//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// // XUnzip.cpp Version 1.1 // // Authors: Mark Adler et al. (see below) // // Modified by: Lucian Wischik // lu@wischik.com // // Version 1.0 - Turned C files into just a single CPP file // - Made them compile cleanly as C++ files // - Gave them simpler APIs // - Added the ability to zip/unzip directly in memory without // any intermediate files // // Modified by: Hans Dietrich // hdietrich2@hotmail.com // // Version 1.1: - Added Unicode support to CreateZip() and ZipAdd() // - Changed file names to avoid conflicts with Lucian's files // /////////////////////////////////////////////////////////////////////////////// // // Lucian Wischik's comments: // -------------------------- // THIS FILE is almost entirely based upon code by Info-ZIP. // It has been modified by Lucian Wischik. // The original code may be found at http://www.info-zip.org // The original copyright text follows. // /////////////////////////////////////////////////////////////////////////////// // // Original authors' comments: // --------------------------- // This is version 2002-Feb-16 of the Info-ZIP copyright and license. The // definitive version of this document should be available at // ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely. // // Copyright (c) 1990-2002 Info-ZIP. All rights reserved. // // For the purposes of this copyright and license, "Info-ZIP" is defined as // the following set of individuals: // // Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, // Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase, // Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, // David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko, // Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, // Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler, // Antoine Verheijen, Paul von Behren, Rich Wales, Mike White // // This software is provided "as is", without warranty of any kind, express // or implied. In no event shall Info-ZIP or its contributors be held liable // for any direct, indirect, incidental, special or consequential damages // arising out of the use of or inability to use this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. Redistributions of source code must retain the above copyright notice, // definition, disclaimer, and this list of conditions. // // 2. Redistributions in binary form (compiled executables) must reproduce // the above copyright notice, definition, disclaimer, and this list of // conditions in documentation and/or other materials provided with the // distribution. The sole exception to this condition is redistribution // of a standard UnZipSFX binary as part of a self-extracting archive; // that is permitted without inclusion of this license, as long as the // normal UnZipSFX banner has not been removed from the binary or disabled. // // 3. Altered versions--including, but not limited to, ports to new // operating systems, existing ports with new graphical interfaces, and // dynamic, shared, or static library versions--must be plainly marked // as such and must not be misrepresented as being the original source. // Such altered versions also must not be misrepresented as being // Info-ZIP releases--including, but not limited to, labeling of the // altered versions with the names "Info-ZIP" (or any variation thereof, // including, but not limited to, different capitalizations), // "Pocket UnZip", "WiZ" or "MacZip" without the explicit permission of // Info-ZIP. Such altered versions are further prohibited from // misrepresentative use of the Zip-Bugs or Info-ZIP e-mail addresses or // of the Info-ZIP URL(s). // // 4. Info-ZIP retains the right to use the names "Info-ZIP", "Zip", "UnZip", // "UnZipSFX", "WiZ", "Pocket UnZip", "Pocket Zip", and "MacZip" for its // own source and binary releases. // /////////////////////////////////////////////////////////////////////////////// #if defined( PROTECTED_THINGS_ENABLE ) #undef PROTECTED_THINGS_ENABLE // from protected_things.h #endif #include "tier0/platform.h" #ifdef IS_WINDOWS_PC #define STRICT #define WIN32_LEAN_AND_MEAN #include #include #elif defined(POSIX) #include #include #include #include #endif #include #include #include #include #include "zip/XUnzip.h" #if defined(POSIX) #define _tcslen strlen #define _tcscpy strcpy #define _tcscat strcat #define _tcsstr strstr #if !defined( _T ) #define _T( arg ) arg #endif #define INVALID_HANDLE_VALUE (void*)-1 #define CloseHandle( arg ) close( (int) arg ) #define ZeroMemory( ptr, size ) memset( ptr, 0, size ) #define FILE_CURRENT SEEK_CUR #define FILE_BEGIN SEEK_SET #define FILE_END SEEK_END #define CreateDirectory( dir, ign ) mkdir( dir, S_IRWXU | S_IRWXG | S_IRWXO ) #define SetFilePointer( handle, pos, ign, dir ) lseek( (int) handle, pos, dir ) bool ReadFile( void *handle, void *outbuf, unsigned int toread, unsigned int *nread, void *ignored ) { *nread = read( (int) handle, outbuf, toread ); return *nread == toread; } bool WriteFile( void *handle, void *buf, unsigned int towrite, unsigned int *written, void *ignored ) { *written = write( (int) handle, buf, towrite ); return *written == towrite; } #define FILE_ATTRIBUTE_NORMAL S_IFREG #define FILE_ATTRIBUTE_DIRECTORY S_IFDIR #define FILE_ATTRIBUTE_ARCHIVE 0 #define FILE_ATTRIBUTE_HIDDEN 0 #define FILE_ATTRIBUTE_READONLY 0 #define FILE_ATTRIBUTE_SYSTEM 0 typedef unsigned char BYTE; #endif #if defined( _X360 ) #include "xbox/xbox_win32stubs.h" #endif // NOTE: This has to be the last file included! #include "tier0/memdbgon.h" // THIS FILE is almost entirely based upon code by Jean-loup Gailly // and Mark Adler. It has been modified by Lucian Wischik. // The original code may be found at http://www.gzip.org/zlib/ // The original copyright text follows. // // // // zlib.h -- interface of the 'zlib' general purpose compression library // version 1.1.3, July 9th, 1998 // // Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // // Jean-loup Gailly Mark Adler // jloup@gzip.org madler@alumni.caltech.edu // // // The data format used by the zlib library is described by RFCs (Request for // Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt // (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format). // // // The 'zlib' compression library provides in-memory compression and // decompression functions, including integrity checks of the uncompressed // data. This version of the library supports only one compression method // (deflation) but other algorithms will be added later and will have the same // stream interface. // // Compression can be done in a single step if the buffers are large // enough (for example if an input file is mmap'ed), or can be done by // repeated calls of the compression function. In the latter case, the // application must provide more input and/or consume the output // (providing more output space) before each call. // // The library also supports reading and writing files in gzip (.gz) format // with an interface similar to that of stdio. // // The library does not install any signal handler. The decoder checks // the consistency of the compressed data, so the library should never // crash even in case of corrupted input. // // for more info about .ZIP format, see ftp://ftp.cdrom.com/pub/infozip/doc/appnote-970311-iz.zip // PkWare has also a specification at ftp://ftp.pkware.com/probdesc.zip #define zmalloc(len) malloc(len) #define zfree(p) free(p) /* void *zmalloc(unsigned int len) { char *buf = new char[len+32]; for (int i=0; i<16; i++) { buf[i]=i; buf[len+31-i]=i; } *((unsigned int*)buf) = len; char c[1000]; wsprintf(c,"malloc 0x%lx - %lu",buf+16,len); OutputDebugString(c); return buf+16; } void zfree(void *buf) { char c[1000]; wsprintf(c,"free 0x%lx",buf); OutputDebugString(c); char *p = ((char*)buf)-16; unsigned int len = *((unsigned int*)p); bool blown=false; for (int i=0; i<16; i++) { char lo = p[i]; char hi = p[len+31-i]; if (hi!=i || (lo!=i && i>4)) blown=true; } if (blown) { OutputDebugString("BLOWN!!!"); } delete[] p; } */ #pragma warning(disable : 4702) // unreachable code typedef struct tm_unz_s { unsigned int tm_sec; // seconds after the minute - [0,59] unsigned int tm_min; // minutes after the hour - [0,59] unsigned int tm_hour; // hours since midnight - [0,23] unsigned int tm_mday; // day of the month - [1,31] unsigned int tm_mon; // months since January - [0,11] unsigned int tm_year; // years - [1980..2044] } tm_unz; // unz_global_info structure contain global data about the ZIPfile typedef struct unz_global_info_s { unsigned long number_entry; // total number of entries in the central dir on this disk unsigned long size_comment; // size of the global comment of the zipfile } unz_global_info; // unz_file_info contain information about a file in the zipfile typedef struct unz_file_info_s { unsigned long version; // version made by 2 bytes unsigned long version_needed; // version needed to extract 2 bytes unsigned long flag; // general purpose bit flag 2 bytes unsigned long compression_method; // compression method 2 bytes unsigned long dosDate; // last mod file date in Dos fmt 4 bytes unsigned long crc; // crc-32 4 bytes unsigned long compressed_size; // compressed size 4 bytes unsigned long uncompressed_size; // uncompressed size 4 bytes unsigned long size_filename; // filename length 2 bytes unsigned long size_file_extra; // extra field length 2 bytes unsigned long size_file_comment; // file comment length 2 bytes unsigned long disk_num_start; // disk number start 2 bytes unsigned long internal_fa; // internal file attributes 2 bytes unsigned long external_fa; // external file attributes 4 bytes tm_unz tmu_date; } unz_file_info; #define UNZ_OK (0) #define UNZ_END_OF_LIST_OF_FILE (-100) #define UNZ_ERRNO (Z_ERRNO) #define UNZ_EOF (0) #define UNZ_PARAMERROR (-102) #define UNZ_BADZIPFILE (-103) #define UNZ_INTERNALERROR (-104) #define UNZ_CRCERROR (-105) #define ZLIB_VERSION "1.1.3" // Allowed flush values; see deflate() for details #define Z_NO_FLUSH 0 #define Z_SYNC_FLUSH 2 #define Z_FULL_FLUSH 3 #define Z_FINISH 4 // compression levels #define Z_NO_COMPRESSION 0 #define Z_BEST_SPEED 1 #define Z_BEST_COMPRESSION 9 #define Z_DEFAULT_COMPRESSION (-1) // compression strategy; see deflateInit2() for details #define Z_FILTERED 1 #define Z_HUFFMAN_ONLY 2 #define Z_DEFAULT_STRATEGY 0 // Possible values of the data_type field #define Z_BINARY 0 #define Z_ASCII 1 #define Z_UNKNOWN 2 // The deflate compression method (the only one supported in this version) #define Z_DEFLATED 8 // for initializing zalloc, zfree, opaque #define Z_NULL 0 // case