, a, 8 , 2);
// compareOne is [z, G, G, G]
retval = MinSIMD( retval, compareOne );
// retVal = [ min(min(x,y),z), G, G, G ]
// splat the x component out to the whole vector and return
return SplatXSIMD( retval );
}
// find the highest component of a.x, a.y, a.z,
// and replicate it to the whole return value.
// ignores a.w.
// Though this is only five instructions long,
// they are all dependent, making this stall city.
// Forcing this inline should hopefully help with scheduling.
FORCEINLINE fltx4 FindHighestSIMD3( const fltx4 & a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = a ;
compareOne = __vrlimi( compareOne, a, 8 | 4 , 1 );
// compareOne is [y,z,G,G]
fltx4 retval = MaxSIMD( a, compareOne );
// retVal is [max(x,y), max(y,z), G, G]
compareOne = __vrlimi( compareOne, a, 8 , 2);
// compareOne is [z, G, G, G]
retval = MaxSIMD( retval, compareOne );
// retVal = [ max(max(x,y),z), G, G, G ]
// splat the x component out to the whole vector and return
return SplatXSIMD( retval );
}
// Transform many (horizontal) points in-place by a 3x4 matrix,
// here already loaded onto three fltx4 registers.
// The points must be stored as 16-byte aligned. They are points
// and not vectors because we assume the w-component to be 1.
// To spare yourself the annoyance of loading the matrix yourself,
// use one of the overloads below.
void TransformManyPointsBy(VectorAligned * RESTRICT pVectors, unsigned int numVectors, FLTX4 mRow1, FLTX4 mRow2, FLTX4 mRow3);
// Transform many (horizontal) points in-place by a 3x4 matrix.
// The points must be stored as 16-byte aligned. They are points
// and not vectors because we assume the w-component to be 1.
// In this function, the matrix need not be aligned.
FORCEINLINE void TransformManyPointsBy(VectorAligned * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t &pMatrix)
{
return TransformManyPointsBy(pVectors, numVectors,
LoadUnalignedSIMD( pMatrix[0] ), LoadUnalignedSIMD( pMatrix[1] ), LoadUnalignedSIMD( pMatrix[2] ) );
}
// Transform many (horizontal) points in-place by a 3x4 matrix.
// The points must be stored as 16-byte aligned. They are points
// and not vectors because we assume the w-component to be 1.
// In this function, the matrix must itself be aligned on a 16-byte
// boundary.
FORCEINLINE void TransformManyPointsByA(VectorAligned * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t &pMatrix)
{
return TransformManyPointsBy(pVectors, numVectors,
LoadAlignedSIMD( pMatrix[0] ), LoadAlignedSIMD( pMatrix[1] ), LoadAlignedSIMD( pMatrix[2] ) );
}
// ------------------------------------
// INTEGER SIMD OPERATIONS.
// ------------------------------------
// Load 4 aligned words into a SIMD register
FORCEINLINE i32x4 LoadAlignedIntSIMD( const void * RESTRICT pSIMD)
{
return XMLoadVector4A(pSIMD);
}
// Load 4 unaligned words into a SIMD register
FORCEINLINE i32x4 LoadUnalignedIntSIMD(const void * RESTRICT pSIMD)
{
return XMLoadVector4( pSIMD );
}
// save into four words, 16-byte aligned
FORCEINLINE void StoreAlignedIntSIMD( int32 *pSIMD, const fltx4 & a )
{
*( reinterpret_cast< i32x4 *> ( pSIMD ) ) = a;
}
FORCEINLINE void StoreAlignedIntSIMD( intx4 &pSIMD, const fltx4 & a )
{
*( reinterpret_cast< i32x4 *> ( pSIMD.Base() ) ) = a;
}
FORCEINLINE void StoreUnalignedIntSIMD( int32 *pSIMD, const fltx4 & a )
{
XMStoreVector4(pSIMD, a);
}
// Load four consecutive uint16's, and turn them into floating point numbers.
// This function isn't especially fast and could be made faster if anyone is
// using it heavily.
FORCEINLINE fltx4 LoadAndConvertUint16SIMD( const uint16 *pInts )
{
return XMLoadUShort4(reinterpret_cast<const XMUSHORT4 *>(pInts));
}
// a={ a.x, a.z, b.x, b.z }
// combine two fltx4s by throwing away every other field.
FORCEINLINE fltx4 CompressSIMD( fltx4 const & a, fltx4 const &b )
{
return XMVectorPermute( a, b, XMVectorPermuteControl( 0, 2, 4, 6 ) );
}
// a={ a.x, b.x, c.x, d.x }
// combine 4 fltx4s by throwing away 3/4s of the fields
// TODO: make more efficient by doing this in a parallel way at the caller
// Compress4SIMD(FourVectors.. )
FORCEINLINE fltx4 Compress4SIMD( fltx4 const a, fltx4 const &b, fltx4 const &c, fltx4 const &d )
{
fltx4 abcd = __vrlimi( a, b, 4, 3 ); // a.x, b.x, a.z, a.w
abcd = __vrlimi( abcd, c, 2, 2 ); // ax, bx, cx, aw
abcd = __vrlimi( abcd, d, 1, 1 ); // ax, bx, cx, dx
return abcd;
}
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD( const i32x4 &vSrcA )
{
return __vcfux( vSrcA, 0 );
}
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 SignedIntConvertToFltSIMD( const i32x4 &vSrcA )
{
return __vcfsx( vSrcA, 0 );
}
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. Each uint
// will be divided by 2^immed after conversion
// (eg, this is fixed point math).
/* as if:
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD( const i32x4 &vSrcA, unsigned int uImmed )
{
return __vcfux( vSrcA, uImmed );
}
*/
#define UnsignedFixedIntConvertToFltSIMD(vSrcA, uImmed) (__vcfux( (vSrcA), (uImmed) ))
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. Each int
// will be divided by 2^immed (eg, this is fixed point
// math).
/* as if:
FORCEINLINE fltx4 SignedIntConvertToFltSIMD( const i32x4 &vSrcA, unsigned int uImmed )
{
return __vcfsx( vSrcA, uImmed );
}
*/
#define SignedFixedIntConvertToFltSIMD(vSrcA, uImmed) (__vcfsx( (vSrcA), (uImmed) ))
// set all components of a vector to a signed immediate int number.
/* as if:
FORCEINLINE fltx4 IntSetImmediateSIMD(int toImmediate)
{
return __vspltisw( toImmediate );
}
*/
#define IntSetImmediateSIMD(x) (__vspltisw(x))
/*
works on fltx4's as if they are four uints.
the first parameter contains the words to be shifted,
the second contains the amount to shift by AS INTS
for i = 0 to 3
shift = vSrcB_i*32:(i*32)+4
vReturned_i*32:(i*32)+31 = vSrcA_i*32:(i*32)+31 << shift
*/
FORCEINLINE fltx4 IntShiftLeftWordSIMD(fltx4 vSrcA, fltx4 vSrcB)
{
return __vslw(vSrcA, vSrcB);
}
FORCEINLINE float SubFloat( const fltx4 & a, int idx )
{
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
const fltx4_union & a_union = (const fltx4_union &)a;
return a_union.m128_f32[ idx ];
}
FORCEINLINE float & SubFloat( fltx4 & a, int idx )
{
fltx4_union & a_union = (fltx4_union &)a;
return a_union.m128_f32[idx];
}
FORCEINLINE uint32 SubFloatConvertToInt( const fltx4 & a, int idx )
{
fltx4 t = __vctuxs( a, 0 );
const fltx4_union & a_union = (const fltx4_union &)t;
return a_union.m128_u32[idx];
}
FORCEINLINE uint32 SubInt( const fltx4 & a, int idx )
{
const fltx4_union & a_union = (const fltx4_union &)a;
return a_union.m128_u32[idx];
}
FORCEINLINE uint32 & SubInt( fltx4 & a, int idx )
{
fltx4_union & a_union = (fltx4_union &)a;
return a_union.m128_u32[idx];
}
#else
//---------------------------------------------------------------------
// Intel/SSE implementation
//---------------------------------------------------------------------
FORCEINLINE void StoreAlignedSIMD( float * RESTRICT pSIMD, const fltx4 & a )
{
_mm_store_ps( pSIMD, a );
}
FORCEINLINE void StoreUnalignedSIMD( float * RESTRICT pSIMD, const fltx4 & a )
{
_mm_storeu_ps( pSIMD, a );
}
FORCEINLINE fltx4 RotateLeft( const fltx4 & a );
FORCEINLINE fltx4 RotateLeft2( const fltx4 & a );
FORCEINLINE void StoreUnaligned3SIMD( float *pSIMD, const fltx4 & a )
{
_mm_store_ss(pSIMD, a);
_mm_store_ss(pSIMD+1, RotateLeft(a));
_mm_store_ss(pSIMD+2, RotateLeft2(a));
}
// strongly typed -- syntactic castor oil used for typechecking as we transition to SIMD
FORCEINLINE void StoreAligned3SIMD( VectorAligned * RESTRICT pSIMD, const fltx4 & a )
{
StoreAlignedSIMD( pSIMD->Base(),a );
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination[0], pDestination[1], pDestination[2], pDestination[3]
// The Vectors are assumed to be unaligned.
FORCEINLINE void StoreFourUnalignedVector3SIMD( fltx4 a, fltx4 b, fltx4 c, FLTX4 d, // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD( pDestination->Base(), a );
StoreUnaligned3SIMD( (pDestination+1)->Base(), b );
StoreUnaligned3SIMD( (pDestination+2)->Base(), c );
StoreUnaligned3SIMD( (pDestination+3)->Base(), d );
}
// Store the x,y,z components of the four FLTX4 parameters
// into the four consecutive Vectors:
// pDestination , pDestination + 1, pDestination + 2, pDestination + 3
// The Vectors are assumed to start on an ALIGNED address, that is,
// pDestination is 16-byte aligned (thhough obviously pDestination+1 is not).
FORCEINLINE void StoreFourAlignedVector3SIMD( fltx4 a, fltx4 b, fltx4 c, FLTX4 d, // first three passed by copy (deliberate)
Vector * const pDestination )
{
StoreUnaligned3SIMD( pDestination->Base(), a );
StoreUnaligned3SIMD( (pDestination+1)->Base(), b );
StoreUnaligned3SIMD( (pDestination+2)->Base(), c );
StoreUnaligned3SIMD( (pDestination+3)->Base(), d );
}
FORCEINLINE fltx4 LoadAlignedSIMD( const void *pSIMD )
{
return _mm_load_ps( reinterpret_cast< const float *> ( pSIMD ) );
}
FORCEINLINE fltx4 AndSIMD( const fltx4 & a, const fltx4 & b ) // a & b
{
return _mm_and_ps( a, b );
}
FORCEINLINE fltx4 AndNotSIMD( const fltx4 & a, const fltx4 & b ) // a & ~b
{
return _mm_andnot_ps( a, b );
}
FORCEINLINE fltx4 XorSIMD( const fltx4 & a, const fltx4 & b ) // a ^ b
{
return _mm_xor_ps( a, b );
}
FORCEINLINE fltx4 OrSIMD( const fltx4 & a, const fltx4 & b ) // a | b
{
return _mm_or_ps( a, b );
}
// Squelch the w component of a vector to +0.0.
