//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ //=============================================================================// #ifndef BONE_SETUP_H #define BONE_SETUP_H #ifdef _WIN32 #pragma once #endif #include "studio.h" #include "cmodel.h" #include "bitvec.h" class CBoneToWorld; class CIKContext; class CBoneAccessor; class IPoseDebugger; // This provides access to networked arrays, so if this code actually changes a value, // the entity is marked as changed. abstract_class IParameterAccess { public: virtual float GetParameter( int iParam ) = 0; virtual void SetParameter( int iParam, float flValue ) = 0; }; class CBoneBitList : public CBitVec { public: inline void MarkBone(int iBone) { Set(iBone); } inline bool IsBoneMarked(int iBone) { return Get(iBone) != 0 ? true : false; } }; //----------------------------------------------------------------------------- // Purpose: blends together all the bones from two p:q lists // // p1 = p1 * (1 - s) + p2 * s // q1 = q1 * (1 - s) + q2 * s //----------------------------------------------------------------------------- void SlerpBones( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], mstudioseqdesc_t &seqdesc, // source of q2 and pos2 int sequence, const QuaternionAligned q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s, int boneMask ); class CBoneSetup; class IBoneSetup { public: IBoneSetup( const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger = NULL ); ~IBoneSetup( void ); void InitPose( Vector pos[], QuaternionAligned q[] ); void AccumulatePose( Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext ); void CalcAutoplaySequences( Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext ); void CalcBoneAdj( Vector pos[], Quaternion q[], const float controllers[] ); CStudioHdr *GetStudioHdr(); private: CBoneSetup *m_pBoneSetup; }; // Given two samples of a bone separated in time by dt, // compute the velocity and angular velocity of that bone void CalcBoneDerivatives( Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &prev, const matrix3x4_t ¤t, float dt ); // Give a derivative of a bone, compute the velocity & angular velocity of that bone void CalcBoneVelocityFromDerivative( const QAngle &vecAngles, Vector &velocity, AngularImpulse &angVel, const matrix3x4_t ¤t ); // This function sets up the local transform for a single frame of animation. It doesn't handle // pose parameters or interpolation between frames. void SetupSingleBoneMatrix( CStudioHdr *pOwnerHdr, int nSequence, int iFrame, int iBone, matrix3x4_t &mBoneLocal ); // Purpose: build boneToWorld transforms for a specific bone void BuildBoneChain( const CStudioHdr *pStudioHdr, const matrix3x4a_t &rootxform, const Vector pos[], const Quaternion q[], int iBone, matrix3x4a_t *pBoneToWorld ); void BuildBoneChain( const CStudioHdr *pStudioHdr, const matrix3x4a_t &rootxform, const Vector pos[], const Quaternion q[], int iBone, matrix3x4a_t *pBoneToWorld, CBoneBitList &boneComputed ); //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- // ik info class CIKTarget { public: void SetOwner( int entindex, const Vector &pos, const QAngle &angles ); void ClearOwner( void ); int GetOwner( void ); void UpdateOwner( int entindex, const Vector &pos, const QAngle &angles ); void SetPos( const Vector &pos ); void SetAngles( const QAngle &angles ); void SetQuaternion( const Quaternion &q ); void SetNormal( const Vector &normal ); void SetPosWithNormalOffset( const Vector &pos, const Vector &normal ); void SetOnWorld( bool bOnWorld = true ); bool IsActive( void ); void IKFailed( void ); int chain; int type; void MoveReferenceFrame( Vector &deltaPos, QAngle &deltaAngles ); // accumulated offset from ideal footplant location public: struct x2 { char *pAttachmentName; Vector pos; Quaternion q; } offset; private: struct x3 { Vector pos; Quaternion q; } ideal; public: struct x4 { float latched; float release; float height; float floor; float radius; float flTime; float flWeight; Vector pos; Quaternion q; bool onWorld; } est; // estimate contact position struct x5 { float hipToFoot; // distance from hip float hipToKnee; // distance from hip to knee float kneeToFoot; // distance from knee to foot Vector hip; // location of hip Vector closest; // closest valid location