sensitivity when searching for filenames #define CASE_SENSITIVE 1 #define CASE_INSENSITIVE 2 // Return codes for the compression/decompression functions. Negative // values are errors, positive values are used for special but normal events. #define Z_OK 0 #define Z_STREAM_END 1 #define Z_NEED_DICT 2 #define Z_ERRNO (-1) #define Z_STREAM_ERROR (-2) #define Z_DATA_ERROR (-3) #define Z_MEM_ERROR (-4) #define Z_BUF_ERROR (-5) #define Z_VERSION_ERROR (-6) // Basic data types typedef unsigned char Byte; // 8 bits typedef unsigned int uInt; // 16 bits or more typedef unsigned long uLong; // 32 bits or more typedef void *voidpf; typedef void *voidp; typedef long z_off_t; typedef voidpf (*alloc_func) (voidpf opaque, uInt items, uInt size); typedef void (*free_func) (voidpf opaque, voidpf address); struct internal_state; typedef struct z_stream_s { Byte *next_in; // next input byte uInt avail_in; // number of bytes available at next_in uLong total_in; // total nb of input bytes read so far Byte *next_out; // next output byte should be put there uInt avail_out; // remaining free space at next_out uLong total_out; // total nb of bytes output so far char *msg; // last error message, NULL if no error struct internal_state *state; // not visible by applications alloc_func zalloc; // used to allocate the internal state free_func zfree; // used to free the internal state voidpf opaque; // private data object passed to zalloc and zfree int data_type; // best guess about the data type: ascii or binary uLong adler; // adler32 value of the uncompressed data uLong reserved; // reserved for future use } z_stream; typedef z_stream *z_streamp; // The application must update next_in and avail_in when avail_in has // dropped to zero. It must update next_out and avail_out when avail_out // has dropped to zero. The application must initialize zalloc, zfree and // opaque before calling the init function. All other fields are set by the // compression library and must not be updated by the application. // // The opaque value provided by the application will be passed as the first // parameter for calls of zalloc and zfree. This can be useful for custom // memory management. The compression library attaches no meaning to the // opaque value. // // zalloc must return Z_NULL if there is not enough memory for the object. // If zlib is used in a multi-threaded application, zalloc and zfree must be // thread safe. // // The fields total_in and total_out can be used for statistics or // progress reports. After compression, total_in holds the total size of // the uncompressed data and may be saved for use in the decompressor // (particularly if the decompressor wants to decompress everything in // a single step). // // basic functions const char *zlibVersion (); // The application can compare zlibVersion and ZLIB_VERSION for consistency. // If the first character differs, the library code actually used is // not compatible with the zlib.h header file used by the application. // This check is automatically made by inflateInit. int inflate (z_streamp strm, int flush); // // inflate decompresses as much data as possible, and stops when the input // buffer becomes empty or the output buffer becomes full. It may some // introduce some output latency (reading input without producing any output) // except when forced to flush. // // The detailed semantics are as follows. inflate performs one or both of the // following actions: // // - Decompress more input starting at next_in and update next_in and avail_in // accordingly. If not all input can be processed (because there is not // enough room in the output buffer), next_in is updated and processing // will resume at this point for the next call of inflate(). // // - Provide more output starting at next_out and update next_out and avail_out // accordingly. inflate() provides as much output as possible, until there // is no more input data or no more space in the output buffer (see below // about the flush parameter). // // Before the call of inflate(), the application should ensure that at least // one of the actions is possible, by providing more input and/or consuming // more output, and updating the next_* and avail_* values accordingly. // The application can consume the uncompressed output when it wants, for // example when the output buffer is full (avail_out == 0), or after each // call of inflate(). If inflate returns Z_OK and with zero avail_out, it // must be called again after making room in the output buffer because there // might be more output pending. // // If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much // output as possible to the output buffer. The flushing behavior of inflate is // not specified for values of the flush parameter other than Z_SYNC_FLUSH // and Z_FINISH, but the current implementation actually flushes as much output // as possible anyway. // // inflate() should normally be called until it returns Z_STREAM_END or an // error. However if all decompression is to be performed in a single step // (a single call of inflate), the parameter flush should be set to // Z_FINISH. In this case all pending input is processed and all pending // output is flushed; avail_out must be large enough to hold all the // uncompressed data. (The size of the uncompressed data may have been saved // by the compressor for this purpose.) The next operation on this stream must // be inflateEnd to deallocate the decompression state. The use of Z_FINISH // is never required, but can be used to inform inflate that a faster routine // may be used for the single inflate() call. // // If a preset dictionary is needed at this point (see inflateSetDictionary // below), inflate sets strm-adler to the adler32 checksum of the // dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise // it sets strm->adler to the adler32 checksum of all output produced // so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or // an error code as described below. At the end of the stream, inflate() // checks that its computed adler32 checksum is equal to that saved by the // compressor and returns Z_STREAM_END only if the checksum is correct. // // inflate() returns Z_OK if some progress has been made (more input processed // or more output produced), Z_STREAM_END if the end of the compressed data has // been reached and all uncompressed output has been produced, Z_NEED_DICT if a // preset dictionary is needed at this point, Z_DATA_ERROR if the input data was // corrupted (input stream not conforming to the zlib format or incorrect // adler32 checksum), Z_STREAM_ERROR if the stream structure was inconsistent // (for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not // enough memory, Z_BUF_ERROR if no progress is possible or if there was not // enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR // case, the application may then call inflateSync to look for a good // compression block. // int inflateEnd (z_streamp strm); // // All dynamically allocated data structures for this stream are freed. // This function discards any unprocessed input and does not flush any // pending output. // // inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state // was inconsistent. In the error case, msg may be set but then points to a // static string (which must not be deallocated). // Advanced functions // The following functions are needed only in some special applications. int inflateSetDictionary (z_streamp strm, const Byte *dictionary, uInt dictLength); // // Initializes the decompression dictionary from the given uncompressed byte // sequence. This function must be called immediately after a call of inflate // if this call returned Z_NEED_DICT. The dictionary chosen by the compressor // can be determined from the Adler32 value returned by this call of // inflate. The compressor and decompressor must use exactly the same // dictionary. // // inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a // parameter is invalid (such as NULL dictionary) or the stream state is // inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the // expected one (incorrect Adler32 value). inflateSetDictionary does not // perform any decompression: this will be done by subsequent calls of // inflate(). int inflateSync (z_streamp strm); // // Skips invalid compressed data until a full flush point can be found, or until all // available input is skipped. No output is provided. // // inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR // if no more input was provided, Z_DATA_ERROR if no flush point has been found, // or Z_STREAM_ERROR if the stream structure was inconsistent. In the success // case, the application may save the current current value of total_in which // indicates where valid compressed data was found. In the error case, the // application may repeatedly call inflateSync, providing more input each time, // until success or end of the input data. int inflateReset (z_streamp strm); // This function is equivalent to inflateEnd followed by inflateInit, // but does not free and reallocate all the internal decompression state. // The stream will keep attributes that may have been set by inflateInit2. // // inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source // stream state was inconsistent (such as zalloc or state being NULL). // // checksum functions // These functions are not related to compression but are exported // anyway because they might be useful in applications using the // compression library. uLong adler32 (uLong adler, const Byte *buf, uInt len); // Update a running Adler-32 checksum with the bytes buf[0..len-1] and // return the updated checksum. If buf is NULL, this function returns // the required initial value for the checksum. // An Adler-32 checksum is almost as reliable as a CRC32 but can be computed // much faster. Usage example: // // uLong adler = adler32(0L, Z_NULL, 0); // // while (read_buffer(buffer, length) != EOF) { // adler = adler32(adler, buffer, length); // } // if (adler != original_adler) error(); uLong ucrc32 (uLong crc, const Byte *buf, uInt len); // Update a running crc with the bytes buf[0..len-1] and return the updated // crc. If buf is NULL, this function returns the required initial value // for the crc. Pre- and post-conditioning (one's complement) is performed // within this function so it shouldn't be done by the application. // Usage example: // // uLong crc = crc32(0L, Z_NULL, 0); // // while (read_buffer(buffer, length) != EOF) { // crc = crc32(crc, buffer, length); // } // if (crc != original_crc) error(); const char *zError (int err); int inflateSyncPoint (z_streamp z); const uLong *get_crc_table (void); typedef unsigned char uch; typedef uch uchf; typedef unsigned short ush; typedef ush ushf; typedef unsigned long ulg; const char * const z_errmsg[10] = { // indexed by 2-zlib_error "need dictionary", // Z_NEED_DICT 2 "stream end", // Z_STREAM_END 1 "", // Z_OK 0 "file error", // Z_ERRNO (-1) "stream error", // Z_STREAM_ERROR (-2) "data error", // Z_DATA_ERROR (-3) "insufficient memory", // Z_MEM_ERROR (-4) "buffer error", // Z_BUF_ERROR (-5) "incompatible version",// Z_VERSION_ERROR (-6) ""}; #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)] #define ERR_RETURN(strm,err) \ return (strm->msg = (char*)ERR_MSG(err), (err)) // To be used only when the state is known to be valid // common constants #define STORED_BLOCK 0 #define STATIC_TREES 1 #define DYN_TREES 2 // The three kinds of block type #define MIN_MATCH 3 #define MAX_MATCH 258 // The minimum and maximum match lengths #define PRESET_DICT 0x20 // preset dictionary flag in zlib header // target dependencies #define OS_CODE 0x0b // Window 95 & Windows NT // functions #define zmemzero(dest, len) memset(dest, 0, len) // Diagnostic functions #undef Assert #undef Trace #undef Tracev #undef Tracevv #undef Tracec #undef Tracecv #ifdef DEBUG int z_verbose = 0; void z_error (char *m) {fprintf(stderr, "%s\n", m); exit(1);} # define Assert(cond,msg) {if(!