// Most efficient when you say a = SetWToZeroSIMD(a) (avoids a copy)
FORCEINLINE fltx4 SetWToZeroSIMD( const fltx4 & a )
{
return AndSIMD( a, LoadAlignedSIMD( g_SIMD_clear_wmask ) );
}
// for the transitional class -- load a 3-by VectorAligned and squash its w component
FORCEINLINE fltx4 LoadAlignedSIMD( const VectorAligned & pSIMD )
{
return SetWToZeroSIMD( LoadAlignedSIMD(pSIMD.Base()) );
}
FORCEINLINE fltx4 LoadUnalignedSIMD( const void *pSIMD )
{
return _mm_loadu_ps( reinterpret_cast<const float *>( pSIMD ) );
}
FORCEINLINE fltx4 LoadUnaligned3SIMD( const void *pSIMD )
{
return _mm_loadu_ps( reinterpret_cast<const float *>( pSIMD ) );
}
// load a single unaligned float into the x component of a SIMD word
FORCEINLINE fltx4 LoadUnalignedFloatSIMD( const float *pFlt )
{
return _mm_load_ss(pFlt);
}
/// replicate a single 32 bit integer value to all 4 components of an m128
FORCEINLINE fltx4 ReplicateIX4( int i )
{
fltx4 value = _mm_set_ss( * ( ( float *) &i ) );;
return _mm_shuffle_ps( value, value, 0);
}
FORCEINLINE fltx4 ReplicateX4( float flValue )
{
__m128 value = _mm_set_ss( flValue );
return _mm_shuffle_ps( value, value, 0 );
}
FORCEINLINE float SubFloat( const fltx4 & a, int idx )
{
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
#ifndef POSIX
return a.m128_f32[ idx ];
#else
return (reinterpret_cast<float const *>(&a))[idx];
#endif
}
FORCEINLINE float & SubFloat( fltx4 & a, int idx )
{
#ifndef POSIX
return a.m128_f32[ idx ];
#else
return (reinterpret_cast<float *>(&a))[idx];
#endif
}
FORCEINLINE uint32 SubFloatConvertToInt( const fltx4 & a, int idx )
{
return (uint32)SubFloat(a,idx);
}
FORCEINLINE uint32 SubInt( const fltx4 & a, int idx )
{
#ifndef POSIX
return a.m128_u32[idx];
#else
return (reinterpret_cast<uint32 const *>(&a))[idx];
#endif
}
FORCEINLINE uint32 & SubInt( fltx4 & a, int idx )
{
#ifndef POSIX
return a.m128_u32[idx];
#else
return (reinterpret_cast<uint32 *>(&a))[idx];
#endif
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadZeroSIMD( void )
{
return Four_Zeros;
}
// Return one in the fastest way -- on the x360, faster even than loading.
FORCEINLINE fltx4 LoadOneSIMD( void )
{
return Four_Ones;
}
FORCEINLINE fltx4 MaskedAssign( const fltx4 & ReplacementMask, const fltx4 & NewValue, const fltx4 & OldValue )
{
return OrSIMD(
AndSIMD( ReplacementMask, NewValue ),
AndNotSIMD( ReplacementMask, OldValue ) );
}
// remember, the SSE numbers its words 3 2 1 0
// The way we want to specify shuffles is backwards from the default
// MM_SHUFFLE_REV is in array index order (default is reversed)
#define MM_SHUFFLE_REV(a,b,c,d) _MM_SHUFFLE(d,c,b,a)
FORCEINLINE fltx4 SplatXSIMD( fltx4 const & a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 0, 0, 0, 0 ) );
}
FORCEINLINE fltx4 SplatYSIMD( fltx4 const &a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 1, 1, 1, 1 ) );
}
FORCEINLINE fltx4 SplatZSIMD( fltx4 const &a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 2, 2, 2, 2 ) );
}
FORCEINLINE fltx4 SplatWSIMD( fltx4 const &a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 3, 3, 3, 3 ) );
}
FORCEINLINE fltx4 SetXSIMD( const fltx4& a, const fltx4& x )
{
fltx4 result = MaskedAssign( LoadAlignedSIMD( g_SIMD_ComponentMask[0] ), x, a );
return result;
}
FORCEINLINE fltx4 SetYSIMD( const fltx4& a, const fltx4& y )
{
fltx4 result = MaskedAssign( LoadAlignedSIMD( g_SIMD_ComponentMask[1] ), y, a );
return result;
}
FORCEINLINE fltx4 SetZSIMD( const fltx4& a, const fltx4& z )
{
fltx4 result = MaskedAssign( LoadAlignedSIMD( g_SIMD_ComponentMask[2] ), z, a );
return result;
}
FORCEINLINE fltx4 SetWSIMD( const fltx4& a, const fltx4& w )
{
fltx4 result = MaskedAssign( LoadAlignedSIMD( g_SIMD_ComponentMask[3] ), w, a );
return result;
}
FORCEINLINE fltx4 SetComponentSIMD( const fltx4& a, int nComponent, float flValue )
{
fltx4 val = ReplicateX4( flValue );
fltx4 result = MaskedAssign( LoadAlignedSIMD( g_SIMD_ComponentMask[nComponent] ), val, a );
return result;
}
// a b c d -> b c d a
FORCEINLINE fltx4 RotateLeft( const fltx4 & a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 1, 2, 3, 0 ) );
}
// a b c d -> c d a b
FORCEINLINE fltx4 RotateLeft2( const fltx4 & a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 2, 3, 0, 1 ) );
}
// a b c d -> d a b c
FORCEINLINE fltx4 RotateRight( const fltx4 & a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 3, 0, 1, 2 ) );
}
// a b c d -> c d a b
FORCEINLINE fltx4 RotateRight2( const fltx4 & a )
{
return _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 2, 3, 0, 1 ) );
}
FORCEINLINE fltx4 AddSIMD( const fltx4 & a, const fltx4 & b ) // a+b
{
return _mm_add_ps( a, b );
}
FORCEINLINE fltx4 SubSIMD( const fltx4 & a, const fltx4 & b ) // a-b
{
return _mm_sub_ps( a, b );
};
FORCEINLINE fltx4 MulSIMD( const fltx4 & a, const fltx4 & b ) // a*b
{
return _mm_mul_ps( a, b );
};
FORCEINLINE fltx4 DivSIMD( const fltx4 & a, const fltx4 & b ) // a/b
{
return _mm_div_ps( a, b );
};
FORCEINLINE fltx4 MaddSIMD( const fltx4 & a, const fltx4 & b, const fltx4 & c ) // a*b + c
{
return AddSIMD( MulSIMD(a,b), c );
}
FORCEINLINE fltx4 MsubSIMD( const fltx4 & a, const fltx4 & b, const fltx4 & c ) // c - a*b
{
return SubSIMD( c, MulSIMD(a,b) );
};
FORCEINLINE fltx4 Dot3SIMD( const fltx4 &a, const fltx4 &b )
{
fltx4 m = MulSIMD( a, b );
float flDot = SubFloat( m, 0 ) + SubFloat( m, 1 ) + SubFloat( m, 2 );
return ReplicateX4( flDot );
}
FORCEINLINE fltx4 Dot4SIMD( const fltx4 &a, const fltx4 &b )
{
fltx4 m = MulSIMD( a, b );
float flDot = SubFloat( m, 0 ) + SubFloat( m, 1 ) + SubFloat( m, 2 ) + SubFloat( m, 3 );
return ReplicateX4( flDot );
}
//TODO: implement as four-way Taylor series (see xbox implementation)
FORCEINLINE fltx4 SinSIMD( const fltx4 &radians )
{
fltx4 result;
SubFloat( result, 0 ) = sin( SubFloat( radians, 0 ) );
SubFloat( result, 1 ) = sin( SubFloat( radians, 1 ) );
SubFloat( result, 2 ) = sin( SubFloat( radians, 2 ) );
SubFloat( result, 3 ) = sin( SubFloat( radians, 3 ) );
return result;
}
FORCEINLINE void SinCos3SIMD( fltx4 &sine, fltx4 &cosine, const fltx4 &radians )
{
// FIXME: Make a fast SSE version
SinCos( SubFloat( radians, 0 ), &SubFloat( sine, 0 ), &SubFloat( cosine, 0 ) );
SinCos( SubFloat( radians, 1 ), &SubFloat( sine, 1 ), &SubFloat( cosine, 1 ) );
SinCos( SubFloat( radians, 2 ), &SubFloat( sine, 2 ), &SubFloat( cosine, 2 ) );
}
FORCEINLINE void SinCosSIMD( fltx4 &sine, fltx4 &cosine, const fltx4 &radians ) // a*b + c
{
// FIXME: Make a fast SSE version
SinCos( SubFloat( radians, 0 ), &SubFloat( sine, 0 ), &SubFloat( cosine, 0 ) );
SinCos( SubFloat( radians, 1 ), &SubFloat( sine, 1 ), &SubFloat( cosine, 1 ) );
SinCos( SubFloat( radians, 2 ), &SubFloat( sine, 2 ), &SubFloat( cosine, 2 ) );
SinCos( SubFloat( radians, 3 ), &SubFloat( sine, 3 ), &SubFloat( cosine, 3 ) );
}
//TODO: implement as four-way Taylor series (see xbox implementation)
FORCEINLINE fltx4 ArcSinSIMD( const fltx4 &sine )
{
// FIXME: Make a fast SSE version
fltx4 result;
SubFloat( result, 0 ) = asin( SubFloat( sine, 0 ) );
SubFloat( result, 1 ) = asin( SubFloat( sine, 1 ) );
SubFloat( result, 2 ) = asin( SubFloat( sine, 2 ) );
SubFloat( result, 3 ) = asin( SubFloat( sine, 3 ) );
return result;
}
FORCEINLINE fltx4 ArcCosSIMD( const fltx4 &cs )
{
fltx4 result;
SubFloat( result, 0 ) = acos( SubFloat( cs, 0 ) );
SubFloat( result, 1 ) = acos( SubFloat( cs, 1 ) );
SubFloat( result, 2 ) = acos( SubFloat( cs, 2 ) );
SubFloat( result, 3 ) = acos( SubFloat( cs, 3 ) );
return result;
}
// tan^1(a/b) .. ie, pass sin in as a and cos in as b
FORCEINLINE fltx4 ArcTan2SIMD( const fltx4 &a, const fltx4 &b )
{
fltx4 result;
SubFloat( result, 0 ) = atan2( SubFloat( a, 0 ), SubFloat( b, 0 ) );
SubFloat( result, 1 ) = atan2( SubFloat( a, 1 ), SubFloat( b, 1 ) );
SubFloat( result, 2 ) = atan2( SubFloat( a, 2 ), SubFloat( b, 2 ) );
SubFloat( result, 3 ) = atan2( SubFloat( a, 3 ), SubFloat( b, 3 ) );
return result;
}
FORCEINLINE fltx4 NegSIMD(const fltx4 &a) // negate: -a
{
return SubSIMD(LoadZeroSIMD(),a);
}
FORCEINLINE int TestSignSIMD( const fltx4 & a ) // mask of which floats have the high bit set
{
return _mm_movemask_ps( a );
}
FORCEINLINE bool IsAnyNegative( const fltx4 & a ) // (a.x < 0) || (a.y < 0) || (a.z < 0) || (a.w < 0)
{
return (0 != TestSignSIMD( a ));
}
FORCEINLINE fltx4 CmpEqSIMD( const fltx4 & a, const fltx4 & b ) // (a==b) ? ~0:0
{
return _mm_cmpeq_ps( a, b );
}
FORCEINLINE fltx4 CmpGtSIMD( const fltx4 & a, const fltx4 & b ) // (a>b) ? ~0:0
{
return _mm_cmpgt_ps( a, b );
}
FORCEINLINE fltx4 CmpGeSIMD( const fltx4 & a, const fltx4 & b ) // (a>=b) ? ~0:0
{
return _mm_cmpge_ps( a, b );
}
FORCEINLINE fltx4 CmpLtSIMD( const fltx4 & a, const fltx4 & b ) // (a<b) ? ~0:0
{
return _mm_cmplt_ps( a, b );
}
FORCEINLINE fltx4 CmpLeSIMD( const fltx4 & a, const fltx4 & b ) // (a<=b) ? ~0:0
{
return _mm_cmple_ps( a, b );
}
// for branching when a.xyzw > b.xyzw
FORCEINLINE bool IsAllGreaterThan( const fltx4 &a, const fltx4 &b )
{
return TestSignSIMD( CmpLeSIMD( a, b ) ) == 0;
}
// for branching when a.xyzw >= b.xyzw
FORCEINLINE bool IsAllGreaterThanOrEq( const fltx4 &a, const fltx4 &b )
{
return TestSignSIMD( CmpLtSIMD( a, b ) ) == 0;
}
// For branching if all a.xyzw == b.xyzw
FORCEINLINE bool IsAllEqual( const fltx4 & a, const fltx4 & b )
{
return TestSignSIMD( CmpEqSIMD( a, b ) ) == 0xf;
}
FORCEINLINE fltx4 CmpInBoundsSIMD( const fltx4 & a, const fltx4 & b ) // (a <= b && a >= -b) ? ~0 : 0
{
return AndSIMD( CmpLeSIMD(a,b), CmpGeSIMD(a, NegSIMD(b)) );
}
FORCEINLINE fltx4 MinSIMD( const fltx4 & a, const fltx4 & b ) // min(a,b)
{
return _mm_min_ps( a, b );
}
FORCEINLINE fltx4 MaxSIMD( const fltx4 & a, const fltx4 & b ) // max(a,b)
{
return _mm_max_ps( a, b );
}
// SSE lacks rounding operations.