from hip to foot that the foot can move to Vector knee; // pre-ik location of knee Vector farthest; // farthest valid location from hip to foot that the foot can move to Vector lowest; // lowest position directly below hip that the foot can drop to } trace; private: // internally latched footset, position struct x1 { // matrix3x4a_t worldTarget; bool bNeedsLatch; bool bHasLatch; float influence; int iFramecounter; int owner; Vector absOrigin; QAngle absAngles; Vector pos; Quaternion q; Vector deltaPos; // acculated error Quaternion deltaQ; Vector debouncePos; Quaternion debounceQ; } latched; struct x6 { float flTime; // time last error was detected float flErrorTime; float ramp; bool bInError; } error; friend class CIKContext; }; struct ikchainresult_t { // accumulated offset from ideal footplant location int target; Vector pos; Quaternion q; float flWeight; }; struct ikcontextikrule_t { int index; int type; int chain; int bone; int slot; // iktarget slot. Usually same as chain. float height; float radius; float floor; Vector pos; Quaternion q; float start; // beginning of influence float peak; // start of full influence float tail; // end of full influence float end; // end of all influence float top; float drop; float commit; // frame footstep target should be committed float release; // frame ankle should end rotation from latched orientation float flWeight; // processed version of start-end cycle float flRuleWeight; // blending weight float latched; // does the IK rule use a latched value? char *szLabel; Vector kneeDir; Vector kneePos; ikcontextikrule_t() {} private: // No copy constructors allowed ikcontextikrule_t(const ikcontextikrule_t& vOther); }; void Studio_AlignIKMatrix( matrix3x4a_t &mMat, const Vector &vAlignTo ); bool Studio_SolveIK( int iThigh, int iKnee, int iFoot, Vector &targetFoot, matrix3x4a_t* pBoneToWorld ); bool Studio_SolveIK( int iThigh, int iKnee, int iFoot, Vector &targetFoot, Vector &targetKneePos, Vector &targetKneeDir, matrix3x4a_t* pBoneToWorld ); class CIKContext { public: CIKContext( ); void Init( const CStudioHdr *pStudioHdr, const QAngle &angles, const Vector &pos, float flTime, int iFramecounter, int boneMask ); void AddDependencies( mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, const float poseParameters[], float flWeight = 1.0f ); void ClearTargets( void ); void UpdateTargets( Vector pos[], Quaternion q[], matrix3x4a_t boneToWorld[], CBoneBitList &boneComputed ); void AutoIKRelease( void ); void SolveDependencies( Vector pos[], Quaternion q[], matrix3x4a_t boneToWorld[], CBoneBitList &boneComputed ); void AddAutoplayLocks( Vector pos[], Quaternion q[] ); void SolveAutoplayLocks( Vector pos[], Quaternion q[] ); void AddSequenceLocks( mstudioseqdesc_t &SeqDesc, Vector pos[], Quaternion q[] ); void SolveSequenceLocks( mstudioseqdesc_t &SeqDesc, Vector pos[], Quaternion q[] ); void AddAllLocks( Vector pos[], Quaternion q[] ); void SolveAllLocks( Vector pos[], Quaternion q[] ); void SolveLock( const mstudioiklock_t *plock, int i, Vector pos[], Quaternion q[], matrix3x4a_t boneToWorld[], CBoneBitList &boneComputed ); CUtlVectorFixed< CIKTarget, 12 > m_target; private: CStudioHdr const *m_pStudioHdr; bool Estimate( int iSequence, float flCycle, int iTarget, const float poseParameter[], float flWeight = 1.0f ); void BuildBoneChain( const Vector pos[], const Quaternion q[], int iBone, matrix3x4a_t *pBoneToWorld, CBoneBitList &boneComputed ); // virtual IK rules, filtered and combined from each sequence CUtlVector< CUtlVector< ikcontextikrule_t > > m_ikChainRule; CUtlVector< ikcontextikrule_t > m_ikLock; matrix3x4a_t m_rootxform; int m_iFramecounter; float m_flTime; int m_boneMask; }; //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- // replaces the bonetoworld transforms for all bones that are procedural bool CalcProceduralBone( const CStudioHdr *pStudioHdr, int iBone, CBoneAccessor &bonetoworld ); void Studio_BuildMatrices( const CStudioHdr *pStudioHdr, const QAngle& angles, const Vector& origin, const Vector pos[], const Quaternion q[], int iBone, float flScale, matrix3x4a_t bonetoworld[MAXSTUDIOBONES], int boneMask ); // Get a bone->bone relative transform void Studio_CalcBoneToBoneTransform( const CStudioHdr *pStudioHdr, int