(cond)) z_error(msg);} # define Trace(x) {if (z_verbose>=0) fprintf x ;} # define Tracev(x) {if (z_verbose>0) fprintf x ;} # define Tracevv(x) {if (z_verbose>1) fprintf x ;} # define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;} # define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;} #else # define Assert(cond,msg) # define Trace(x) # define Tracev(x) # define Tracevv(x) # define Tracec(c,x) # define Tracecv(c,x) #endif typedef uLong (*check_func) (uLong check, const Byte *buf, uInt len); voidpf zcalloc (voidpf opaque, unsigned items, unsigned size); void zcfree (voidpf opaque, voidpf ptr); #define ZALLOC(strm, items, size) \ (*((strm)->zalloc))((strm)->opaque, (items), (size)) #define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr)) //void ZFREE(z_streamp strm,voidpf addr) //{ *((strm)->zfree))((strm)->opaque, addr); //} #define TRY_FREE(s, p) {if (p) ZFREE(s, p);} // Huffman code lookup table entry--this entry is four bytes for machines // that have 16-bit pointers (e.g. PC's in the small or medium model). typedef struct inflate_huft_s inflate_huft; struct inflate_huft_s { union { struct { Byte Exop; // number of extra bits or operation Byte Bits; // number of bits in this code or subcode } what; uInt pad; // pad structure to a power of 2 (4 bytes for } word; // 16-bit, 8 bytes for 32-bit int's) uInt base; // literal, length base, distance base, or table offset }; // Maximum size of dynamic tree. The maximum found in a long but non- // exhaustive search was 1004 huft structures (850 for length/literals // and 154 for distances, the latter actually the result of an // exhaustive search). The actual maximum is not known, but the // value below is more than safe. #define MANY 1440 int inflate_trees_bits ( uInt *, // 19 code lengths uInt *, // bits tree desired/actual depth inflate_huft * *, // bits tree result inflate_huft *, // space for trees z_streamp); // for messages int inflate_trees_dynamic ( uInt, // number of literal/length codes uInt, // number of distance codes uInt *, // that many (total) code lengths uInt *, // literal desired/actual bit depth uInt *, // distance desired/actual bit depth inflate_huft * *, // literal/length tree result inflate_huft * *, // distance tree result inflate_huft *, // space for trees z_streamp); // for messages int inflate_trees_fixed ( uInt *, // literal desired/actual bit depth uInt *, // distance desired/actual bit depth const inflate_huft * *, // literal/length tree result const inflate_huft * *, // distance tree result z_streamp); // for memory allocation struct inflate_blocks_state; typedef struct inflate_blocks_state inflate_blocks_statef; inflate_blocks_statef * inflate_blocks_new ( z_streamp z, check_func c, // check function uInt w); // window size int inflate_blocks ( inflate_blocks_statef *, z_streamp , int); // initial return code void inflate_blocks_reset ( inflate_blocks_statef *, z_streamp , uLong *); // check value on output int inflate_blocks_free ( inflate_blocks_statef *, z_streamp); void inflate_set_dictionary ( inflate_blocks_statef *s, const Byte *d, // dictionary uInt n); // dictionary length int inflate_blocks_sync_point ( inflate_blocks_statef *s); struct inflate_codes_state; typedef struct inflate_codes_state inflate_codes_statef; inflate_codes_statef *inflate_codes_new ( uInt, uInt, const inflate_huft *, const inflate_huft *, z_streamp ); int inflate_codes ( inflate_blocks_statef *, z_streamp , int); void inflate_codes_free ( inflate_codes_statef *, z_streamp ); typedef enum { IBM_TYPE, // get type bits (3, including end bit) IBM_LENS, // get lengths for stored IBM_STORED, // processing stored block IBM_TABLE, // get table lengths IBM_BTREE, // get bit lengths tree for a dynamic block IBM_DTREE, // get length, distance trees for a dynamic block IBM_CODES, // processing fixed or dynamic block IBM_DRY, // output remaining window bytes IBM_DONE, // finished last block, done IBM_BAD} // got a data error--stuck here inflate_block_mode; // inflate blocks semi-private state struct inflate_blocks_state { // mode inflate_block_mode mode; // current inflate_block mode // mode dependent information union { uInt left; // if STORED, bytes left to copy struct { uInt table; // table lengths (14 bits) uInt index; // index into blens (or border) uInt *blens; // bit lengths of codes uInt bb; // bit length tree depth inflate_huft *tb; // bit length decoding tree } trees; // if DTREE, decoding info for trees struct { inflate_codes_statef *codes; } decode; // if CODES, current state } sub; // submode uInt last; // true if this block is the last block // mode independent information uInt bitk; // bits in bit buffer uLong bitb; // bit buffer inflate_huft *hufts; // single malloc for tree space Byte *window; // sliding window Byte *end; // one byte after sliding window Byte *read; // window read pointer Byte *write; // window write pointer check_func checkfn; // check function uLong check; // check on output }; // defines for inflate input/output // update pointers and return #define UPDBITS {s->bitb=b;s->bitk=k;} #define UPDIN {z->avail_in=n;z->total_in+=(uLong)(p-z->next_in);z->next_in=p;} #define UPDOUT {s->write=q;} #define UPDATE {UPDBITS UPDIN UPDOUT} #define LEAVE {UPDATE return inflate_flush(s,z,r);} // get bytes and bits #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;} #define NEEDBYTE {if(n)r=Z_OK;else LEAVE} #define NEXTBYTE (n--,*p++) #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<>=(j);k-=(j);} // output bytes #define WAVAIL (uInt)(qread?s->read-q-1:s->end-q) #define LOADOUT {q=s->write;m=(uInt)WAVAIL;m;} #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}} #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT} #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;} #define OUTBYTE(a) {*q++=(Byte)(a);m--;} // load local pointers #define LOAD {LOADIN LOADOUT} // masks for lower bits (size given to avoid silly warnings with Visual C++) // And'ing with mask[n] masks the lower n bits const uInt inflate_mask[17] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; // copy as much as possible from the sliding window to the output area int inflate_flush (inflate_blocks_statef *, z_streamp, int); int inflate_fast (uInt, uInt, const inflate_huft *, const inflate_huft *, inflate_blocks_statef *, z_streamp ); const uInt fixed_bl = 9; const uInt fixed_bd = 5; const inflate_huft fixed_tl[] = { {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115}, {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192}, {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160}, {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224}, {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144}, {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208}, {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176}, {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240}, {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227}, {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200}, {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168}, {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232}, {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152}, {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216}, {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184}, {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248}, {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163}, {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196}, {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164}, {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228}, {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148}, {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212}, {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180}, {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244}, {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204}, {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172}, {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236}, {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156}, {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220}, {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188}, {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252}, {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131}, {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194}, {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162}, {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226}, {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146}, {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210}, {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178}, {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242}, {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258}, {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202}, {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170}, {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234}, {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154}, {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218}, {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186}, {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250}, {