// Really.
// You can emulate them by setting the rounding mode for the
// whole processor and then converting to int, and then back again.
// But every time you set the rounding mode, you clear out the
// entire pipeline. So, I can't do them per operation. You
// have to do it once, before the loop that would call these.
// Round towards positive infinity
FORCEINLINE fltx4 CeilSIMD( const fltx4 &a )
{
fltx4 retVal;
SubFloat( retVal, 0 ) = ceil( SubFloat( a, 0 ) );
SubFloat( retVal, 1 ) = ceil( SubFloat( a, 1 ) );
SubFloat( retVal, 2 ) = ceil( SubFloat( a, 2 ) );
SubFloat( retVal, 3 ) = ceil( SubFloat( a, 3 ) );
return retVal;
}
fltx4 fabs( const fltx4 & x );
// Round towards negative infinity
// This is the implementation that was here before; it assumes
// you are in round-to-floor mode, which I guess is usually the
// case for us vis-a-vis SSE. It's totally unnecessary on
// VMX, which has a native floor op.
FORCEINLINE fltx4 FloorSIMD( const fltx4 &val )
{
fltx4 fl4Abs = fabs( val );
fltx4 ival = SubSIMD( AddSIMD( fl4Abs, Four_2ToThe23s ), Four_2ToThe23s );
ival = MaskedAssign( CmpGtSIMD( ival, fl4Abs ), SubSIMD( ival, Four_Ones ), ival );
return XorSIMD( ival, XorSIMD( val, fl4Abs ) ); // restore sign bits
}
FORCEINLINE bool IsAnyZeros( const fltx4 & a ) // any floats are zero?
{
return TestSignSIMD( CmpEqSIMD( a, Four_Zeros ) ) != 0;
}
inline bool IsAllZeros( const fltx4 & var )
{
return TestSignSIMD( CmpEqSIMD( var, Four_Zeros ) ) == 0xF;
}
FORCEINLINE fltx4 SqrtEstSIMD( const fltx4 & a ) // sqrt(a), more or less
{
return _mm_sqrt_ps( a );
}
FORCEINLINE fltx4 SqrtSIMD( const fltx4 & a ) // sqrt(a)
{
return _mm_sqrt_ps( a );
}
FORCEINLINE fltx4 ReciprocalSqrtEstSIMD( const fltx4 & a ) // 1/sqrt(a), more or less
{
return _mm_rsqrt_ps( a );
}
FORCEINLINE fltx4 ReciprocalSqrtEstSaturateSIMD( const fltx4 & a )
{
fltx4 zero_mask = CmpEqSIMD( a, Four_Zeros );
fltx4 ret = OrSIMD( a, AndSIMD( Four_Epsilons, zero_mask ) );
ret = ReciprocalSqrtEstSIMD( ret );
return ret;
}
/// uses newton iteration for higher precision results than ReciprocalSqrtEstSIMD
FORCEINLINE fltx4 ReciprocalSqrtSIMD( const fltx4 & a ) // 1/sqrt(a)
{
fltx4 guess = ReciprocalSqrtEstSIMD( a );
// newton iteration for 1/sqrt(a) : y(n+1) = 1/2 (y(n)*(3-a*y(n)^2));
guess = MulSIMD( guess, SubSIMD( Four_Threes, MulSIMD( a, MulSIMD( guess, guess ))));
guess = MulSIMD( Four_PointFives, guess);
return guess;
}
FORCEINLINE fltx4 ReciprocalEstSIMD( const fltx4 & a ) // 1/a, more or less
{
return _mm_rcp_ps( a );
}
/// 1/x for all 4 values, more or less
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalEstSaturateSIMD( const fltx4 & a )
{
fltx4 zero_mask = CmpEqSIMD( a, Four_Zeros );
fltx4 ret = OrSIMD( a, AndSIMD( Four_Epsilons, zero_mask ) );
ret = ReciprocalEstSIMD( ret );
return ret;
}
/// 1/x for all 4 values. uses reciprocal approximation instruction plus newton iteration.
/// No error checking!
FORCEINLINE fltx4 ReciprocalSIMD( const fltx4 & a ) // 1/a
{
fltx4 ret = ReciprocalEstSIMD( a );
// newton iteration is: Y(n+1) = 2*Y(n)-a*Y(n)^2
ret = SubSIMD( AddSIMD( ret, ret ), MulSIMD( a, MulSIMD( ret, ret ) ) );
return ret;
}
/// 1/x for all 4 values.
/// 1/0 will result in a big but NOT infinite result
FORCEINLINE fltx4 ReciprocalSaturateSIMD( const fltx4 & a )
{
fltx4 zero_mask = CmpEqSIMD( a, Four_Zeros );
fltx4 ret = OrSIMD( a, AndSIMD( Four_Epsilons, zero_mask ) );
ret = ReciprocalSIMD( ret );
return ret;
}
// CHRISG: is it worth doing integer bitfiddling for this?
// 2^x for all values (the antilog)
FORCEINLINE fltx4 ExpSIMD( const fltx4 &toPower )
{
fltx4 retval;
SubFloat( retval, 0 ) = powf( 2, SubFloat(toPower, 0) );
SubFloat( retval, 1 ) = powf( 2, SubFloat(toPower, 1) );
SubFloat( retval, 2 ) = powf( 2, SubFloat(toPower, 2) );
SubFloat( retval, 3 ) = powf( 2, SubFloat(toPower, 3) );
return retval;
}
// Clamps the components of a vector to a specified minimum and maximum range.
FORCEINLINE fltx4 ClampVectorSIMD( FLTX4 in, FLTX4 min, FLTX4 max)
{
return MaxSIMD( min, MinSIMD( max, in ) );
}
FORCEINLINE void TransposeSIMD( fltx4 & x, fltx4 & y, fltx4 & z, fltx4 & w)
{
_MM_TRANSPOSE4_PS( x, y, z, w );
}
FORCEINLINE fltx4 FindLowestSIMD3( const fltx4 &a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = RotateLeft( a );
// compareOne is [y,z,G,x]
fltx4 retval = MinSIMD( a, compareOne );
// retVal is [min(x,y), ... ]
compareOne = RotateLeft2( a );
// compareOne is [z, G, x, y]
retval = MinSIMD( retval, compareOne );
// retVal = [ min(min(x,y),z)..]
// splat the x component out to the whole vector and return
return SplatXSIMD( retval );
}
FORCEINLINE fltx4 FindHighestSIMD3( const fltx4 &a )
{
// a is [x,y,z,G] (where G is garbage)
// rotate left by one
fltx4 compareOne = RotateLeft( a );
// compareOne is [y,z,G,x]
fltx4 retval = MaxSIMD( a, compareOne );
// retVal is [max(x,y), ... ]
compareOne = RotateLeft2( a );
// compareOne is [z, G, x, y]
retval = MaxSIMD( retval, compareOne );
// retVal = [ max(max(x,y),z)..]
// splat the x component out to the whole vector and return
return SplatXSIMD( retval );
}
// ------------------------------------
// INTEGER SIMD OPERATIONS.
// ------------------------------------
#if 0 /* pc does not have these ops */
// splat all components of a vector to a signed immediate int number.
FORCEINLINE fltx4 IntSetImmediateSIMD(int to)
{
//CHRISG: SSE2 has this, but not SSE1. What to do?
fltx4 retval;
SubInt( retval, 0 ) = to;
SubInt( retval, 1 ) = to;
SubInt( retval, 2 ) = to;
SubInt( retval, 3 ) = to;
return retval;
}
#endif
// Load 4 aligned words into a SIMD register
FORCEINLINE i32x4 LoadAlignedIntSIMD( const void * RESTRICT pSIMD)
{
return _mm_load_ps( reinterpret_cast<const float *>(pSIMD) );
}
// Load 4 unaligned words into a SIMD register
FORCEINLINE i32x4 LoadUnalignedIntSIMD( const void * RESTRICT pSIMD)
{
return _mm_loadu_ps( reinterpret_cast<const float *>(pSIMD) );
}
// save into four words, 16-byte aligned
FORCEINLINE void StoreAlignedIntSIMD( int32 * RESTRICT pSIMD, const fltx4 & a )
{
_mm_store_ps( reinterpret_cast<float *>(pSIMD), a );
}
FORCEINLINE void StoreAlignedIntSIMD( intx4 &pSIMD, const fltx4 & a )
{
_mm_store_ps( reinterpret_cast<float *>(pSIMD.Base()), a );
}
FORCEINLINE void StoreUnalignedIntSIMD( int32 * RESTRICT pSIMD, const fltx4 & a )
{
_mm_storeu_ps( reinterpret_cast<float *>(pSIMD), a );
}
// a={ a.x, a.z, b.x, b.z }
// combine two fltx4s by throwing away every other field.
