sqwarmed/sdk_src/game/client/c_steamjet.cpp

525 lines
14 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Implements a particle system steam jet.
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "particle_prototype.h"
#include "particle_util.h"
#include "baseparticleentity.h"
#include "fx.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//NOTENOTE: Mirrored in dlls\steamjet.h
#define STEAM_NORMAL 0
#define STEAM_HEATWAVE 1
#define STEAMJET_NUMRAMPS 5
#define SF_EMISSIVE 0x00000001
//==================================================
// C_SteamJet
//==================================================
class C_SteamJet : public C_BaseParticleEntity, public IPrototypeAppEffect
{
public:
DECLARE_CLIENTCLASS();
DECLARE_CLASS( C_SteamJet, C_BaseParticleEntity );
C_SteamJet();
~C_SteamJet();
class SteamJetParticle : public Particle
{
public:
Vector m_Velocity;
float m_flRoll;
float m_flRollDelta;
float m_Lifetime;
float m_DieTime;
unsigned char m_uchStartSize;
unsigned char m_uchEndSize;
};
int IsEmissive( void ) { return ( m_spawnflags & SF_EMISSIVE ); }
//C_BaseEntity
public:
virtual void OnDataChanged( DataUpdateType_t updateType );
//IPrototypeAppEffect
public:
virtual void Start(CParticleMgr *pParticleMgr, IPrototypeArgAccess *pArgs);
virtual bool GetPropEditInfo(RecvTable **ppTable, void **ppObj);
//IParticleEffect
public:
virtual void Update(float fTimeDelta);
virtual void RenderParticles( CParticleRenderIterator *pIterator );
virtual void SimulateParticles( CParticleSimulateIterator *pIterator );
//Stuff from the datatable
public:
float m_SpreadSpeed;
float m_Speed;
float m_StartSize;
float m_EndSize;
float m_Rate;
float m_JetLength; // Length of the jet. Lifetime is derived from this.
int m_bEmit; // Emit particles?
int m_nType; // Type of particles to emit
bool m_bFaceLeft; // For support of legacy env_steamjet entity, which faced left instead of forward.
int m_spawnflags;
float m_flRollSpeed;
private:
void UpdateLightingRamp();
private:
// Stored the last time it updates the lighting ramp, so it can cache the values.
Vector m_vLastRampUpdatePos;
QAngle m_vLastRampUpdateAngles;
float m_Lifetime; // Calculated from m_JetLength / m_Speed;
// We sample the world to get these colors and ramp the particles.
Vector m_Ramps[STEAMJET_NUMRAMPS];
CParticleMgr *m_pParticleMgr;
PMaterialHandle m_MaterialHandle;
TimedEvent m_ParticleSpawn;
private:
C_SteamJet( const C_SteamJet & );
};
// ------------------------------------------------------------------------- //
// Tables.
// ------------------------------------------------------------------------- //
// Expose to the particle app.
EXPOSE_PROTOTYPE_EFFECT(SteamJet, C_SteamJet);
// Datatable..
IMPLEMENT_CLIENTCLASS_DT(C_SteamJet, DT_SteamJet, CSteamJet)
RecvPropFloat(RECVINFO(m_SpreadSpeed), 0),
RecvPropFloat(RECVINFO(m_Speed), 0),
RecvPropFloat(RECVINFO(m_StartSize), 0),
RecvPropFloat(RECVINFO(m_EndSize), 0),
RecvPropFloat(RECVINFO(m_Rate), 0),
RecvPropFloat(RECVINFO(m_JetLength), 0),
RecvPropInt(RECVINFO(m_bEmit), 0),
RecvPropInt(RECVINFO(m_bFaceLeft), 0),
RecvPropInt(RECVINFO(m_nType), 0),
RecvPropInt( RECVINFO( m_spawnflags ) ),
RecvPropFloat(RECVINFO(m_flRollSpeed), 0 ),
END_RECV_TABLE()
// ------------------------------------------------------------------------- //
// C_SteamJet implementation.