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195}, {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198}, {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166}, {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230}, {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150}, {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214}, {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182}, {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246}, {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206}, {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174}, {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238}, {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158}, {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222}, {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190}, {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254}, {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115}, {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193}, {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161}, {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225}, {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145}, {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209}, {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177}, {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241}, {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227}, {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201}, {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169}, {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233}, {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153}, {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217}, {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185}, {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249}, {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163}, {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197}, {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165}, {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229}, {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149}, {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213}, {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181}, {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245}, {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205}, {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173}, {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237}, {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157}, {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221}, {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189}, {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253}, {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131}, {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195}, {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163}, {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227}, {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147}, {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211}, {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179}, {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243}, {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258}, {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203}, {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171}, {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235}, {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155}, {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219}, {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187}, {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251}, {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195}, {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199}, {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167}, {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231}, {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151}, {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215}, {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183}, {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247}, {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0}, {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207}, {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175}, {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239}, {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159}, {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223}, {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191}, {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255} }; const inflate_huft fixed_td[] = { {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097}, {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385}, {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193}, {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577}, {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145}, {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577}, {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289}, {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577} }; // copy as much as possible from the sliding window to the output area int inflate_flush(inflate_blocks_statef *s,z_streamp z,int r) { uInt n; Byte *p; Byte *q; // local copies of source and destination pointers p = z->next_out; q = s->read; // compute number of bytes to copy as far as end of window n = (uInt)((q <= s->write ? s->write : s->end) - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; // update counters z->avail_out -= n; z->total_out += n; // update check information if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); // copy as far as end of window if (n!=0) // check for n!=0 to avoid waking up CodeGuard { memcpy(p, q, n); p += n; q += n; } // see if more to copy at beginning of window if (q == s->end) { // wrap pointers q = s->window; if (s->write == s->end) s->write = s->window; // compute bytes to copy n = (uInt)(s->write - q); if (n > z->avail_out) n = z->avail_out; if (n && r == Z_BUF_ERROR) r = Z_OK; // update counters z->avail_out -= n; z->total_out += n; // update check information if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(s->check, q, n); // copy memcpy(p, q, n); p += n; q += n; } // update pointers z->next_out = p; s->read = q; // done return r; } // simplify the use of the inflate_huft type with some defines #define exop word.what.Exop #define bits word.what.Bits typedef enum { // waiting for "i:"=input, "o:"=output, "x:"=nothing START, // x: set up for LEN LEN, // i: get length/literal/eob next LENEXT, // i: getting length extra (have base) DIST, // i: get distance next DISTEXT, // i: getting distance extra COPY, // o: copying bytes in window, waiting for space LIT, // o: got literal, waiting for output space WASH, // o: got eob, possibly still output waiting END, // x: got eob and all data flushed BADCODE} // x: got error inflate_codes_mode; // inflate codes private state struct inflate_codes_state { // mode inflate_codes_mode mode; // current inflate_codes mode // mode dependent information uInt len; union { struct { const inflate_huft *tree; // pointer into tree uInt need; // bits needed } code; // if LEN or DIST, where in tree uInt lit; // if LIT, literal struct { uInt get; // bits to get for extra uInt dist; // distance back to copy from } copy; // if EXT or COPY, where and how much } sub; // submode // mode independent information Byte lbits; // ltree bits decoded per branch Byte dbits; // dtree bits decoder per branch const inflate_huft *ltree; // literal/length/eob tree const inflate_huft *dtree; // distance tree }; inflate_codes_statef *inflate_codes_new( uInt bl, uInt bd, const inflate_huft *tl, const inflate_huft *td, // need separate declaration for Borland C++ z_streamp z) { inflate_codes_statef *c; if ((c = (inflate_codes_statef *) ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL) { c->mode = START; c->lbits = (Byte)bl; c->dbits = (Byte)bd; c->ltree = tl; c->dtree = td; Tracev((stderr, "inflate: codes new\n")); } return c; } int inflate_codes(inflate_blocks_statef *s, z_streamp z, int r) { uInt j; // temporary storage const inflate_huft *t; // temporary pointer uInt e; // extra bits or operation uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer Byte *f; // pointer to copy strings from inflate_codes_statef *c = s->sub.decode.codes; // codes state // copy input/output information to locals (UPDATE macro restores) LOAD // process input and output based on current state for(;;) switch (c->mode) { // waiting for "i:"=input, "o:"=output, "x:"=nothing case START: // x: set up for LEN #ifndef SLOW if (m >= 258 && n >= 10) { UPDATE r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z); LOAD if (r != Z_OK) { c->mode = r == Z_STREAM_END ? WASH : BADCODE; break; } } #endif // !SLOW c->sub.code.need = c->lbits; c->sub.code.tree = c->ltree; c->mode = LEN; case LEN: // i: get length/literal/eob next j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e == 0) // literal { c->sub.lit = t->base; Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: literal '%c'\n" : "inflate: literal 0x%02x\n", t->base)); c->mode = LIT; break; } if (e & 16) // length { c->sub.copy.get = e & 15; c->len = t->base; c->mode = LENEXT; break; } if ((e & 64) == 0) // next table { c->sub.code.need = e; c->sub.code.tree = t + t->base; break; } if (e & 32) // end of block { Tracevv((stderr, "inflate: end of block\n")); c->mode = WASH; break; } c->mode = BADCODE; // invalid code z->msg = (char*)"invalid literal/length code"; r = Z_DATA_ERROR; LEAVE case LENEXT: // i: getting length extra (have base) j = c->sub.copy.get; NEEDBITS(j) c->len += (uInt)b & inflate_mask[j]; DUMPBITS(j) c->sub.code.need = c->dbits; c->sub.code.tree = c->dtree; Tracevv((stderr, "inflate: length %u\n", c->len)); c->mode = DIST; case DIST: // i: get distance next j = c->sub.code.need; NEEDBITS(j) t = c->sub.code.tree + ((uInt)b & inflate_mask[j]); DUMPBITS(t->bits) e = (uInt)(t->exop); if (e & 16) // distance { c->sub.copy.get = e & 15; c->sub.copy.dist = t->base; c->mode = DISTEXT; break; } if ((e & 64) == 0) // next table { c->sub.code.need = e; c->sub.code.tree = t + t->base; break; } c->mode = BADCODE; // invalid code z->msg = (char*)"invalid distance code"; r = Z_DATA_ERROR; LEAVE case DISTEXT: // i: getting distance extra j = c->sub.copy.get; NEEDBITS(j) c->sub.copy.dist += (uInt)b & inflate_mask[j]; DUMPBITS(j) Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist)); c->mode = COPY; case COPY: // o: copying bytes in window, waiting for space f = (uInt)(q - s->window) < c->sub.copy.dist ? s->end - (c->sub.copy.dist - (q - s->window)) : q - c->sub.copy.dist; while (c->len) { NEEDOUT OUTBYTE(*f++) if (f == s->end) f = s->window; c->len--; } c->mode = START; break; case LIT: // o: got literal, waiting for output space NEEDOUT OUTBYTE(c->sub.lit) c->mode = START; break; case WASH: // o: got eob, possibly more output if (k > 7) // return unused byte, if any { Assert(k < 16, "inflate_codes grabbed too many bytes") k -= 8; n++; p--; // can always return one } FLUSH if (s->read != s->write) LEAVE c->mode = END; case END: r = Z_STREAM_END; LEAVE case BADCODE: // x: got error r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } void inflate_codes_free(inflate_codes_statef *c,z_streamp z) { ZFREE(z, c); Tracev((stderr, "inflate: codes free\n")); } // infblock.c -- interpret and process block types to last block // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h //struct inflate_codes_state {int dummy;}; // for buggy compilers // Table for deflate from PKZIP's appnote.txt. const uInt border[] = { // Order of the bit length code lengths 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; // // Notes beyond the 1.93a appnote.txt: // // 1. Distance pointers never point before the beginning of the output stream. // 2. Distance pointers can point back across blocks, up to 32k away. // 3. There is an implied maximum of 7 bits for the bit length table and // 15 bits for the actual data. // 4. If only one code exists, then it is encoded using one bit. (Zero // would be more efficient, but perhaps a little confusing.) If two // codes exist, they are coded using one bit each (0 and 1). // 5. There is no way of sending zero distance codes--a dummy must be // sent if there are none. (History: a pre 2.0 version of PKZIP would // store blocks with no distance codes, but this was discovered to be // too harsh a criterion.) Valid only for 1.93a. 2.04c does allow // zero distance codes, which is sent as one code of zero bits in // length. // 6. There are up to 286 literal/length codes. Code 256 represents the // end-of-block. Note however that the static length tree defines // 288 codes just to fill out the Huffman codes. Codes 286 and 287 // cannot be used though, since there is no length base or extra bits // defined for them. Similarily, there are up to 30 distance codes. // However, static trees define 32 codes (all 5 bits) to fill out the // Huffman codes, but the last two had better not show up in the data. // 7. Unzip can check dynamic Huffman blocks for complete code sets. // The exception is that a single code would not be complete (see #4). // 8. The five bits following the block type is really the number of // literal codes sent minus 257. // 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits // (1+6+6). Therefore, to output three times the length, you output // three codes (1+1+1), whereas to output four times the same length, // you only need two codes (1+3). Hmm. //10. In the tree reconstruction algorithm, Code = Code + Increment // only if BitLength(i) is not zero. (Pretty obvious.) //11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) //12. Note: length code 284 can represent 227-258, but length code 285 // really is 258. The last length deserves its own, short code // since it gets used a lot in very redundant files. The length // 258 is special since 258 - 3 (the min match length) is 255. //13. The literal/length and distance code bit lengths are read as a // single stream of lengths. It is possible (and advantageous) for // a repeat code (16, 17, or 18) to go across the boundary between // the two sets of lengths. void inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLong *c) { if (c != Z_NULL) *c = s->check; if (s->mode == IBM_BTREE || s->mode == IBM_DTREE) ZFREE(z, s->sub.trees.blens); if (s->mode == IBM_CODES) inflate_codes_free(s->sub.decode.codes, z); s->mode = IBM_TYPE; s->bitk = 0; s->bitb = 0; s->read = s->write = s->window; if (s->checkfn != Z_NULL) z->adler = s->check = (*s->checkfn)(0L, (const Byte *)Z_NULL, 0); Tracev((stderr, "inflate: blocks reset\n")); } inflate_blocks_statef *inflate_blocks_new(z_streamp z, check_func c, uInt w) { inflate_blocks_statef *s; if ((s = (inflate_blocks_statef *)ZALLOC (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL) return s; if ((s->hufts = (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL) { ZFREE(z, s); return Z_NULL; } if ((s->window = (Byte *)ZALLOC(z, 1, w)) == Z_NULL) { ZFREE(z, s->hufts); ZFREE(z, s); return Z_NULL; } s->end = s->window + w; s->checkfn = c; s->mode = IBM_TYPE; Tracev((stderr, "inflate: blocks allocated\n")); inflate_blocks_reset(s, z, Z_NULL); return s; } int inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r) { uInt t; // temporary storage uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer // copy input/output information to locals (UPDATE macro restores) LOAD // process input based on current state for(;;) switch (s->mode) { case IBM_TYPE: NEEDBITS(3) t = (uInt)b & 7; s->last = t & 1; switch (t >> 1) { case 0: // stored Tracev((stderr, "inflate: stored block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) t = k & 7; // go to byte boundary DUMPBITS(t) s->mode = IBM_LENS; // get length of stored block break; case 1: // fixed Tracev((stderr, "inflate: fixed codes block%s\n", s->last ? " (last)" : "")); { uInt bl, bd; const inflate_huft *tl, *td; inflate_trees_fixed(&bl, &bd, &tl, &td, z); s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z); if (s->sub.decode.codes == Z_NULL) { r = Z_MEM_ERROR; LEAVE } } DUMPBITS(3) s->mode = IBM_CODES; break; case 2: // dynamic Tracev((stderr, "inflate: dynamic codes block%s\n", s->last ? " (last)" : "")); DUMPBITS(3) s->mode = IBM_TABLE; break; case 3: // illegal DUMPBITS(3) s->mode = IBM_BAD; z->msg = (char*)"invalid block type"; r = Z_DATA_ERROR; LEAVE } break; case IBM_LENS: NEEDBITS(32) if ((((~b) >> 16) & 0xffff) != (b & 0xffff)) { s->mode = IBM_BAD; z->msg = (char*)"invalid stored block lengths"; r = Z_DATA_ERROR; LEAVE } s->sub.left = (uInt)b & 0xffff; b = k = 0; // dump bits Tracev((stderr, "inflate: stored length %u\n", s->sub.left)); s->mode = s->sub.left ? IBM_STORED : (s->last ? IBM_DRY : IBM_TYPE); break; case IBM_STORED: if (n == 0) LEAVE NEEDOUT t = s->sub.left; if (t > n) t = n; if (t > m) t = m; memcpy(q, p, t); p += t; n -= t; q += t; m -= t; if ((s->sub.left -= t) != 0) break; Tracev((stderr, "inflate: stored end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); s->mode = s->last ? IBM_DRY : IBM_TYPE; break; case IBM_TABLE: NEEDBITS(14) s->sub.trees.table = t = (uInt)b & 0x3fff; // remove this section to workaround bug in pkzip if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { s->mode = IBM_BAD; z->msg = (char*)"too many length or distance symbols"; r = Z_DATA_ERROR; LEAVE } // end remove t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); if ((s->sub.trees.blens = (uInt*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL) { r = Z_MEM_ERROR; LEAVE } DUMPBITS(14) s->sub.trees.index = 0; Tracev((stderr, "inflate: table sizes ok\n")); s->mode = IBM_BTREE; case IBM_BTREE: while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10)) { NEEDBITS(3) s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7; DUMPBITS(3) } while (s->sub.trees.index < 19) s->sub.trees.blens[border[s->sub.trees.index++]] = 0; s->sub.trees.bb = 7; t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb, &s->sub.trees.tb, s->hufts, z); if (t != Z_OK) { ZFREE(z, s->sub.trees.blens); r = t; if (r == Z_DATA_ERROR) s->mode = IBM_BAD; LEAVE } s->sub.trees.index = 0; Tracev((stderr, "inflate: bits tree ok\n")); s->mode = IBM_DTREE; case IBM_DTREE: while (t = s->sub.trees.table, s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)) { inflate_huft *h; uInt i, j, c; t = s->sub.trees.bb; NEEDBITS(t) h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]); t = h->bits; c = h->base; if (c < 16) { DUMPBITS(t) s->sub.trees.blens[s->sub.trees.index++] = c; } else // c == 16..18 { i = c == 18 ? 7 : c - 14; j = c == 18 ? 11 : 3; NEEDBITS(t + i) DUMPBITS(t) j += (uInt)b & inflate_mask[i]; DUMPBITS(i) i = s->sub.trees.index; t = s->sub.trees.table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1)) { ZFREE(z, s->sub.trees.blens); s->mode = IBM_BAD; z->msg = (char*)"invalid bit length repeat"; r = Z_DATA_ERROR; LEAVE } c = c == 16 ? s->sub.trees.blens[i - 1] : 0; do { s->sub.trees.blens[i++] = c; } while (--j); s->sub.trees.index = i; } } s->sub.trees.tb = Z_NULL; { uInt bl, bd; inflate_huft *tl, *td; inflate_codes_statef *c; bl = 9; // must be <= 9 for lookahead assumptions bd = 6; // must be <= 9 for lookahead assumptions t = s->sub.trees.table; t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), s->sub.trees.blens, &bl, &bd, &tl, &td, s->hufts, z); ZFREE(z, s->sub.trees.blens); if (t != Z_OK) { if (t == (uInt)Z_DATA_ERROR) s->mode = IBM_BAD; r = t; LEAVE } Tracev((stderr, "inflate: trees ok\n")); if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL) { r = Z_MEM_ERROR; LEAVE } s->sub.decode.codes = c; } s->mode = IBM_CODES; case IBM_CODES: UPDATE if ((r = inflate_codes(s, z, r)) != Z_STREAM_END) return inflate_flush(s, z, r); r = Z_OK; inflate_codes_free(s->sub.decode.codes, z); LOAD Tracev((stderr, "inflate: codes end, %lu total out\n", z->total_out + (q >= s->read ? q - s->read : (s->end - s->read) + (q - s->window)))); if (!s->last) { s->mode = IBM_TYPE; break; } s->mode = IBM_DRY; case IBM_DRY: FLUSH if (s->read != s->write) LEAVE s->mode = IBM_DONE; case IBM_DONE: r = Z_STREAM_END; LEAVE case IBM_BAD: r = Z_DATA_ERROR; LEAVE default: r = Z_STREAM_ERROR; LEAVE } } int inflate_blocks_free(inflate_blocks_statef *s, z_streamp z) { inflate_blocks_reset(s, z, Z_NULL); ZFREE(z, s->window); ZFREE(z, s->hufts); ZFREE(z, s); Tracev((stderr, "inflate: blocks freed\n")); return Z_OK; } // inftrees.c -- generate Huffman trees for efficient decoding // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // extern const char inflate_copyright[] = " inflate 1.1.3 Copyright 1995-1998 Mark Adler "; // If you use the zlib library in a product, an acknowledgment is welcome // in the documentation of your product. If for some reason you cannot // include such an acknowledgment, I would appreciate that you keep this // copyright string in the executable of your product. int huft_build ( uInt *, // code lengths in bits uInt, // number of codes uInt, // number of "simple" codes const uInt *, // list of base values for non-simple codes const uInt *, // list