FORCEINLINE fltx4 CompressSIMD( fltx4 const & a, fltx4 const &b )
{
return _mm_shuffle_ps( a, b, MM_SHUFFLE_REV( 0, 2, 0, 2 ) );
}
// Load four consecutive uint16's, and turn them into floating point numbers.
// This function isn't especially fast and could be made faster if anyone is
// using it heavily.
FORCEINLINE fltx4 LoadAndConvertUint16SIMD( const uint16 *pInts )
{
#ifdef POSIX
fltx4 retval;
SubFloat( retval, 0 ) = pInts[0];
SubFloat( retval, 1 ) = pInts[1];
SubFloat( retval, 2 ) = pInts[2];
SubFloat( retval, 3 ) = pInts[3];
#else
__m128i inA = _mm_loadl_epi64( (__m128i const*) pInts); // Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result, zeroing the upper 64 bits of the result.
inA = _mm_unpacklo_epi16( inA, _mm_setzero_si128() ); // unpack unsigned 16's to signed 32's
return _mm_cvtepi32_ps(inA);
#endif
}
// a={ a.x, b.x, c.x, d.x }
// combine 4 fltx4s by throwing away 3/4s of the fields
FORCEINLINE fltx4 Compress4SIMD( fltx4 const a, fltx4 const &b, fltx4 const &c, fltx4 const &d )
{
fltx4 aacc = _mm_shuffle_ps( a, c, MM_SHUFFLE_REV( 0, 0, 0, 0 ) );
fltx4 bbdd = _mm_shuffle_ps( b, d, MM_SHUFFLE_REV( 0, 0, 0, 0 ) );
return MaskedAssign( LoadAlignedSIMD( g_SIMD_EveryOtherMask ), bbdd, aacc );
}
// outa={a.x, a.x, a.y, a.y}, outb = a.z, a.z, a.w, a.w }
FORCEINLINE void ExpandSIMD( fltx4 const &a, fltx4 &fl4OutA, fltx4 &fl4OutB )
{
fl4OutA = _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 0, 0, 1, 1 ) );
fl4OutB = _mm_shuffle_ps( a, a, MM_SHUFFLE_REV( 2, 2, 3, 3 ) );
}
// CHRISG: the conversion functions all seem to operate on m64's only...
// how do we make them work here?
// Take a fltx4 containing fixed-point uints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 UnsignedIntConvertToFltSIMD( const u32x4 &vSrcA )
{
fltx4 retval;
SubFloat( retval, 0 ) = ( (float) SubInt( retval, 0 ) );
SubFloat( retval, 1 ) = ( (float) SubInt( retval, 1 ) );
SubFloat( retval, 2 ) = ( (float) SubInt( retval, 2 ) );
SubFloat( retval, 3 ) = ( (float) SubInt( retval, 3 ) );
return retval;
}
// Take a fltx4 containing fixed-point sints and
// return them as single precision floats. No
// fixed point conversion is done.
FORCEINLINE fltx4 SignedIntConvertToFltSIMD( const i32x4 &vSrcA )
{
fltx4 retval;
SubFloat( retval, 0 ) = ( (float) (reinterpret_cast<const int32 *>(&vSrcA)[0]));
SubFloat( retval, 1 ) = ( (float) (reinterpret_cast<const int32 *>(&vSrcA)[1]));
SubFloat( retval, 2 ) = ( (float) (reinterpret_cast<const int32 *>(&vSrcA)[2]));
SubFloat( retval, 3 ) = ( (float) (reinterpret_cast<const int32 *>(&vSrcA)[3]));
return retval;
}
/*
works on fltx4's as if they are four uints.
the first parameter contains the words to be shifted,
the second contains the amount to shift by AS INTS
for i = 0 to 3
shift = vSrcB_i*32:(i*32)+4
vReturned_i*32:(i*32)+31 = vSrcA_i*32:(i*32)+31 << shift
*/
FORCEINLINE i32x4 IntShiftLeftWordSIMD(const i32x4 &vSrcA, const i32x4 &vSrcB)
{
i32x4 retval;
SubInt(retval, 0) = SubInt(vSrcA, 0) << SubInt(vSrcB, 0);
SubInt(retval, 1) = SubInt(vSrcA, 1) << SubInt(vSrcB, 1);
SubInt(retval, 2) = SubInt(vSrcA, 2) << SubInt(vSrcB, 2);
SubInt(retval, 3) = SubInt(vSrcA, 3) << SubInt(vSrcB, 3);
return retval;
}
// Fixed-point conversion and save as SIGNED INTS.
// pDest->x = Int (vSrc.x)
// note: some architectures have means of doing
// fixed point conversion when the fix depth is
// specified as an immediate.. but there is no way
// to guarantee an immediate as a parameter to function
// like this.
FORCEINLINE void ConvertStoreAsIntsSIMD(intx4 * RESTRICT pDest, const fltx4 &vSrc)
{
__m64 bottom = _mm_cvttps_pi32( vSrc );
__m64 top = _mm_cvttps_pi32( _mm_movehl_ps(vSrc,vSrc) );
*reinterpret_cast<__m64 *>(&(*pDest)[0]) = bottom;
*reinterpret_cast<__m64 *>(&(*pDest)[2]) = top;
_mm_empty();
}
#endif
// a={a.y, a.z, a.w, b.x } b={b.y, b.z, b.w, b.x }
FORCEINLINE void RotateLeftDoubleSIMD( fltx4 &a, fltx4 &b )
{
a = SetWSIMD( RotateLeft( a ), SplatXSIMD( b ) );
b = RotateLeft( b );
}
// // Some convenience operator overloads, which are just aliasing the functions above.
// Unneccessary on 360, as you already have them from xboxmath.h
#if !defined(_X360) && !defined( POSIX )
#if 1 // TODO: verify generation of non-bad code.
// Componentwise add
FORCEINLINE fltx4 operator+( FLTX4 a, FLTX4 b )
{
return AddSIMD( a, b );
}
// Componentwise subtract
FORCEINLINE fltx4 operator-( FLTX4 a, FLTX4 b )
{
return SubSIMD( a, b );
}
// Componentwise multiply
FORCEINLINE fltx4 operator*( FLTX4 a, FLTX4 b )
{
return MulSIMD( a, b );
}
// No divide. You need to think carefully about whether you want a reciprocal
// or a reciprocal estimate.
// bitwise and
FORCEINLINE fltx4 operator&( FLTX4 a, FLTX4 b )
{
return AndSIMD( a ,b );
}
// bitwise or
FORCEINLINE fltx4 operator|( FLTX4 a, FLTX4 b )
{
return OrSIMD( a, b );
}
// bitwise xor
FORCEINLINE fltx4 operator^( FLTX4 a, FLTX4 b )
{
return XorSIMD( a, b );
}
// unary negate
FORCEINLINE fltx4 operator-( FLTX4 a )
{
return NegSIMD( a );
}
#endif // 0
#endif
struct ALIGN16 fourplanes_t
{
fltx4 nX;
fltx4 nY;
fltx4 nZ;
fltx4 dist;
fltx4 xSign;
fltx4 ySign;
fltx4 zSign;
fltx4 nXAbs;
fltx4 nYAbs;
fltx4 nZAbs;
void ComputeSignbits();
// fast SIMD loads
void Set4Planes( const VPlane *pPlanes );
void Set2Planes( const VPlane *pPlanes );
void Get4Planes( VPlane *pPlanesOut );
void Get2Planes( VPlane *pPlanesOut );
// not-SIMD, much slower
void GetPlane( int index, Vector *pNormal, float *pDist ) const;
void SetPlane( int index, const Vector &vecNormal, float planeDist );
};
class ALIGN16 Frustum_t
{
public:
Frustum_t();
void SetPlane( int i, const Vector &vecNormal, float dist );
void GetPlane( int i, Vector *pNormalOut, float *pDistOut ) const;
void SetPlanes( const VPlane *pPlanes );
void GetPlanes( VPlane *pPlanesOut );
// returns false if the box is within the frustum, true if it is outside
bool CullBox( const Vector &mins, const Vector &maxs ) const;
bool CullBoxCenterExtents( const Vector &center, const Vector &extents ) const;
bool CullBox( const fltx4 &fl4Mins, const fltx4 &fl4Maxs ) const;
bool CullBoxCenterExtents( const fltx4 &fl4Center, const fltx4 &fl4Extents ) const;
fourplanes_t planes[2];
};
/// class FourVectors stores 4 independent vectors for use in SIMD processing. These vectors are
/// stored in the format x x x x y y y y z z z z so that they can be efficiently SIMD-accelerated.
class ALIGN16 FourVectors
{
public:
fltx4 x, y, z;
FourVectors(void)
{
}
FourVectors( FourVectors const &src )
{
x=src.x;
y=src.y;
z=src.z;
}
FORCEINLINE FourVectors( float a )
{
fltx4 aReplicated = ReplicateX4( a );
x = y = z = aReplicated;
}
/// construct a FourVectors from 4 separate Vectors
FORCEINLINE FourVectors(Vector const &a, Vector const &b, Vector const &c, Vector const &d)
{
LoadAndSwizzle(a,b,c,d);
}
/// construct a FourVectors from 4 separate Vectors
FORCEINLINE FourVectors(VectorAligned const &a, VectorAligned const &b, VectorAligned const &c, VectorAligned const &d)
{
LoadAndSwizzleAligned(a,b,c,d);
}
// construct from twelve floats; really only useful for static const constructors.