inputBoneIndex, int outputBoneIndex, matrix3x4_t &matrixOut ); // Given a bone rotation value, figures out the value you need to give to the controller // to have the bone at that value. // [in] flValue = the desired bone rotation value // [out] ctlValue = the (0-1) value to set the controller t. // return value = flValue, unwrapped to lie between the controller's start and end. float Studio_SetController( const CStudioHdr *pStudioHdr, int iController, float flValue, float &ctlValue ); // Given a 0-1 controller value, maps it into the controller's start and end and returns the bone rotation angle. // [in] ctlValue = value in controller space (0-1). // return value = value in bone space float Studio_GetController( const CStudioHdr *pStudioHdr, int iController, float ctlValue ); void Studio_CalcDefaultPoseParameters( const CStudioHdr *pStudioHdr, float flPoseParameter[MAXSTUDIOPOSEPARAM], int nCount ); float Studio_GetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float ctlValue ); float Studio_SetPoseParameter( const CStudioHdr *pStudioHdr, int iParameter, float flValue, float &ctlValue ); // converts a global 0..1 pose parameter into the local sequences blending value void Studio_LocalPoseParameter( const CStudioHdr *pStudioHdr, const float poseParameter[], mstudioseqdesc_t &seqdesc, int iSequence, int iLocalIndex, float &flSetting, int &index ); void Studio_SeqAnims( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[], mstudioanimdesc_t *panim[4], float *weight ); int Studio_MaxFrame( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] ); float Studio_FPS( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] ); float Studio_CPS( const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[] ); float Studio_Duration( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[] ); void Studio_MovementRate( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], Vector *pVec ); float Studio_SeqMovementAndDuration( const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaPos ); // void Studio_Movement( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], Vector *pVec ); //void Studio_AnimPosition( mstudioanimdesc_t *panim, float flCycle, Vector &vecPos, Vector &vecAngle ); //void Studio_AnimVelocity( mstudioanimdesc_t *panim, float flCycle, Vector &vecVelocity ); //float Studio_FindAnimDistance( mstudioanimdesc_t *panim, float flDist ); bool Studio_AnimMovement( mstudioanimdesc_t *panim, float flCycleFrom, float flCycleTo, Vector &deltaPos, QAngle &deltaAngle ); bool Studio_SeqMovement( const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaMovement, QAngle &deltaAngle ); bool Studio_SeqVelocity( const CStudioHdr *pStudioHdr, int iSequence, float flCycle, const float poseParameter[], Vector &vecVelocity ); float Studio_FindSeqDistance( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flDist ); float Studio_FindSeqVelocity( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flVelocity ); int Studio_FindAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName ); int Studio_FindRandomAttachment( const CStudioHdr *pStudioHdr, const char *pAttachmentName ); int Studio_BoneIndexByName( const CStudioHdr *pStudioHdr, const char *pName ); const char *Studio_GetDefaultSurfaceProps( CStudioHdr *pstudiohdr ); float Studio_GetMass( CStudioHdr *pstudiohdr ); const char *Studio_GetKeyValueText( const CStudioHdr *pStudioHdr, int iSequence ); FORWARD_DECLARE_HANDLE( memhandle_t ); struct bonecacheparams_t { CStudioHdr *pStudioHdr; matrix3x4a_t *pBoneToWorld; float curtime; int boneMask; }; class CBoneCache { public: // you must implement these static functions for the ResourceManager // ----------------------------------------------------------- static CBoneCache *CreateResource( const bonecacheparams_t ¶ms ); static unsigned int EstimatedSize( const bonecacheparams_t ¶ms ); // ----------------------------------------------------------- // member functions that must be present for the ResourceManager void DestroyResource(); CBoneCache *GetData() { return this; } unsigned int Size() { return m_size; } // ----------------------------------------------------------- CBoneCache(); // was constructor, but placement new is messy wrt memdebug - so cast & init instead void Init( const bonecacheparams_t ¶ms, unsigned int size, short *pStudioToCached, short *pCachedToStudio, int cachedBoneCount ); void UpdateBones( const matrix3x4_t *pBoneToWorld, int numbones, float curtime ); matrix3x4a_t *GetCachedBone( int studioIndex ); void ReadCachedBones( matrix3x4_t *pBoneToWorld ); void ReadCachedBonePointers( matrix3x4_t **bones, int numbones ); bool IsValid( float curtime, float dt = 0.1f ); public: float m_timeValid; int m_boneMask; private: matrix3x4a_t *BoneArray(); short *StudioToCached(); short *CachedToStudio(); unsigned int m_size; unsigned short m_cachedBoneCount; unsigned short m_matrixOffset; unsigned short m_cachedToStudioOffset; unsigned short m_boneOutOffset; }; void Studio_LockBoneCache(); void Studio_UnlockBoneCache(); CBoneCache *Studio_GetBoneCache( memhandle_t cacheHandle, bool bLock = false ); void Studio_ReleaseBoneCache( memhandle_t cacheHandle ); memhandle_t Studio_CreateBoneCache( bonecacheparams_t ¶ms ); void Studio_DestroyBoneCache( memhandle_t cacheHandle ); void Studio_InvalidateBoneCache( memhandle_t cacheHandle ); // Given a ray, trace for an intersection with this studiomodel. Get the array of bones from StudioSetupHitboxBones bool TraceToStudio( class IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, const Vector &vecOrigin, float flScale, trace_t &trace ); // TERROR: TraceToStudio variant that prioritizes hitgroups, so bullets can pass through arms and chest to hit the head, for instance bool TraceToStudioGrouped( IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, trace_t &tr, const CUtlVector< int > &sortedHitgroups ); void QuaternionSM( float s, const Quaternion &p, const Quaternion &q, Quaternion &qt ); void QuaternionMA( const Quaternion &p, float s, const Quaternion &q, Quaternion &qt ); bool Studio_PrefetchSequence( const CStudioHdr *pStudioHdr, int iSequence ); void Studio_RunBoneFlexDrivers( float *pFlexController, const CStudioHdr *pStudioHdr, const Vector *pPositions, const matrix3x4_t *pBoneToWorld, const matrix3x4_t &mRootToWorld ); //----------------------------------------------------------------------------- // Computes a number of twist bones given a parent/child pair // pqTwists, pflWeights, pqTwistBinds must all have at least nCount elements //----------------------------------------------------------------------------- void ComputeTwistBones( Quaternion *pqTwists, int nCount, bool bInverse, const Vector &vUp, const Quaternion &qParent, const matrix3x4_t &mChild, const Quaternion &qBaseInv, const float *pflWeights, const Quaternion *pqTwistBinds ); //----------------------------------------------------------------------------- // Find the non-linear transforms that fit a model with attachments to another model with attachments //----------------------------------------------------------------------------- class CAttachmentFit { public: CAttachmentFit() { m_bHasConverged = false; m_localCenter.Init(); m_posError.Init(); m_bHasPosition = false; m_scaleError.Init(); m_rotError = quat_identity; }; void LocalTransform( const matrix3x4_t &matFollowBoneToWorld, matrix3x4_t &matLocalBoneToWorld ); int m_nFollowBone; // bone to follow, as taken from attachment matches CUtlVector< int > m_nLocalAtt; // index of local attachments CUtlVector< int > m_nFollowAtt; // index of attachments that are being followed bool m_bHasConverged; // solution for this bone converged Vector m_localCenter; // idealized rotation center of attachments Vector m_posError; // accumulated position error to add to transform bool m_bHasPosition; // flag to not calc rotation/scale until position error has been estimated Vector m_scaleError; // accumulated axis independant scale error (relative to 1) Quaternion m_rotError; // accumulated rotation error }; class CAttachmentFitter { public: CAttachmentFitter( CStudioHdr *pStudioHdr, CStudioHdr *pFollowParent ); bool Converg( const matrix3x4_t *pFollowBoneToWorld, matrix3x4_t *pLocalBoneToWorld ); bool LocalTransform( int iBone, const matrix3x4_t *pFollowBoneToWorld, matrix3x4_t *pLocalBoneToWorld ); bool IsValid( void ) { return (m_pFits.Count() > 0); } private: bool m_bHasConverged; CStudioHdr *m_pLocalHdr; CStudioHdr *m_pFollowHdr; CUtlVector< CAttachmentFit *> m_pFits; // indexed by bones }; #endif // BONE_SETUP_H