of extra bits for non-simple codes inflate_huft **,// result: starting table uInt *, // maximum lookup bits (returns actual) inflate_huft *, // space for trees uInt *, // hufts used in space uInt * ); // space for values // Tables for deflate from PKZIP's appnote.txt. const uInt cplens[31] = { // Copy lengths for literal codes 257..285 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; // see note #13 above about 258 const uInt cplext[31] = { // Extra bits for literal codes 257..285 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; // 112==invalid const uInt cpdist[30] = { // Copy offsets for distance codes 0..29 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; const uInt cpdext[30] = { // Extra bits for distance codes 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; // // Huffman code decoding is performed using a multi-level table lookup. // The fastest way to decode is to simply build a lookup table whose // size is determined by the longest code. However, the time it takes // to build this table can also be a factor if the data being decoded // is not very long. The most common codes are necessarily the // shortest codes, so those codes dominate the decoding time, and hence // the speed. The idea is you can have a shorter table that decodes the // shorter, more probable codes, and then point to subsidiary tables for // the longer codes. The time it costs to decode the longer codes is // then traded against the time it takes to make longer tables. // // This results of this trade are in the variables lbits and dbits // below. lbits is the number of bits the first level table for literal/ // length codes can decode in one step, and dbits is the same thing for // the distance codes. Subsequent tables are also less than or equal to // those sizes. These values may be adjusted either when all of the // codes are shorter than that, in which case the longest code length in // bits is used, or when the shortest code is *longer* than the requested // table size, in which case the length of the shortest code in bits is // used. // // There are two different values for the two tables, since they code a // different number of possibilities each. The literal/length table // codes 286 possible values, or in a flat code, a little over eight // bits. The distance table codes 30 possible values, or a little less // than five bits, flat. The optimum values for speed end up being // about one bit more than those, so lbits is 8+1 and dbits is 5+1. // The optimum values may differ though from machine to machine, and // possibly even between compilers. Your mileage may vary. // // If BMAX needs to be larger than 16, then h and x[] should be uLong. #define BMAX 15 // maximum bit length of any code int huft_build( uInt *b, // code lengths in bits (all assumed <= BMAX) uInt n, // number of codes (assumed <= 288) uInt s, // number of simple-valued codes (0..s-1) const uInt *d, // list of base values for non-simple codes const uInt *e, // list of extra bits for non-simple codes inflate_huft * *t, // result: starting table uInt *m, // maximum lookup bits, returns actual inflate_huft *hp, // space for trees uInt *hn, // hufts used in space uInt *v) // working area: values in order of bit length // Given a list of code lengths and a maximum table size, make a set of // tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR // if the given code set is incomplete (the tables are still built in this // case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of // lengths), or Z_MEM_ERROR if not enough memory. { uInt a; // counter for codes of length k uInt c[BMAX+1]; // bit length count table uInt f; // i repeats in table every f entries int g; // maximum code length int h; // table level register uInt i; // counter, current code register uInt j; // counter register int k; // number of bits in current code int l; // bits per table (returned in m) uInt mask; // (1 << w) - 1, to avoid cc -O bug on HP register uInt *p; // pointer into c[], b[], or v[] inflate_huft *q; // points to current table struct inflate_huft_s r; // table entry for structure assignment inflate_huft *u[BMAX]; // table stack register int w; // bits before this table == (l * h) uInt x[BMAX+1]; // bit offsets, then code stack uInt *xp; // pointer into x int y; // number of dummy codes added uInt z; // number of entries in current table // Generate counts for each bit length p = c; #define C0 *p++ = 0; #define C2 C0 C0 C0 C0 #define C4 C2 C2 C2 C2 C4; p; // clear c[]--assume BMAX+1 is 16 p = b; i = n; do { c[*p++]++; // assume all entries <= BMAX } while (--i); if (c[0] == n) // null input--all zero length codes { *t = (inflate_huft *)Z_NULL; *m = 0; return Z_OK; } // Find minimum and maximum length, bound *m by those l = *m; for (j = 1; j <= BMAX; j++) if (c[j]) break; k = j; // minimum code length if ((uInt)l < j) l = j; for (i = BMAX; i; i--) if (c[i]) break; g = i; // maximum code length if ((uInt)l > i) l = i; *m = l; // Adjust last length count to fill out codes, if needed for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= c[j]) < 0) return Z_DATA_ERROR; if ((y -= c[i]) < 0) return Z_DATA_ERROR; c[i] += y; // Generate starting offsets into the value table for each length x[1] = j = 0; p = c + 1; xp = x + 2; while (--i) { // note that i == g from above *xp++ = (j += *p++); } // Make a table of values in order of bit lengths p = b; i = 0; do { if ((j = *p++) != 0) v[x[j]++] = i; } while (++i < n); n = x[g]; // set n to length of v // Generate the Huffman codes and for each, make the table entries x[0] = i = 0; // first Huffman code is zero p = v; // grab values in bit order h = -1; // no tables yet--level -1 w = -l; // bits decoded == (l * h) u[0] = (inflate_huft *)Z_NULL; // just to keep compilers happy q = (inflate_huft *)Z_NULL; // ditto z = 0; // ditto // go through the bit lengths (k already is bits in shortest code) for (; k <= g; k++) { a = c[k]; while (a--) { // here i is the Huffman code of length k bits for value *p // make tables up to required level while (k > w + l) { h++; w += l; // previous table always l bits // compute minimum size table less than or equal to l bits z = g - w; z = z > (uInt)l ? l : z; // table size upper limit if ((f = 1 << (j = k - w)) > a + 1) // try a k-w bit table { // too few codes for k-w bit table f -= a + 1; // deduct codes from patterns left xp = c + k; if (j < z) while (++j < z) // try smaller tables up to z bits { if ((f <<= 1) <= *++xp) break; // enough codes to use up j bits f -= *xp; // else deduct codes from patterns } } z = 1 << j; // table entries for j-bit table // allocate new table if (*hn + z > MANY) // (note: doesn't matter for fixed) return Z_MEM_ERROR; // not enough memory u[h] = q = hp + *hn; *hn += z; // connect to last table, if there is one if (h) { x[h] = i; // save pattern for backing up r.bits = (Byte)l; // bits to dump before this table r.exop = (Byte)j; // bits in this table j = i >> (w - l); r.base = (uInt)(q - u[h-1] - j); // offset to this table u[h-1][j] = r; // connect to last table } else *t = q; // first table is returned result } // set up table entry in r r.bits = (Byte)(k - w); if (p >= v + n) r.exop = 128 + 64; // out of values--invalid code else if (*p < s) { r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); // 256 is end-of-block r.base = *p++; // simple code is just the value } else { r.exop = (Byte)(e[*p - s] + 16 + 64);// non-simple--look up in lists r.base = d[*p++ - s]; } // fill code-like entries with r f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; // backwards increment the k-bit code i for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; // backup over finished tables mask = (1 << w) - 1; // needed on HP, cc -O bug while ((i & mask) != x[h]) { h--; // don't need to update q w -= l; mask = (1 << w) - 1; } } } // Return Z_BUF_ERROR if we were given an incomplete table return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; } int inflate_trees_bits( uInt *c, // 19 code lengths uInt *bb, // bits tree desired/actual depth inflate_huft * *tb, // bits tree result inflate_huft *hp, // space for trees z_streamp z) // for messages { int r; uInt hn = 0; // hufts used in space uInt *v; // work area for huft_build if ((v = (uInt*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL) return Z_MEM_ERROR; r = huft_build(c, 19, 19, (uInt*)Z_NULL, (uInt*)Z_NULL, tb, bb, hp, &hn, v); if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed dynamic bit lengths tree"; else if (r == Z_BUF_ERROR || *bb == 0) { z->msg = (char*)"incomplete dynamic bit lengths tree"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } int inflate_trees_dynamic( uInt nl, // number of literal/length codes uInt nd, // number of distance codes uInt *c, // that many (total) code lengths uInt *bl, // literal desired/actual bit depth uInt *bd, // distance desired/actual bit depth inflate_huft * *tl, // literal/length tree result inflate_huft * *td, // distance tree result inflate_huft *hp, // space for trees z_streamp z) // for messages { int r; uInt hn = 0; // hufts used in space uInt *v; // work area for huft_build // allocate work area if ((v = (uInt*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) return Z_MEM_ERROR; // build literal/length tree r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v); if (r != Z_OK || *bl == 0) { if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed literal/length tree"; else if (r != Z_MEM_ERROR) { z->msg = (char*)"incomplete literal/length tree"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } // build distance tree r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v); if (r != Z_OK || (*bd == 0 && nl > 257)) { if (r == Z_DATA_ERROR) z->msg = (char*)"oversubscribed distance tree"; else if (r == Z_BUF_ERROR) { z->msg = (char*)"incomplete distance tree"; r = Z_DATA_ERROR; } else if (r != Z_MEM_ERROR) { z->msg = (char*)"empty distance tree with lengths"; r = Z_DATA_ERROR; } ZFREE(z, v); return r; } // done ZFREE(z, v); return Z_OK; } int inflate_trees_fixed( uInt *bl, // literal desired/actual bit depth uInt *bd, // distance desired/actual bit depth const inflate_huft * * tl, // literal/length tree result const inflate_huft * *td, // distance tree result z_streamp ) // for memory allocation { *bl = fixed_bl; *bd = fixed_bd; *tl = fixed_tl; *td = fixed_td; return Z_OK; } // inffast.c -- process literals and length/distance pairs fast // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // //struct inflate_codes_state {int dummy;}; // for buggy compilers // macros for bit input with no checking and for returning