// input arrays must be aligned, and in the fourvectors' native format
// (eg in xxxx,yyyy,zzzz form)
// each pointer should be to an aligned array of four floats
FORCEINLINE FourVectors( const float *xs , const float *ys, const float *zs ) :
x( LoadAlignedSIMD(xs) ), y( LoadAlignedSIMD(ys) ), z( LoadAlignedSIMD(zs) )
{};
FORCEINLINE void DuplicateVector(Vector const &v) //< set all 4 vectors to the same vector value
{
x=ReplicateX4(v.x);
y=ReplicateX4(v.y);
z=ReplicateX4(v.z);
}
FORCEINLINE fltx4 const & operator[](int idx) const
{
return *((&x)+idx);
}
FORCEINLINE fltx4 & operator[](int idx)
{
return *((&x)+idx);
}
FORCEINLINE void operator+=(FourVectors const &b) //< add 4 vectors to another 4 vectors
{
x=AddSIMD(x,b.x);
y=AddSIMD(y,b.y);
z=AddSIMD(z,b.z);
}
FORCEINLINE FourVectors operator+(FourVectors const &b) //< add 4 vectors to another 4 vectors
{
FourVectors result;
result.x=AddSIMD(x,b.x);
result.y=AddSIMD(y,b.y);
result.z=AddSIMD(z,b.z);
return result;
}
FORCEINLINE void operator-=(FourVectors const &b) //< subtract 4 vectors from another 4
{
x=SubSIMD(x,b.x);
y=SubSIMD(y,b.y);
z=SubSIMD(z,b.z);
}
FORCEINLINE FourVectors operator-(FourVectors const &b) //< add 4 vectors to another 4 vectors
{
FourVectors result;
result.x=SubSIMD(x,b.x);
result.y=SubSIMD(y,b.y);
result.z=SubSIMD(z,b.z);
return result;
}
FORCEINLINE void operator*=(FourVectors const &b) //< scale all four vectors per component scale
{
x=MulSIMD(x,b.x);
y=MulSIMD(y,b.y);
z=MulSIMD(z,b.z);
}
FORCEINLINE void operator*=(const fltx4 & scale) //< scale
{
x=MulSIMD(x,scale);
y=MulSIMD(y,scale);
z=MulSIMD(z,scale);
}
FORCEINLINE void operator*=(float scale) //< uniformly scale all 4 vectors
{
fltx4 scalepacked = ReplicateX4(scale);
*this *= scalepacked;
}
FORCEINLINE fltx4 operator*(FourVectors const &b) const //< 4 dot products
{
fltx4 dot=MulSIMD(x,b.x);
dot=MaddSIMD(y,b.y,dot);
dot=MaddSIMD(z,b.z,dot);
return dot;
}
FORCEINLINE fltx4 operator*(Vector const &b) const //< dot product all 4 vectors with 1 vector
{
fltx4 dot=MulSIMD(x,ReplicateX4(b.x));
dot=MaddSIMD(y,ReplicateX4(b.y), dot);
dot=MaddSIMD(z,ReplicateX4(b.z), dot);
return dot;
}
FORCEINLINE FourVectors operator*(float b) const //< scale
{
fltx4 scalepacked = ReplicateX4( b );
FourVectors res;
res.x = MulSIMD( x, scalepacked );
res.y = MulSIMD( y, scalepacked );
res.z = MulSIMD( z, scalepacked );
return res;
}
FORCEINLINE void VProduct(FourVectors const &b) //< component by component mul
{
x=MulSIMD(x,b.x);
y=MulSIMD(y,b.y);
z=MulSIMD(z,b.z);
}
FORCEINLINE void MakeReciprocal(void) //< (x,y,z)=(1/x,1/y,1/z)
{
x=ReciprocalSIMD(x);
y=ReciprocalSIMD(y);
z=ReciprocalSIMD(z);
}
FORCEINLINE void MakeReciprocalSaturate(void) //< (x,y,z)=(1/x,1/y,1/z), 1/0=1.0e23
{
x=ReciprocalSaturateSIMD(x);
y=ReciprocalSaturateSIMD(y);
z=ReciprocalSaturateSIMD(z);
}
// Assume the given matrix is a rotation, and rotate these vectors by it.
// If you have a long list of FourVectors structures that you all want
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
inline void RotateBy(const matrix3x4_t& matrix);
/// You can use this to rotate a long array of FourVectors all by the same
/// matrix. The first parameter is the head of the array. The second is the
/// number of vectors to rotate. The third is the matrix.
static void RotateManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix );
static void RotateManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix, FourVectors * RESTRICT pOut );
/// Assume the vectors are points, and transform them in place by the matrix.
inline void TransformBy(const matrix3x4_t& matrix);
/// You can use this to Transform a long array of FourVectors all by the same
/// matrix. The first parameter is the head of the array. The second is the
/// number of vectors to rotate. The third is the matrix. The fourth is the
/// output buffer, which must not overlap the pVectors buffer. This is not
/// an in-place transformation.
static void TransformManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix, FourVectors * RESTRICT pOut );
/// You can use this to Transform a long array of FourVectors all by the same
/// matrix. The first parameter is the head of the array. The second is the
/// number of vectors to rotate. The third is the matrix. The fourth is the
/// output buffer, which must not overlap the pVectors buffer.
/// This is an in-place transformation.
static void TransformManyBy(FourVectors * RESTRICT pVectors, unsigned int numVectors, const matrix3x4_t& rotationMatrix );
static void CalcClosestPointOnLineSIMD( const FourVectors &P, const FourVectors &vLineA, const FourVectors &vLineB, FourVectors &vClosest, fltx4 *outT = 0);
static fltx4 CalcClosestPointToLineTSIMD( const FourVectors &P, const FourVectors &vLineA, const FourVectors &vLineB, FourVectors &vDir );
// X(),Y(),Z() - get at the desired component of the i'th (0..3) vector.
FORCEINLINE const float & X(int idx) const
{
// NOTE: if the output goes into a register, this causes a Load-Hit-Store stall (don't mix fpu/vpu math!)
return SubFloat( (fltx4 &)x, idx );
}
FORCEINLINE const float & Y(int idx) const
{
return SubFloat( (fltx4 &)y, idx );
}
FORCEINLINE const float & Z(int idx) const
{
return SubFloat( (fltx4 &)z, idx );
}
FORCEINLINE float & X(int idx)
{
return SubFloat( x, idx );
}
FORCEINLINE float & Y(int idx)
{
return SubFloat( y, idx );
}
FORCEINLINE float & Z(int idx)
{
return SubFloat( z, idx );
}
FORCEINLINE Vector Vec(int idx) const //< unpack one of the vectors
{
return Vector( X(idx), Y(idx), Z(idx) );
}
FORCEINLINE void operator=( FourVectors const &src )
{
x=src.x;
y=src.y;
z=src.z;
}
/// LoadAndSwizzle - load 4 Vectors into a FourVectors, performing transpose op
FORCEINLINE void LoadAndSwizzle(Vector const &a, Vector const &b, Vector const &c, Vector const &d)
{
// TransposeSIMD has large sub-expressions that the compiler can't eliminate on x360
// use an unfolded implementation here
#if _X360
fltx4 tx = LoadUnalignedSIMD( &a.x );
fltx4 ty = LoadUnalignedSIMD( &b.x );
fltx4 tz = LoadUnalignedSIMD( &c.x );
fltx4 tw = LoadUnalignedSIMD( &d.x );
fltx4 r0 = __vmrghw(tx, tz);
fltx4 r1 = __vmrghw(ty, tw);
fltx4 r2 = __vmrglw(tx, tz);
fltx4 r3 = __vmrglw(ty, tw);
x = __vmrghw(r0, r1);
y = __vmrglw(r0, r1);
z = __vmrghw(r2, r3);
#else
x = LoadUnalignedSIMD( &( a.x ));
y = LoadUnalignedSIMD( &( b.x ));
z = LoadUnalignedSIMD( &( c.x ));
fltx4 w = LoadUnalignedSIMD( &( d.x ));
// now, matrix is:
// x y z ?
// x y z ?
// x y z ?
// x y z ?
TransposeSIMD(x, y, z, w);
#endif
}
FORCEINLINE void LoadAndSwizzle(Vector const &a)
{
LoadAndSwizzle( a, a, a, a );
}
// Broadcasts a, b, c, and d into the four vectors
// This is only performant if the floats are ALREADY IN MEMORY
// and not on registers -- eg,
// .Load( &fltArrray[0], &fltArrray[1], &fltArrray[2], &fltArrray[3] ) is okay,
// .Load( fltArrray[0] * 0.5f, fltArrray[1] * 0.5f, fltArrray[2] * 0.5f, fltArrray[3] * 0.5f ) is not.
FORCEINLINE void Load( const float &a, const float &b, const float &c, const float &d )
{
#if _X360
fltx4 temp[4];
temp[0] = LoadUnalignedFloatSIMD( &a );
temp[1] = LoadUnalignedFloatSIMD( &b );
temp[2] = LoadUnalignedFloatSIMD( &c );
temp[3] = LoadUnalignedFloatSIMD( &d );
y = __vmrghw( temp[0], temp[2] ); // ac__
z = __vmrghw( temp[1], temp[3] ); // bd__
x = __vmrghw( y, z ); // abcd
y = x;
z = x;
#else
ALIGN16 float temp[4];
temp[0] = a; temp[1] = b; temp[2] = c; temp[3] = d;
fltx4 v = LoadAlignedSIMD( temp );
x = v;
y = v;
z = v;
#endif
}
// transform four horizontal vectors into the internal vertical ones
FORCEINLINE void LoadAndSwizzle( FLTX4 a, FLTX4 b, FLTX4 c, FLTX4 d )
{
#if _X360
fltx4 tx = a;
fltx4 ty = b;
fltx4 tz = c;
fltx4 tw = d;
fltx4 r0 = __vmrghw(tx, tz);
fltx4 r1 = __vmrghw(ty, tw);
fltx4 r2 = __vmrglw(tx, tz);
fltx4 r3 = __vmrglw(ty, tw);
x = __vmrghw(r0, r1);
y = __vmrglw(r0, r1);
z = __vmrghw(r2, r3);
#else
x = a;
y = b;
z = c;
fltx4 w = d;
// now, matrix is:
// x y z ?
// x y z ?
// x y z ?
// x y z ?
TransposeSIMD(x, y, z, w);
#endif
}
/// LoadAndSwizzleAligned - load 4 Vectors into a FourVectors, performing transpose op.
/// all 4 vectors must be 128 bit boundary
FORCEINLINE void LoadAndSwizzleAligned(const float *RESTRICT a, const float *RESTRICT b, const float *RESTRICT c, const float *RESTRICT d)
{
#if _X360
fltx4 tx = LoadAlignedSIMD(a);
fltx4 ty = LoadAlignedSIMD(b);
fltx4 tz = LoadAlignedSIMD(c);
fltx4 tw = LoadAlignedSIMD(d);
fltx4 r0 = __vmrghw(tx, tz);
fltx4 r1 = __vmrghw(ty, tw);
fltx4 r2 = __vmrglw(tx, tz);
fltx4 r3 = __vmrglw(ty, tw);
x = __vmrghw(r0, r1);
y = __vmrglw(r0, r1);
z = __vmrghw(r2, r3);
#else
x = LoadAlignedSIMD( a );
y = LoadAlignedSIMD( b );
z = LoadAlignedSIMD( c );
fltx4 w = LoadAlignedSIMD( d );
// now, matrix is:
// x y z ?
// x y z ?
// x y z ?
// x y z ?
TransposeSIMD( x, y, z, w );
#endif
}
FORCEINLINE void LoadAndSwizzleAligned(Vector const &a, Vector const &b, Vector const &c, Vector const &d)
{
LoadAndSwizzleAligned( &a.x, &b.x, &c.x, &d.x );
}
/// Unpack a FourVectors back into four horizontal fltx4s.