// ------------------------------------------------------------------------- //
C_SteamJet::C_SteamJet()
{
m_pParticleMgr = NULL;
m_MaterialHandle = INVALID_MATERIAL_HANDLE;
m_SpreadSpeed = 15;
m_Speed = 120;
m_StartSize = 10;
m_EndSize = 25;
m_Rate = 26;
m_JetLength = 80;
m_bEmit = true;
m_bFaceLeft = false;
m_ParticleEffect.SetAlwaysSimulate( false ); // Don't simulate outside the PVS or frustum.
m_vLastRampUpdatePos.Init( 1e24, 1e24, 1e24 );
m_vLastRampUpdateAngles.Init( 1e24, 1e24, 1e24 );
}
C_SteamJet::~C_SteamJet()
{
if(m_pParticleMgr)
m_pParticleMgr->RemoveEffect( &m_ParticleEffect );
}
//-----------------------------------------------------------------------------
// Purpose: Called after a data update has occured
// Input : bnewentity -
//-----------------------------------------------------------------------------
void C_SteamJet::OnDataChanged(DataUpdateType_t updateType)
{
C_BaseEntity::OnDataChanged(updateType);
if(updateType == DATA_UPDATE_CREATED)
{
Start(ParticleMgr(), NULL);
}
// Recalulate lifetime in case length or speed changed.
m_Lifetime = m_JetLength / m_Speed;
m_ParticleEffect.SetParticleCullRadius( MAX(m_StartSize, m_EndSize) );
}
//-----------------------------------------------------------------------------
// Purpose: Starts the effect
// Input : *pParticleMgr -
// *pArgs -
//-----------------------------------------------------------------------------
void C_SteamJet::Start(CParticleMgr *pParticleMgr, IPrototypeArgAccess *pArgs)
{
pParticleMgr->AddEffect( &m_ParticleEffect, this );
switch(m_nType)
{
case STEAM_NORMAL:
default:
m_MaterialHandle = g_Mat_DustPuff[0];
break;
case STEAM_HEATWAVE:
m_MaterialHandle = m_ParticleEffect.FindOrAddMaterial("sprites/heatwave");
break;
}
m_ParticleSpawn.Init(m_Rate);
m_Lifetime = m_JetLength / m_Speed;
m_pParticleMgr = pParticleMgr;
UpdateLightingRamp();
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : **ppTable -
// **ppObj -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool C_SteamJet::GetPropEditInfo( RecvTable **ppTable, void **ppObj )
{
*ppTable = &REFERENCE_RECV_TABLE(DT_SteamJet);
*ppObj = this;
return true;
}
// This might be useful someday.
/*
void CalcFastApproximateRenderBoundsAABB( C_BaseEntity *pEnt, float flBloatSize, Vector *pMin, Vector *pMax )
{
C_BaseEntity *pParent = pEnt->GetMoveParent();
if ( pParent )
{
// Get the parent's abs space world bounds.
CalcFastApproximateRenderBoundsAABB( pParent, 0, pMin, pMax );
// Add the maximum of our local render bounds. This is making the assumption that we can be at any
// point and at any angle within the parent's world space bounds.
Vector vAddMins, vAddMaxs;
pEnt->GetRenderBounds( vAddMins, vAddMaxs );
flBloatSize += MAX( vAddMins.Length(), vAddMaxs.Length() );
}
else
{
// Start out with our own render bounds. Since we don't have a parent, this won't incur any nasty
pEnt->GetRenderBoundsWorldspace( *pMin, *pMax );
}
// Bloat the box.
if ( flBloatSize )
{
*pMin -= Vector( flBloatSize, flBloatSize, flBloatSize );
*pMax += Vector( flBloatSize, flBloatSize, flBloatSize );
}
}
*/
//-----------------------------------------------------------------------------
// Purpose:
// Input : fTimeDelta -
//-----------------------------------------------------------------------------
void C_SteamJet::Update(float fTimeDelta)
{
if(!m_pParticleMgr)
{
assert(false);
return;
}
if( m_bEmit )
{
// Add new particles.
int nToEmit = 0;
float tempDelta = fTimeDelta;
while( m_ParticleSpawn.NextEvent(tempDelta) )
++nToEmit;
if ( nToEmit > 0 )
{
Vector forward, right, up;
AngleVectors(GetAbsAngles(), &forward, &right, &up);
// Legacy env_steamjet entities faced left instead of forward.
if (m_bFaceLeft)
{
Vector temp = forward;
forward = -right;
right = temp;
}
// EVIL: Ideally, we could tell the renderer our OBB, and let it build a big box that encloses
// the entity with its parent so it doesn't have to setup its parent's bones here.