unused bytes #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<avail_in-n;c=(k>>3)>3:c;n+=c;p-=c;k-=c<<3;} // Called with number of bytes left to write in window at least 258 // (the maximum string length) and number of input bytes available // at least ten. The ten bytes are six bytes for the longest length/ // distance pair plus four bytes for overloading the bit buffer. int inflate_fast( uInt bl, uInt bd, const inflate_huft *tl, const inflate_huft *td, // need separate declaration for Borland C++ inflate_blocks_statef *s, z_streamp z) { const inflate_huft *t; // temporary pointer uInt e; // extra bits or operation uLong b; // bit buffer uInt k; // bits in bit buffer Byte *p; // input data pointer uInt n; // bytes available there Byte *q; // output window write pointer uInt m; // bytes to end of window or read pointer uInt ml; // mask for literal/length tree uInt md; // mask for distance tree uInt c; // bytes to copy uInt d; // distance back to copy from Byte *r; // copy source pointer // load input, output, bit values LOAD // initialize masks ml = inflate_mask[bl]; md = inflate_mask[bd]; // do until not enough input or output space for fast loop do { // assume called with m >= 258 && n >= 10 // get literal/length code GRABBITS(20) // max bits for literal/length code if ((e = (t = tl + ((uInt)b & ml))->exop) == 0) { DUMPBITS(t->bits) Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; continue; } for (;;) { DUMPBITS(t->bits) if (e & 16) { // get extra bits for length e &= 15; c = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) Tracevv((stderr, "inflate: * length %u\n", c)); // decode distance base of block to copy GRABBITS(15); // max bits for distance code e = (t = td + ((uInt)b & md))->exop; for (;;) { DUMPBITS(t->bits) if (e & 16) { // get extra bits to add to distance base e &= 15; GRABBITS(e) // get extra bits (up to 13) d = t->base + ((uInt)b & inflate_mask[e]); DUMPBITS(e) Tracevv((stderr, "inflate: * distance %u\n", d)); // do the copy m -= c; if ((uInt)(q - s->window) >= d) // offset before dest { // just copy r = q - d; *q++ = *r++; c--; // minimum count is three, *q++ = *r++; c--; // so unroll loop a little } else // else offset after destination { e = d - (uInt)(q - s->window); // bytes from offset to end r = s->end - e; // pointer to offset if (c > e) // if source crosses, { c -= e; // copy to end of window do { *q++ = *r++; } while (--e); r = s->window; // copy rest from start of window } } do { // copy all or what's left *q++ = *r++; } while (--c); break; } else if ((e & 64) == 0) { t += t->base; e = (t += ((uInt)b & inflate_mask[e]))->exop; } else { z->msg = (char*)"invalid distance code"; UNGRAB UPDATE return Z_DATA_ERROR; } }; break; } if ((e & 64) == 0) { t += t->base; if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0) { DUMPBITS(t->bits) Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ? "inflate: * literal '%c'\n" : "inflate: * literal 0x%02x\n", t->base)); *q++ = (Byte)t->base; m--; break; } } else if (e & 32) { Tracevv((stderr, "inflate: * end of block\n")); UNGRAB UPDATE return Z_STREAM_END; } else { z->msg = (char*)"invalid literal/length code"; UNGRAB UPDATE return Z_DATA_ERROR; } }; } while (m >= 258 && n >= 10); // not enough input or output--restore pointers and return UNGRAB UPDATE return Z_OK; } // crc32.c -- compute the CRC-32 of a data stream // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ // Table of CRC-32's of all single-byte values (made by make_crc_table) const uLong crc_table[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; const uLong * get_crc_table() { return (const uLong *)crc_table; } #define CRC_DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8); #define CRC_DO2(buf) CRC_DO1(buf); CRC_DO1(buf); #define CRC_DO4(buf) CRC_DO2(buf); CRC_DO2(buf); #define CRC_DO8(buf) CRC_DO4(buf); CRC_DO4(buf); uLong ucrc32(uLong crc, const Byte *buf, uInt len) { if (buf == Z_NULL) return 0L; crc = crc ^ 0xffffffffL; while (len >= 8) {CRC_DO8(buf); len -= 8;} if (len) do {CRC_DO1(buf);} while (--len); return crc ^ 0xffffffffL; } // adler32.c -- compute the Adler-32 checksum of a data stream // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ #define BASE 65521L // largest prime smaller than 65536 #define NMAX 5552 // NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 #define AD_DO1(buf,i) {s1 += buf[i]; s2 += s1;} #define AD_DO2(buf,i) AD_DO1(buf,i); AD_DO1(buf,i+1); #define AD_DO4(buf,i) AD_DO2(buf,i); AD_DO2(buf,i+2); #define AD_DO8(buf,i) AD_DO4(buf,i); AD_DO4(buf,i+4); #define AD_DO16(buf) AD_DO8(buf,0); AD_DO8(buf,8); // ========================================================================= uLong adler32(uLong adler, const Byte *buf, uInt len) { unsigned long s1 = adler & 0xffff; unsigned long s2 = (adler >> 16) & 0xffff; int k; if (buf == Z_NULL) return 1L; while (len > 0) { k = len < NMAX ? len : NMAX; len -= k; while (k >= 16) { AD_DO16(buf); buf += 16; k -= 16; } if (k != 0) do { s1 += *buf++; s2 += s1; } while (--k); s1 %= BASE; s2 %= BASE; } return (s2 << 16) | s1; } // zutil.c -- target dependent utility functions for the compression library // Copyright (C) 1995-1998 Jean-loup Gailly. // For conditions of distribution and use, see copyright notice in zlib.h // @(#) $Id$ const char * zlibVersion() { return ZLIB_VERSION; } // exported to allow conversion of error code to string for compress() and // uncompress() const char * zError(int err) { return ERR_MSG(err); } voidpf zcalloc (voidpf opaque, unsigned items, unsigned size) { if (opaque) items += size - size; // make compiler happy return (voidpf)calloc(items, size); } void zcfree (voidpf opaque, voidpf ptr) { zfree(ptr); if (opaque) return; // make compiler happy } // inflate.c -- zlib interface to inflate modules // Copyright (C) 1995-1998 Mark Adler // For conditions of distribution and use, see copyright notice in zlib.h //struct inflate_blocks_state {int dummy;}; // for buggy compilers typedef enum { IM_METHOD, // waiting for method byte IM_FLAG, // waiting for flag byte IM_DICT4, // four dictionary check bytes to go IM_DICT3, // three dictionary check bytes to go IM_DICT2, // two dictionary check bytes to go IM_DICT1, // one dictionary check byte to go IM_DICT0, // waiting for inflateSetDictionary IM_BLOCKS, // decompressing blocks IM_CHECK4, // four check bytes to go IM_CHECK3, // three check bytes to go IM_CHECK2, // two check bytes to go IM_CHECK1, // one check byte to go IM_DONE, // finished check, done IM_BAD} // got an error--stay here inflate_mode; // inflate private state struct internal_state { // mode inflate_mode mode; // current inflate mode // mode dependent information union { uInt method; // if IM_FLAGS, method byte struct { uLong was; // computed check value uLong need; // stream check value } check; // if CHECK, check values to compare uInt marker; // if IM_BAD, inflateSync's marker bytes count } sub; // submode // mode independent information int nowrap; // flag for no wrapper uInt wbits; // log2(window size) (8..15, defaults to 15) inflate_blocks_statef *blocks; // current inflate_blocks state }; int inflateReset(z_streamp z) { if (z == Z_NULL || z->state == Z_NULL) return Z_STREAM_ERROR; z->total_in = z->total_out = 0; z->msg = Z_NULL; z->state->mode = z->state->nowrap ? IM_BLOCKS : IM_METHOD; inflate_blocks_reset(z->state->blocks, z, Z_NULL); Tracev((stderr, "inflate: reset\n")); return Z_OK; } int inflateEnd(z_streamp z) { if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL) return Z_STREAM_ERROR; if (z->state->blocks != Z_NULL) inflate_blocks_free(z->state->blocks, z); ZFREE(z, z->state); z->state = Z_NULL; Tracev((stderr, "inflate: end\n")); return Z_OK; } int inflateInit2(z_streamp z) { const char *version = ZLIB_VERSION; int stream_size = sizeof(z_stream); if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != sizeof(z_stream)) return Z_VERSION_ERROR; int w = -15; // MAX_WBITS: 32K LZ77 window. // Warning: reducing MAX_WBITS makes minigzip unable to extract .gz files created by gzip. // The memory requirements for deflate are (in bytes): // (1 << (windowBits+2)) + (1 << (memLevel+9)) // that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values) // plus a few kilobytes for small objects. For example, if you want to reduce // the default memory requirements from 256K to 128K, compile with // make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7" // Of course this will generally degrade compression (there's no free lunch). // // The memory requirements for inflate are (in bytes) 1 << windowBits // that is, 32K for windowBits=15 (default value) plus a few kilobytes // for small objects. // initialize state if (z == Z_NULL) return Z_STREAM_ERROR; z->msg = Z_NULL; if (z->zalloc == Z_NULL) { z->zalloc = zcalloc; z->opaque = (voidpf)0; } if (z->zfree == Z_NULL) z->zfree = zcfree; if ((z->state = (struct internal_state *) ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL) return Z_MEM_ERROR; z->state->blocks = Z_NULL; // handle undocumented nowrap option (no zlib header or check) z->state->nowrap = 0; if (w < 0) { w = - w; z->state->nowrap = 1; } // set window size if (w < 8 || w > 15) { inflateEnd(z); return Z_STREAM_ERROR; } z->state->wbits = (uInt)w; // create inflate_blocks state if ((z->state->blocks = inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w)) == Z_NULL) { inflateEnd(z); return Z_MEM_ERROR; } Tracev((stderr, "inflate: allocated\n")); // reset state inflateReset(z); return Z_OK; } #define IM_NEEDBYTE {if(z->avail_in==0)return r;r=f;} #define IM_NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++) int inflate(z_streamp z, int f) { int r; uInt b; if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL) return Z_STREAM_ERROR; f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK; r = Z_BUF_ERROR; for (;;) switch (z->state->mode) { case IM_METHOD: IM_NEEDBYTE if (((z->state->sub.method = IM_NEXTBYTE) & 0xf) != Z_DEFLATED) { z->state->mode = IM_BAD; z->msg = (char*)"unknown compression method"; z->state->sub.marker = 5; // can't try inflateSync break; } if ((z->state->sub.method >> 4) + 8 > z->state->wbits) { z->state->mode = IM_BAD; z->msg = (char*)"invalid window size"; z->state->sub.marker = 5; // can't try inflateSync break; } z->state->mode = IM_FLAG; case IM_FLAG: IM_NEEDBYTE b = IM_NEXTBYTE; if (((z->state->sub.method << 8) + b) % 31) { z->state->mode = IM_BAD; z->msg = (char*)"incorrect header check"; z->state->sub.marker = 5; // can't try inflateSync break; } Tracev((stderr, "inflate: zlib header ok\n")); if (!