/// Since the FourVectors doesn't store a w row, you can optionally
/// specify your own; otherwise it will be 0.
/// This function ABSOLUTELY MUST be inlined or the reference parameters will
/// induce a severe load-hit-store.
FORCEINLINE void TransposeOnto( fltx4 &out0, fltx4 &out1, fltx4 &out2, fltx4 &out3, FLTX4 w = Four_Zeros ) const
{
// TransposeSIMD has large sub-expressions that the compiler can't eliminate on x360
// use an unfolded implementation here
#if _X360
fltx4 r0 = __vmrghw(x, z);
fltx4 r1 = __vmrghw(y, w);
fltx4 r2 = __vmrglw(x, z);
fltx4 r3 = __vmrglw(y, w);
out0 = __vmrghw(r0, r1);
out1 = __vmrglw(r0, r1);
out2 = __vmrghw(r2, r3);
out3 = __vmrglw(r2, r3);
#else
out0 = x;
out1 = y;
out2 = z;
out3 = w;
TransposeSIMD(out0, out1, out2, out3);
#endif
}
/// Store a FourVectors into four NON-CONTIGUOUS Vector*'s.
FORCEINLINE void StoreUnalignedVector3SIMD( Vector * RESTRICT out0, Vector * RESTRICT out1, Vector * RESTRICT out2, Vector * RESTRICT out3 ) const;
/// Store a FourVectors into four NON-CONTIGUOUS VectorAligned s.
FORCEINLINE void StoreAlignedVectorSIMD( VectorAligned * RESTRICT out0, VectorAligned * RESTRICT out1, VectorAligned * RESTRICT out2, VectorAligned * RESTRICT out3 ) const;
/// Store a FourVectors into four CONSECUTIVE Vectors in memory,
/// where the first vector IS NOT aligned on a 16-byte boundary.
FORCEINLINE void StoreUnalignedContigVector3SIMD( Vector * RESTRICT pDestination )
{
fltx4 a,b,c,d;
TransposeOnto(a,b,c,d);
StoreFourUnalignedVector3SIMD( a, b, c, d, pDestination );
}
/// Store a FourVectors into four CONSECUTIVE Vectors in memory,
/// where the first vector IS aligned on a 16-byte boundary.
/// (since four Vector3s = 48 bytes, groups of four can be said
/// to be 16-byte aligned though obviously the 2nd, 3d, and 4th
/// vectors in the group individually are not)
FORCEINLINE void StoreAlignedContigVector3SIMD( Vector * RESTRICT pDestination )
{
fltx4 a,b,c,d;
TransposeOnto(a,b,c,d);
StoreFourAlignedVector3SIMD( a, b, c, d, pDestination );
}
/// Store a FourVectors into four CONSECUTIVE VectorAligneds in memory
FORCEINLINE void StoreAlignedContigVectorASIMD( VectorAligned * RESTRICT pDestination )
{
StoreAlignedVectorSIMD( pDestination, pDestination + 1, pDestination + 2, pDestination + 3 );
}
/// return the squared length of all 4 vectors
FORCEINLINE fltx4 length2(void) const
{
return (*this)*(*this);
}
/// return the approximate length of all 4 vectors. uses the sqrt approximation instruction
FORCEINLINE fltx4 length(void) const
{
return SqrtEstSIMD(length2());
}
/// normalize all 4 vectors in place. not mega-accurate (uses reciprocal approximation instruction)
FORCEINLINE void VectorNormalizeFast(void)
{
fltx4 mag_sq=(*this)*(*this); // length^2
(*this) *= ReciprocalSqrtEstSIMD(mag_sq); // *(1.0/sqrt(length^2))
}
/// normalize all 4 vectors in place.
FORCEINLINE void VectorNormalize(void)
{
fltx4 mag_sq=(*this)*(*this); // length^2
(*this) *= ReciprocalSqrtSIMD(mag_sq); // *(1.0/sqrt(length^2))
}
FORCEINLINE fltx4 DistToSqr( FourVectors const &pnt )
{
fltx4 fl4dX = SubSIMD( pnt.x, x );
fltx4 fl4dY = SubSIMD( pnt.y, y );
fltx4 fl4dZ = SubSIMD( pnt.z, z );
return AddSIMD( MulSIMD( fl4dX, fl4dX), AddSIMD( MulSIMD( fl4dY, fl4dY ), MulSIMD( fl4dZ, fl4dZ ) ) );
}
FORCEINLINE fltx4 TValueOfClosestPointOnLine( FourVectors const &p0, FourVectors const &p1 ) const
{
FourVectors lineDelta = p1;
lineDelta -= p0;
fltx4 OOlineDirDotlineDir = ReciprocalSIMD( p1 * p1 );
FourVectors v4OurPnt = *this;
v4OurPnt -= p0;
return MulSIMD( OOlineDirDotlineDir, v4OurPnt * lineDelta );
}
FORCEINLINE fltx4 DistSqrToLineSegment( FourVectors const &p0, FourVectors const &p1 ) const
{
FourVectors lineDelta = p1;
FourVectors v4OurPnt = *this;
v4OurPnt -= p0;
lineDelta -= p0;
fltx4 OOlineDirDotlineDir = ReciprocalSIMD( lineDelta * lineDelta );
fltx4 fl4T = MulSIMD( OOlineDirDotlineDir, v4OurPnt * lineDelta );
fl4T = MinSIMD( fl4T, Four_Ones );
fl4T = MaxSIMD( fl4T, Four_Zeros );
lineDelta *= fl4T;
return v4OurPnt.DistToSqr( lineDelta );
}
};
//
inline FourVectors Mul( const FourVectors &a, const fltx4 &b )
{
FourVectors ret;
ret.x = MulSIMD( a.x, b );
ret.y = MulSIMD( a.y, b );
ret.z = MulSIMD( a.z, b );
return ret;
}
inline FourVectors Mul( const FourVectors &a, const FourVectors &b )
{
FourVectors ret;
ret.x = MulSIMD( a.x, b.x );
ret.y = MulSIMD( a.y, b.y );
ret.z = MulSIMD( a.z, b.z );
return ret;
}
inline FourVectors Madd( const FourVectors &a, const fltx4 &b, const FourVectors &c ) // a*b + c
{
FourVectors ret;
ret.x = MaddSIMD( a.x, b, c.x );
ret.y = MaddSIMD( a.y, b, c.y );
ret.z = MaddSIMD( a.z, b, c.z );
return ret;
}
/// form 4 cross products
inline FourVectors operator ^(const FourVectors &a, const FourVectors &b)
{
FourVectors ret;
ret.x=SubSIMD(MulSIMD(a.y,b.z),MulSIMD(a.z,b.y));
ret.y=SubSIMD(MulSIMD(a.z,b.x),MulSIMD(a.x,b.z));
ret.z=SubSIMD(MulSIMD(a.x,b.y),MulSIMD(a.y,b.x));
return ret;
}
inline FourVectors operator-(const FourVectors &a, const FourVectors &b)
{
FourVectors ret;
ret.x=SubSIMD(a.x,b.x);
ret.y=SubSIMD(a.y,b.y);
ret.z=SubSIMD(a.z,b.z);
return ret;
}
/// component-by-componentwise MAX operator
inline FourVectors maximum(const FourVectors &a, const FourVectors &b)
{
FourVectors ret;
ret.x=MaxSIMD(a.x,b.x);
ret.y=MaxSIMD(a.y,b.y);
ret.z=MaxSIMD(a.z,b.z);
return ret;
}
/// component-by-componentwise MIN operator
inline FourVectors minimum(const FourVectors &a, const FourVectors &b)
{
FourVectors ret;
ret.x=MinSIMD(a.x,b.x);
ret.y=MinSIMD(a.y,b.y);
ret.z=MinSIMD(a.z,b.z);
return ret;
}
FORCEINLINE FourVectors RotateLeft( const FourVectors &src )
{
FourVectors ret;
ret.x = RotateLeft( src.x );
ret.y = RotateLeft( src.y );
ret.z = RotateLeft( src.z );
return ret;
}
FORCEINLINE FourVectors RotateRight( const FourVectors &src )
{
FourVectors ret;
ret.x = RotateRight( src.x );
ret.y = RotateRight( src.y );
ret.z = RotateRight( src.z );
return ret;
}
FORCEINLINE FourVectors MaskedAssign( const fltx4 & ReplacementMask, const FourVectors & NewValue, const FourVectors & OldValue )
{
FourVectors ret;
ret.x = MaskedAssign( ReplacementMask, NewValue.x, OldValue.x );
ret.y = MaskedAssign( ReplacementMask, NewValue.y, OldValue.y );
ret.z = MaskedAssign( ReplacementMask, NewValue.z, OldValue.z );
return ret;
}
/// calculate reflection vector. incident and normal dir assumed normalized
FORCEINLINE FourVectors VectorReflect( const FourVectors &incident, const FourVectors &normal )
{
FourVectors ret = incident;
fltx4 iDotNx2 = incident * normal;
iDotNx2 = AddSIMD( iDotNx2, iDotNx2 );
FourVectors nPart = normal;
nPart *= iDotNx2;
ret -= nPart; // i-2(n*i)n
return ret;
}
/// calculate slide vector. removes all components of a vector which are perpendicular to a normal vector.
FORCEINLINE FourVectors VectorSlide( const FourVectors &incident, const FourVectors &normal )
{
FourVectors ret = incident;
fltx4 iDotN = incident * normal;
FourVectors nPart = normal;
nPart *= iDotN;
ret -= nPart; // i-(n*i)n
return ret;
}
/// normalize all 4 vectors in place. not mega-accurate (uses reciprocal approximation instruction)
FORCEINLINE FourVectors VectorNormalizeFast( const FourVectors &src )
{
fltx4 mag_sq = ReciprocalSqrtEstSIMD( src * src ); // *(1.0/sqrt(length^2))
FourVectors result;
result.x = MulSIMD( src.x, mag_sq );
result.y = MulSIMD( src.y, mag_sq );
result.z = MulSIMD( src.z, mag_sq );
return result;
}
/// Store a FourVectors into four NON-CONTIGUOUS Vector*'s.