Vector vEndPoint = GetAbsOrigin() + forward * m_Speed;
Vector vMin, vMax;
VectorMin( GetAbsOrigin(), vEndPoint, vMin );
VectorMax( GetAbsOrigin(), vEndPoint, vMax );
m_ParticleEffect.SetBBox( vMin, vMax );
if ( m_ParticleEffect.WasDrawnPrevFrame() )
{
while ( nToEmit-- )
{
// Make a new particle.
if( SteamJetParticle *pParticle = (SteamJetParticle*) m_ParticleEffect.AddParticle( sizeof(SteamJetParticle), m_MaterialHandle ) )
{
pParticle->m_Pos = GetAbsOrigin();
pParticle->m_Velocity =
FRand(-m_SpreadSpeed,m_SpreadSpeed) * right +
FRand(-m_SpreadSpeed,m_SpreadSpeed) * up +
m_Speed * forward;
pParticle->m_Lifetime = 0;
pParticle->m_DieTime = m_Lifetime;
pParticle->m_uchStartSize = m_StartSize;
pParticle->m_uchEndSize = m_EndSize;
pParticle->m_flRoll = random->RandomFloat( 0, 360 );
pParticle->m_flRollDelta = random->RandomFloat( -m_flRollSpeed, m_flRollSpeed );
}
}
}
UpdateLightingRamp();
}
}
}
// Render a quad on the screen where you pass in color and size.
// Normal is random and "flutters"
inline void RenderParticle_ColorSizePerturbNormal(
ParticleDraw* pDraw,
const Vector &pos,
const Vector &color,
const float alpha,
const float size
)
{
// Don't render totally transparent particles.
if( alpha < 0.001f )
return;
CMeshBuilder *pBuilder = pDraw->GetMeshBuilder();
if( !pBuilder )
return;
unsigned char ubColor[4];
ubColor[0] = (unsigned char)RoundFloatToInt( color.x * 254.9f );
ubColor[1] = (unsigned char)RoundFloatToInt( color.y * 254.9f );
ubColor[2] = (unsigned char)RoundFloatToInt( color.z * 254.9f );
ubColor[3] = (unsigned char)RoundFloatToInt( alpha * 254.9f );
Vector vNorm;
vNorm.Random( -1.0f, 1.0f );
// Add the 4 corner vertices.
pBuilder->Position3f( pos.x-size, pos.y-size, pos.z );
pBuilder->Color4ubv( ubColor );
pBuilder->Normal3fv( vNorm.Base() );
pBuilder->TexCoord2f( 0, 0, 1.0f );
pBuilder->AdvanceVertex();
pBuilder->Position3f( pos.x-size, pos.y+size, pos.z );
pBuilder->Color4ubv( ubColor );
pBuilder->Normal3fv( vNorm.Base() );
pBuilder->TexCoord2f( 0, 0, 0 );
pBuilder->AdvanceVertex();
pBuilder->Position3f( pos.x+size, pos.y+size, pos.z );
pBuilder->Color4ubv( ubColor );
pBuilder->Normal3fv( vNorm.Base() );
pBuilder->TexCoord2f( 0, 1.0f, 0 );
pBuilder->AdvanceVertex();
pBuilder->Position3f( pos.x+size, pos.y-size, pos.z );
pBuilder->Color4ubv( ubColor );
pBuilder->Normal3fv( vNorm.Base() );
pBuilder->TexCoord2f( 0, 1.0f, 1.0f );
pBuilder->AdvanceVertex();
}
void C_SteamJet::RenderParticles( CParticleRenderIterator *pIterator )
{
const SteamJetParticle *pParticle = (const SteamJetParticle*)pIterator->GetFirst();
while ( pParticle )
{
// Render.