FORCEINLINE void FourVectors::StoreUnalignedVector3SIMD( Vector * RESTRICT out0, Vector * RESTRICT out1, Vector * RESTRICT out2, Vector * RESTRICT out3 ) const
{
#ifdef _X360
fltx4 x0,x1,x2,x3, y0,y1,y2,y3, z0,z1,z2,z3;
x0 = SplatXSIMD(x); // all x0x0x0x0
x1 = SplatYSIMD(x);
x2 = SplatZSIMD(x);
x3 = SplatWSIMD(x);
y0 = SplatXSIMD(y);
y1 = SplatYSIMD(y);
y2 = SplatZSIMD(y);
y3 = SplatWSIMD(y);
z0 = SplatXSIMD(z);
z1 = SplatYSIMD(z);
z2 = SplatZSIMD(z);
z3 = SplatWSIMD(z);
__stvewx( x0, out0->Base(), 0 ); // store X word
__stvewx( y0, out0->Base(), 4 ); // store Y word
__stvewx( z0, out0->Base(), 8 ); // store Z word
__stvewx( x1, out1->Base(), 0 ); // store X word
__stvewx( y1, out1->Base(), 4 ); // store Y word
__stvewx( z1, out1->Base(), 8 ); // store Z word
__stvewx( x2, out2->Base(), 0 ); // store X word
__stvewx( y2, out2->Base(), 4 ); // store Y word
__stvewx( z2, out2->Base(), 8 ); // store Z word
__stvewx( x3, out3->Base(), 0 ); // store X word
__stvewx( y3, out3->Base(), 4 ); // store Y word
__stvewx( z3, out3->Base(), 8 ); // store Z word
#else
fltx4 a,b,c,d;
TransposeOnto(a,b,c,d);
StoreUnaligned3SIMD( out0->Base(), a );
StoreUnaligned3SIMD( out1->Base(), b );
StoreUnaligned3SIMD( out2->Base(), c );
StoreUnaligned3SIMD( out3->Base(), d );
#endif
}
/// Store a FourVectors into four NON-CONTIGUOUS VectorAligned s.
FORCEINLINE void FourVectors::StoreAlignedVectorSIMD( VectorAligned * RESTRICT out0, VectorAligned * RESTRICT out1, VectorAligned * RESTRICT out2, VectorAligned * RESTRICT out3 ) const
{
fltx4 a,b,c,d;
TransposeOnto(a,b,c,d);
StoreAligned3SIMD( out0, a );
StoreAligned3SIMD( out1, b );
StoreAligned3SIMD( out2, c );
StoreAligned3SIMD( out3, d );
}
// Assume the given matrix is a rotation, and rotate these vectors by it.
// If you have a long list of FourVectors structures that you all want
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
void FourVectors::RotateBy(const matrix3x4_t& matrix)
{
// Splat out each of the entries in the matrix to a fltx4. Do this
// in the order that we will need them, to hide latency. I'm
// avoiding making an array of them, so that they'll remain in
// registers.
fltx4 matSplat00, matSplat01, matSplat02,
matSplat10, matSplat11, matSplat12,
matSplat20, matSplat21, matSplat22;
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
// often unaligned. The w components will be the tranpose row of
// the matrix, but we don't really care about that.
fltx4 matCol0 = LoadUnalignedSIMD( matrix[0] );
fltx4 matCol1 = LoadUnalignedSIMD( matrix[1] );
fltx4 matCol2 = LoadUnalignedSIMD( matrix[2] );
matSplat00 = SplatXSIMD( matCol0 );
matSplat01 = SplatYSIMD( matCol0 );
matSplat02 = SplatZSIMD( matCol0 );
matSplat10 = SplatXSIMD( matCol1 );
matSplat11 = SplatYSIMD( matCol1 );
matSplat12 = SplatZSIMD( matCol1 );
matSplat20 = SplatXSIMD( matCol2 );
matSplat21 = SplatYSIMD( matCol2 );
matSplat22 = SplatZSIMD( matCol2 );
// Trust in the compiler to schedule these operations correctly:
fltx4 outX, outY, outZ;
outX = AddSIMD( AddSIMD( MulSIMD( x, matSplat00 ), MulSIMD( y, matSplat01 ) ), MulSIMD( z, matSplat02 ) );
outY = AddSIMD( AddSIMD( MulSIMD( x, matSplat10 ), MulSIMD( y, matSplat11 ) ), MulSIMD( z, matSplat12 ) );
outZ = AddSIMD( AddSIMD( MulSIMD( x, matSplat20 ), MulSIMD( y, matSplat21 ) ), MulSIMD( z, matSplat22 ) );
x = outX;
y = outY;
z = outZ;
}
// Assume the given matrix is a rotation, and rotate these vectors by it.
// If you have a long list of FourVectors structures that you all want
// to rotate by the same matrix, use FourVectors::RotateManyBy() instead.
void FourVectors::TransformBy(const matrix3x4_t& matrix)
{
// Splat out each of the entries in the matrix to a fltx4. Do this
// in the order that we will need them, to hide latency. I'm
// avoiding making an array of them, so that they'll remain in
// registers.
fltx4 matSplat00, matSplat01, matSplat02,
matSplat10, matSplat11, matSplat12,
matSplat20, matSplat21, matSplat22;
// Load the matrix into local vectors. Sadly, matrix3x4_ts are
// often unaligned. The w components will be the tranpose row of
// the matrix, but we don't really care about that.
fltx4 matCol0 = LoadUnalignedSIMD( matrix[0] );
fltx4 matCol1 = LoadUnalignedSIMD( matrix[1] );
fltx4 matCol2 = LoadUnalignedSIMD( matrix[2] );
matSplat00 = SplatXSIMD( matCol0 );
matSplat01 = SplatYSIMD( matCol0 );
matSplat02 = SplatZSIMD( matCol0 );
matSplat10 = SplatXSIMD( matCol1 );
matSplat11 = SplatYSIMD( matCol1 );
matSplat12 = SplatZSIMD( matCol1 );
matSplat20 = SplatXSIMD( matCol2 );
matSplat21 = SplatYSIMD( matCol2 );
matSplat22 = SplatZSIMD( matCol2 );
// Trust in the compiler to schedule these operations correctly:
fltx4 outX, outY, outZ;
outX = MaddSIMD( z, matSplat02, AddSIMD( MulSIMD( x, matSplat00 ), MulSIMD( y, matSplat01 ) ) );
outY = MaddSIMD( z, matSplat12, AddSIMD( MulSIMD( x, matSplat10 ), MulSIMD( y, matSplat11 ) ) );
outZ = MaddSIMD( z, matSplat22, AddSIMD( MulSIMD( x, matSplat20 ), MulSIMD( y, matSplat21 ) ) );
x = AddSIMD( outX, ReplicateX4( matrix[0][3] ));
y = AddSIMD( outY, ReplicateX4( matrix[1][3] ));
z = AddSIMD( outZ, ReplicateX4( matrix[2][3] ));
}
/// quick, low quality perlin-style noise() function suitable for real time use.
/// return value is -1..1. Only reliable around +/- 1 million or so.
fltx4 NoiseSIMD( const fltx4 & x, const fltx4 & y, const fltx4 & z );
fltx4 NoiseSIMD( FourVectors const &v );
// vector valued noise direction
FourVectors DNoiseSIMD( FourVectors const &v );
// vector value "curl" noise function. see http://hyperphysics.phy-astr.gsu.edu/hbase/curl.html
FourVectors CurlNoiseSIMD( FourVectors const &v );
/// calculate the absolute value of a packed single
inline fltx4 fabs( const fltx4 & x )
{
return AndSIMD( x, LoadAlignedSIMD( g_SIMD_clear_signmask ) );
}
/// negate all four components of a SIMD packed single
inline fltx4 fnegate( const fltx4 & x )
{
return XorSIMD( x, LoadAlignedSIMD( g_SIMD_signmask ) );
}
fltx4 Pow_FixedPoint_Exponent_SIMD( const fltx4 & x, int exponent);
// PowSIMD - raise a SIMD register to a power. This is analogous to the C pow() function, with some
// restictions: fractional exponents are only handled with 2 bits of precision. Basically,
// fractions of 0,.25,.5, and .75 are handled. PowSIMD(x,.30) will be the same as PowSIMD(x,.25).
// negative and fractional powers are handled by the SIMD reciprocal and square root approximation
// instructions and so are not especially accurate ----Note that this routine does not raise
// numeric exceptions because it uses SIMD--- This routine is O(log2(exponent)).
inline fltx4 PowSIMD( const fltx4 & x, float exponent )
{
return Pow_FixedPoint_Exponent_SIMD(x,(int) (4.0*exponent));
}
// random number generation - generate 4 random numbers quickly.
void SeedRandSIMD(uint32 seed); // seed the random # generator
fltx4 RandSIMD( int nContext = 0 ); // return 4 numbers in the 0..1 range
// for multithreaded, you need to use these and use the argument form of RandSIMD:
int GetSIMDRandContext( void );
void ReleaseSIMDRandContext( int nContext );
FORCEINLINE fltx4 RandSignedSIMD( void ) // -1..1
{
return SubSIMD( MulSIMD( Four_Twos, RandSIMD() ), Four_Ones );
}
FORCEINLINE fltx4 LerpSIMD ( const fltx4 &percent, const fltx4 &a, const fltx4 &b)
{
return AddSIMD( a, MulSIMD( SubSIMD( b, a ), percent ) );
}
FORCEINLINE fltx4 RemapValClampedSIMD(const fltx4 &val, const fltx4 &a, const fltx4 &b, const fltx4 &c, const fltx4 &d) // Remap val from clamped range between a and b to new range between c and d
{
fltx4 range = MaskedAssign( CmpEqSIMD( a, b ), Four_Ones, SubSIMD( b, a ) ); //make sure range > 0
fltx4 cVal = MaxSIMD( Four_Zeros, MinSIMD( Four_Ones, DivSIMD( SubSIMD( val, a ), range ) ) ); //saturate
return LerpSIMD( cVal, c, d );
}
// SIMD versions of mathlib simplespline functions
// hermite basis function for smooth interpolation
// Similar to Gain() above, but very cheap to call
// value should be between 0 & 1 inclusive
inline fltx4 SimpleSpline( const fltx4 & value )
{
// Arranged to avoid a data dependency between these two MULs:
fltx4 valueDoubled = MulSIMD( value, Four_Twos );
fltx4 valueSquared = MulSIMD( value, value );
// Nice little ease-in, ease-out spline-like curve
return SubSIMD(
MulSIMD( Four_Threes, valueSquared ),
MulSIMD( valueDoubled, valueSquared ) );
}
// remaps a value in [startInterval, startInterval+rangeInterval] from linear to
// spline using SimpleSpline
inline fltx4 SimpleSplineRemapValWithDeltas( const fltx4 & val,
const fltx4 & A, const fltx4 & BMinusA,
const fltx4 & OneOverBMinusA, const fltx4 & C,
const fltx4 & DMinusC )
{
// if ( A == B )
// return val >= B ? D : C;
fltx4 cVal = MulSIMD( SubSIMD( val, A), OneOverBMinusA );
return AddSIMD( C, MulSIMD( DMinusC, SimpleSpline( cVal ) ) );
}
inline fltx4 SimpleSplineRemapValWithDeltasClamped( const fltx4 & val,
const fltx4 & A, const fltx4 & BMinusA,
const fltx4 & OneOverBMinusA, const fltx4 & C,
const fltx4 & DMinusC )
{
// if ( A == B )
// return val >= B ? D : C;
fltx4 cVal = MulSIMD( SubSIMD( val, A), OneOverBMinusA );
cVal = MinSIMD( Four_Ones, MaxSIMD( Four_Zeros, cVal ) );
return AddSIMD( C, MulSIMD( DMinusC, SimpleSpline( cVal ) ) );
}
FORCEINLINE fltx4 FracSIMD( const fltx4 &val )
{
fltx4 fl4Abs = fabs( val );
fltx4 ival = SubSIMD( AddSIMD( fl4Abs, Four_2ToThe23s ), Four_2ToThe23s );
ival = MaskedAssign( CmpGtSIMD( ival, fl4Abs ), SubSIMD( ival, Four_Ones ), ival );
return XorSIMD( SubSIMD( fl4Abs, ival ), XorSIMD( val, fl4Abs ) ); // restore sign bits
}
FORCEINLINE fltx4 Mod2SIMD( const fltx4 &val )
{
fltx4 fl4Abs = fabs( val );
fltx4 ival = SubSIMD( AndSIMD( LoadAlignedSIMD( (float *) g_SIMD_lsbmask ), AddSIMD( fl4Abs, Four_2ToThe23s ) ), Four_2ToThe23s );
ival = MaskedAssign( CmpGtSIMD( ival, fl4Abs ), SubSIMD( ival, Four_Twos ), ival );
return XorSIMD( SubSIMD( fl4Abs, ival ), XorSIMD( val, fl4Abs ) ); // restore sign bits
}
FORCEINLINE fltx4 Mod2SIMDPositiveInput( const fltx4 &val )
{
fltx4 ival = SubSIMD( AndSIMD( LoadAlignedSIMD( g_SIMD_lsbmask ), AddSIMD( val, Four_2ToThe23s ) ), Four_2ToThe23s );
ival = MaskedAssign( CmpGtSIMD( ival, val ), SubSIMD( ival, Four_Twos ), ival );
return SubSIMD( val, ival );
}
// approximate sin of an angle, with -1..1 representing the whole sin wave period instead of -pi..pi.
// no range reduction is done - for values outside of 0..1 you won't like the results
FORCEINLINE fltx4 _SinEst01SIMD( const fltx4 &val )
{
// really rough approximation - x*(4-x*4) - a parabola. s(0) = 0, s(.5) = 1, s(1)=0, smooth in-between.
// sufficient for simple oscillation.
return MulSIMD( val, SubSIMD( Four_Fours, MulSIMD( val, Four_Fours ) ) );
}
FORCEINLINE fltx4 _Sin01SIMD( const fltx4 &val )
{
// not a bad approximation : parabola always over-estimates. Squared parabola always
// underestimates. So lets blend between them: goodsin = badsin + .225*( badsin^2-badsin)
fltx4 fl4BadEst = MulSIMD( val, SubSIMD( Four_Fours, MulSIMD( val, Four_Fours ) ) );
return AddSIMD( MulSIMD( Four_Point225s, SubSIMD( MulSIMD( fl4BadEst, fl4BadEst ), fl4BadEst ) ), fl4BadEst );
}
// full range useable implementations
FORCEINLINE fltx4 SinEst01SIMD( const fltx4 &val )
{
fltx4 fl4Abs = fabs( val );
fltx4 fl4Reduced2 = Mod2SIMDPositiveInput( fl4Abs );
fltx4 fl4OddMask = CmpGeSIMD( fl4Reduced2, Four_Ones );
fltx4 fl4val = SubSIMD( fl4Reduced2, AndSIMD( Four_Ones, fl4OddMask ) );
fltx4 fl4Sin = _SinEst01SIMD( fl4val );
fl4Sin = XorSIMD( fl4Sin, AndSIMD( LoadAlignedSIMD( g_SIMD_signmask ), XorSIMD( val, fl4OddMask ) ) );
return fl4Sin;
}
FORCEINLINE fltx4 Sin01SIMD( const fltx4 &val )
{
fltx4 fl4Abs = fabs( val );
fltx4 fl4Reduced2 = Mod2SIMDPositiveInput( fl4Abs );
fltx4 fl4OddMask = CmpGeSIMD( fl4Reduced2, Four_Ones );
fltx4 fl4val = SubSIMD( fl4Reduced2, AndSIMD( Four_Ones, fl4OddMask ) );
fltx4 fl4Sin = _Sin01SIMD( fl4val );
fl4Sin = XorSIMD( fl4Sin, AndSIMD( LoadAlignedSIMD( g_SIMD_signmask ), XorSIMD( val, fl4OddMask ) ) );
return fl4Sin;
}
FORCEINLINE fltx4 NatExpSIMD( const fltx4 &val ) // why is ExpSimd( x ) defined to be 2^x?
{
// need to write this. just stub with normal float implementation for now
fltx4 fl4Result;
SubFloat( fl4Result, 0 ) = exp( SubFloat( val, 0 ) );
SubFloat( fl4Result, 1 ) = exp( SubFloat( val, 1 ) );
SubFloat( fl4Result, 2 ) = exp( SubFloat( val, 2 ) );
SubFloat( fl4Result, 3 ) = exp( SubFloat( val, 3 ) );
return fl4Result;
}
// Schlick style Bias approximation see graphics gems 4 : bias(t,a)= t/( (1/a-2)*(1-t)+1)
FORCEINLINE fltx4 PreCalcBiasParameter( const fltx4 &bias_parameter )
{
// convert perlin-style-bias parameter to the value right for the approximation
return SubSIMD( ReciprocalSIMD( bias_parameter ), Four_Twos );
}
FORCEINLINE fltx4 BiasSIMD( const fltx4 &val, const fltx4 &precalc_param )
{
// similar to bias function except pass precalced bias value from calling PreCalcBiasParameter.
//!!speed!! use reciprocal est?
//!!speed!! could save one op by precalcing _2_ values
return DivSIMD( val, AddSIMD( MulSIMD( precalc_param, SubSIMD( Four_Ones, val ) ), Four_Ones ) );
}
//-----------------------------------------------------------------------------
// Box/plane test
// NOTE: The w component of emins + emaxs must be 1 for this to work
//-----------------------------------------------------------------------------
FORCEINLINE int BoxOnPlaneSideSIMD( const fltx4& emins, const fltx4& emaxs, const cplane_t *p, float tolerance = 0.f )
{
fltx4 corners[2];
fltx4 normal = LoadUnalignedSIMD( p->normal.Base() );
fltx4 dist = ReplicateX4( -p->dist );
normal = SetWSIMD( normal, dist );
fltx4 t4 = ReplicateX4( tolerance );
fltx4 negt4 = ReplicateX4( -tolerance );
fltx4 cmp = CmpGeSIMD( normal, Four_Zeros );
corners[0] = MaskedAssign( cmp, emaxs, emins );
corners[1] = MaskedAssign( cmp, emins, emaxs );
fltx4 dot1 = Dot4SIMD( normal, corners[0] );
fltx4 dot2 = Dot4SIMD( normal, corners[1] );
cmp = CmpGeSIMD( dot1, t4 );
fltx4 cmp2 = CmpGtSIMD( negt4, dot2 );
fltx4 result = MaskedAssign( cmp, Four_Ones, Four_Zeros );
fltx4 result2 = MaskedAssign( cmp2, Four_Twos, Four_Zeros );
result = AddSIMD( result, result2 );
intx4 sides;
ConvertStoreAsIntsSIMD( &sides, result );
return sides[0];
}
// k-dop bounding volume. 26-dop bounds with 13 plane-pairs plus 3 other "arbitrary bounds". The arbitrary values could be used to hold type info, etc,
// which can compare against "for free"
class KDop32_t
{
public:
fltx4 m_Mins[4];
fltx4 m_Maxes[4];
FORCEINLINE bool Intersects( KDop32_t const &other ) const;
FORCEINLINE void operator|=( KDop32_t const & other );
FORCEINLINE bool IsEmpty( void ) const;
FORCEINLINE void Init( void )
{
for( int i = 0; i < ARRAYSIZE( m_Mins ); i++ )
{
m_Mins[i] = Four_FLT_MAX;
m_Maxes[i] = Four_Negative_FLT_MAX;
}
}
// given a set of points, expand the kdop to contain them
void AddPointSet( Vector const *pPoints, int nPnts );
void CreateFromPointSet( Vector const *pPoints, int nPnts );
};
FORCEINLINE void KDop32_t::operator|=( KDop32_t const & other )
{
m_Mins[0] = MinSIMD( m_Mins[0], other.m_Mins[0] );
m_Mins[1] = MinSIMD( m_Mins[1], other.m_Mins[1] );
m_Mins[2] = MinSIMD( m_Mins[2], other.m_Mins[2] );
m_Mins[3] = MinSIMD( m_Mins[3], other.m_Mins[3] );
m_Maxes[0] = MaxSIMD( m_Maxes[0], other.m_Maxes[0] );
m_Maxes[1] = MaxSIMD( m_Maxes[1], other.m_Maxes[1] );
m_Maxes[2] = MaxSIMD( m_Maxes[2], other.m_Maxes[2] );
m_Maxes[3] = MaxSIMD( m_Maxes[3], other.m_Maxes[3] );
}
FORCEINLINE bool KDop32_t::Intersects( KDop32_t const &other ) const
{
fltx4 c00 = CmpLeSIMD( m_Mins[0], other.m_Maxes[0] );
fltx4 c01 = CmpLeSIMD( m_Mins[1], other.m_Maxes[1] );
fltx4 c02 = CmpLeSIMD( m_Mins[2], other.m_Maxes[2] );
fltx4 c03 = CmpLeSIMD( m_Mins[3], other.m_Maxes[3] );
fltx4 c10 = CmpGeSIMD( m_Maxes[0], other.m_Mins[0] );
fltx4 c11 = CmpGeSIMD( m_Maxes[1], other.m_Mins[1] );
fltx4 c12 = CmpGeSIMD( m_Maxes[2], other.m_Mins[2] );
fltx4 c13 = CmpGeSIMD( m_Maxes[3], other.m_Mins[3] );
fltx4 a0 = AndSIMD( AndSIMD( c00, c01 ), AndSIMD( c02, c03 ) );
fltx4 a1 = AndSIMD( AndSIMD( c10, c11 ), AndSIMD( c12, c13 ) );
return ! ( IsAnyZeros( AndSIMD( a1, a0 ) ) );
}
FORCEINLINE bool KDop32_t::IsEmpty( void ) const
{
fltx4 c00 = CmpLtSIMD( m_Maxes[0], m_Mins[0] );
fltx4 c01 = CmpLtSIMD( m_Maxes[1], m_Mins[1] );
fltx4 c02 = CmpLtSIMD( m_Maxes[2], m_Mins[2] );
fltx4 c03 = CmpLtSIMD( m_Maxes[3], m_Mins[3] );
return IsAnyNegative( OrSIMD( OrSIMD( c00, c01 ), OrSIMD( c02, c03 ) ) );
}
extern const fltx4 g_KDop32XDirs[4];
extern const fltx4 g_KDop32YDirs[4];
extern const fltx4 g_KDop32ZDirs[4];
#endif // _ssemath_h