Vector tPos;
TransformParticle(m_pParticleMgr->GetModelView(), pParticle->m_Pos, tPos);
float sortKey = tPos.z;
float lifetimeT = pParticle->m_Lifetime / (pParticle->m_DieTime + 0.001);
float fRamp = lifetimeT * (STEAMJET_NUMRAMPS-1);
int iRamp = (int)fRamp;
float fraction = fRamp - iRamp;
Vector vRampColor = m_Ramps[iRamp] + (m_Ramps[iRamp+1] - m_Ramps[iRamp]) * fraction;
vRampColor[0] = MIN( 1.0f, vRampColor[0] );
vRampColor[1] = MIN( 1.0f, vRampColor[1] );
vRampColor[2] = MIN( 1.0f, vRampColor[2] );
float sinLifetime = sin(pParticle->m_Lifetime * 3.14159f / pParticle->m_DieTime);
if ( m_nType == STEAM_HEATWAVE )
{
RenderParticle_ColorSizePerturbNormal(
pIterator->GetParticleDraw(),
tPos,
vRampColor,
sinLifetime * (GetRenderAlpha()/255.0f),
FLerp(m_StartSize, m_EndSize, pParticle->m_Lifetime));
}
else
{
RenderParticle_ColorSizeAngle(
pIterator->GetParticleDraw(),
tPos,
vRampColor,
sinLifetime * (GetRenderAlpha()/255.0f),
FLerp(pParticle->m_uchStartSize, pParticle->m_uchEndSize, pParticle->m_Lifetime),
pParticle->m_flRoll );
}
pParticle = (const SteamJetParticle*)pIterator->GetNext( sortKey );
}
}
void C_SteamJet::SimulateParticles( CParticleSimulateIterator *pIterator )
{
//Don't simulate if we're emiting particles...
//This fixes the cases where looking away from a steam jet and then looking back would cause a break on the stream.
if ( m_ParticleEffect.WasDrawnPrevFrame() == false && m_bEmit )
return;
SteamJetParticle *pParticle = (SteamJetParticle*)pIterator->GetFirst();
while ( pParticle )
{
// Should this particle die?
pParticle->m_Lifetime += pIterator->GetTimeDelta();
if( pParticle->m_Lifetime > pParticle->m_DieTime )
{
pIterator->RemoveParticle( pParticle );
}
else
{
pParticle->m_flRoll += pParticle->m_flRollDelta * pIterator->GetTimeDelta();
pParticle->m_Pos = pParticle->m_Pos + pParticle->m_Velocity * pIterator->GetTimeDelta();
}
pParticle = (SteamJetParticle*)pIterator->GetNext();
}
}
void C_SteamJet::UpdateLightingRamp()
{
if( VectorsAreEqual( m_vLastRampUpdatePos, GetAbsOrigin(), 0.1 ) &&
QAnglesAreEqual( m_vLastRampUpdateAngles, GetAbsAngles(), 0.1 ) )
{
return;
}
m_vLastRampUpdatePos = GetAbsOrigin();
m_vLastRampUpdateAngles = GetAbsAngles();
// Sample the world lighting where we think the particles will be.
Vector forward, right, up;
AngleVectors(GetAbsAngles(), &forward, &right, &up);
// Legacy env_steamjet entities faced left instead of forward.
if (m_bFaceLeft)
{
Vector temp = forward;
forward = -right;
right = temp;
}
Vector startPos = GetAbsOrigin();
Vector endPos = GetAbsOrigin() + forward * (m_Speed * m_Lifetime);
for(int iRamp=0; iRamp < STEAMJET_NUMRAMPS; iRamp++)
{
float t = (float)iRamp / (STEAMJET_NUMRAMPS-1);
Vector vTestPos = startPos + (endPos - startPos) * t;
Vector *pRamp = &m_Ramps[iRamp];
*pRamp = WorldGetLightForPoint(vTestPos, false);
if ( IsEmissive() )
{
pRamp->x += (GetRenderColorR()/255.0f);
pRamp->y += (GetRenderColorG()/255.0f);
pRamp->z += (GetRenderColorB()/255.0f);
pRamp->x = clamp( pRamp->x, 0.0f, 1.0f );
pRamp->y = clamp( pRamp->y, 0.0f, 1.0f );
pRamp->z = clamp( pRamp->z, 0.0f, 1.0f );
}
else
{
pRamp->x *= (GetRenderColorR()/255.0f);
pRamp->y *= (GetRenderColorG()/255.0f);
pRamp->z *= (GetRenderColorB()/255.0f);
}
// Renormalize?
float maxVal = MAX(pRamp->x, MAX(pRamp->y, pRamp->z));
if(maxVal > 1)
{
*pRamp = *pRamp / maxVal;
}
}
}