(b & PRESET_DICT)) { z->state->mode = IM_BLOCKS; break; } z->state->mode = IM_DICT4; case IM_DICT4: IM_NEEDBYTE z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24; z->state->mode = IM_DICT3; case IM_DICT3: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16; z->state->mode = IM_DICT2; case IM_DICT2: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8; z->state->mode = IM_DICT1; case IM_DICT1: IM_NEEDBYTE; r; z->state->sub.check.need += (uLong)IM_NEXTBYTE; z->adler = z->state->sub.check.need; z->state->mode = IM_DICT0; return Z_NEED_DICT; case IM_DICT0: z->state->mode = IM_BAD; z->msg = (char*)"need dictionary"; z->state->sub.marker = 0; // can try inflateSync return Z_STREAM_ERROR; case IM_BLOCKS: r = inflate_blocks(z->state->blocks, z, r); if (r == Z_DATA_ERROR) { z->state->mode = IM_BAD; z->state->sub.marker = 0; // can try inflateSync break; } if (r == Z_OK) r = f; if (r != Z_STREAM_END) return r; r = f; inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was); if (z->state->nowrap) { z->state->mode = IM_DONE; break; } z->state->mode = IM_CHECK4; case IM_CHECK4: IM_NEEDBYTE z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24; z->state->mode = IM_CHECK3; case IM_CHECK3: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16; z->state->mode = IM_CHECK2; case IM_CHECK2: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8; z->state->mode = IM_CHECK1; case IM_CHECK1: IM_NEEDBYTE z->state->sub.check.need += (uLong)IM_NEXTBYTE; if (z->state->sub.check.was != z->state->sub.check.need) { z->state->mode = IM_BAD; z->msg = (char*)"incorrect data check"; z->state->sub.marker = 5; // can't try inflateSync break; } Tracev((stderr, "inflate: zlib check ok\n")); z->state->mode = IM_DONE; case IM_DONE: return Z_STREAM_END; case IM_BAD: return Z_DATA_ERROR; default: return Z_STREAM_ERROR; } } #ifdef _UNICODE static int GetAnsiFileName(LPCWSTR name, char * buf, int nBufSize) { memset(buf, 0, nBufSize); int n = WideCharToMultiByte(CP_ACP, // code page 0, // performance and mapping flags name, // wide-character string -1, // number of chars in string buf, // buffer for new string nBufSize, // size of buffer NULL, // default for unmappable chars NULL); // set when default char used return n; } static int GetUnicodeFileName(const char * name, LPWSTR buf, int nBufSize) { memset(buf, 0, nBufSize*sizeof(TCHAR)); int n = MultiByteToWideChar(CP_ACP, // code page 0, // character-type options name, // string to map -1, // number of bytes in string buf, // wide-character buffer nBufSize); // size of buffer return n; } #endif // unzip.c -- IO on .zip files using zlib // Version 0.15 beta, Mar 19th, 1998, // Read unzip.h for more info #define UNZ_BUFSIZE (16384) #define UNZ_MAXFILENAMEINZIP (256) #define SIZECENTRALDIRITEM (0x2e) #define SIZEZIPLOCALHEADER (0x1e) const char unz_copyright[] = " unzip 0.15 Copyright 1998 Gilles Vollant "; // unz_file_info_interntal contain internal info about a file in zipfile typedef struct unz_file_info_internal_s { uLong offset_curfile;// relative offset of local header 4 bytes } unz_file_info_internal; typedef struct { bool is_handle; // either a handle or memory bool canseek; // for handles: HANDLE h; bool herr; unsigned long initial_offset; // for memory: void *buf; unsigned int len,pos; // if it's a memory block } LUFILE; LUFILE *lufopen(void *z,unsigned int len,DWORD flags,ZRESULT *err) { if (flags!=ZIP_HANDLE && flags!=ZIP_FILENAME && flags!=ZIP_MEMORY) { *err=ZR_ARGS; return NULL; } // HANDLE h=0; bool canseek=false; *err=ZR_OK; if (flags==ZIP_HANDLE||flags==ZIP_FILENAME) { if (flags==ZIP_HANDLE) { HANDLE hf = z; bool res; #ifdef _WIN32 res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&h,0,FALSE,DUPLICATE_SAME_ACCESS) == TRUE; #else h = (void*) dup( (int)hf ); res = (int) dup >= 0; #endif if (!res) { *err=ZR_NODUPH; return NULL; } } else { #ifdef _WIN32 h = CreateFile((const TCHAR *)z, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); #else h = (void*) open( (const TCHAR *)z, O_RDONLY ); #endif if (h == INVALID_HANDLE_VALUE) { *err = ZR_NOFILE; return NULL; } } #ifdef _WIN32 DWORD type = GetFileType(h); canseek = (type==FILE_TYPE_DISK); #else struct stat buf; fstat( (int)h, &buf ); canseek = buf.st_mode & S_IFREG; #endif } LUFILE *lf = new LUFILE; if (flags==ZIP_HANDLE||flags==ZIP_FILENAME) { lf->is_handle=true; lf->canseek=canseek; lf->h=h; lf->herr=false; lf->initial_offset=0; if (canseek) { lf->initial_offset = SetFilePointer(h,0,NULL,FILE_CURRENT); } } else { lf->is_handle=false; lf->canseek=true; lf->buf=z; lf->len=len; lf->pos=0; lf->initial_offset=0; } *err=ZR_OK; return lf; } int lufclose(LUFILE *stream) { if (stream==NULL) return EOF; if (stream->is_handle) CloseHandle(stream->h); delete stream; return 0; } int luferror(LUFILE *stream) { if (stream->is_handle && stream->herr) return 1; else return 0; } long int luftell(LUFILE *stream) { if (stream->is_handle && stream->canseek) return SetFilePointer(stream->h,0,NULL,FILE_CURRENT)-stream->initial_offset; else if (stream->is_handle) return 0; else return stream->pos; } int lufseek(LUFILE *stream, long offset, int whence) { if (stream->is_handle && stream->canseek) { if (whence==SEEK_SET) SetFilePointer(stream->h,stream->initial_offset+offset,0,FILE_BEGIN); else if (whence==SEEK_CUR) SetFilePointer(stream->h,offset,NULL,FILE_CURRENT); else if (whence==SEEK_END) SetFilePointer(stream->h,offset,NULL,FILE_END); else return 19; // EINVAL return 0; } else if (stream->is_handle) return 29; // ESPIPE else { if (whence==SEEK_SET) stream->pos=offset; else if (whence==SEEK_CUR) stream->pos+=offset; else if (whence==SEEK_END) stream->pos=stream->len+offset; return 0; } } size_t lufread(void *ptr,size_t size,size_t n,LUFILE *stream) { unsigned int toread = (unsigned int)(size*n); if (stream->is_handle) { DWORD red; BOOL res = ReadFile(stream->h,ptr,toread,&red,NULL); if (!res) stream->herr=true; return red/size; } if (stream->pos+toread > stream->len) toread = stream->len-stream->pos; memcpy(ptr, (char*)stream->buf + stream->pos, toread); DWORD red = toread; stream->pos += red; return red/size; } // file_in_zip_read_info_s contain internal information about a file in zipfile, // when reading and decompress it typedef struct { char *read_buffer; // internal buffer for compressed data z_stream stream; // zLib stream structure for inflate uLong pos_in_zipfile; // position in byte on the zipfile, for fseek uLong stream_initialised; // flag set if stream structure is initialised uLong offset_local_extrafield;// offset of the local extra field uInt size_local_extrafield;// size of the local extra field uLong pos_local_extrafield; // position in the local extra field in read uLong crc32; // crc32 of all data uncompressed uLong crc32_wait; // crc32 we must obtain after decompress all uLong rest_read_compressed; // number of byte to be decompressed uLong rest_read_uncompressed;//number of byte to be obtained after decomp LUFILE* file; // io structore of the zipfile uLong compression_method; // compression method (0==store) uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx) } file_in_zip_read_info_s; // unz_s contain internal information about the zipfile typedef struct { LUFILE* file; // io structore of the zipfile unz_global_info gi; // public global information uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx) uLong num_file; // number of the current file in the zipfile uLong pos_in_central_dir; // pos of the current file in the central dir uLong current_file_ok; // flag about the usability of the current file uLong central_pos; // position of the beginning of the central dir uLong size_central_dir; // size of the central directory uLong offset_central_dir; // offset of start of central directory with respect to the starting disk number unz_file_info cur_file_info; // public info about the current file in zip unz_file_info_internal cur_file_info_internal; // private info about it file_in_zip_read_info_s* pfile_in_zip_read; // structure about the current file if we are decompressing it } unz_s, *unzFile; int unzStringFileNameCompare (const char* fileName1,const char* fileName2,int iCaseSensitivity); // Compare two filename (fileName1,fileName2). z_off_t unztell (unzFile file); // Give the current position in uncompressed data int unzeof (unzFile file); // return 1 if the end of file was reached, 0 elsewhere int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len); // Read extra field from the current file (opened by unzOpenCurrentFile) // This is the local-header version of the extra field (sometimes, there is // more info in the local-header version than in the central-header) // // if buf==NULL, it return the size of the local extra field // // if buf!=NULL, len is the size of the buffer, the extra header is copied in // buf. // the return value is the number of bytes copied in buf, or (if <0) // the error code // =========================================================================== // Read a byte from a gz_stream; update next_in and avail_in. Return EOF // for end of file. // IN assertion: the stream s has been sucessfully opened for reading. int unzlocal_getByte(LUFILE *fin,int *pi) { unsigned char c; int err = (int)lufread(&c, 1, 1, fin); if (err==1) { *pi = (int)c; return UNZ_OK; } else { if (luferror(fin)) return UNZ_ERRNO; else return UNZ_EOF; } } // =========================================================================== // Reads a long in LSB order from the given gz_stream. Sets int unzlocal_getShort (LUFILE *fin,uLong *pX) { uLong x ; int i; int err; err = unzlocal_getByte(fin,&i); x = (uLong)i; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<8; if (err==UNZ_OK) *pX = x; else *pX = 0; return err; } int unzlocal_getLong (LUFILE *fin,uLong *pX) { uLong x ; int i; int err; err = unzlocal_getByte(fin,&i); x = (uLong)i; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<8; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<16; if (err==UNZ_OK) err = unzlocal_getByte(fin,&i); x += ((uLong)i)<<24; if (err==UNZ_OK) *pX = x; else *pX = 0; return err; } // My own strcmpi / strcasecmp int strcmpcasenosensitive_internal (const char* fileName1,const char *fileName2) { for (;;) { char c1=*(fileName1++); char c2=*(fileName2++); if ((c1>='a') && (c1<='z')) c1 -= (char)0x20; if ((c2>='a') && (c2<='z')) c2 -= (char)0x20; if (c1=='\0') return ((c2=='\0') ? 0 : -1); if (c2=='\0') return 1; if (c1c2) return 1; } } // // Compare two filename (fileName1,fileName2). // If iCaseSenisivity = 1, comparision is case sensitivity (like strcmp) // If iCaseSenisivity = 2, comparision is not case sensitivity (like strcmpi or strcasecmp) // int unzStringFileNameCompare (const char*fileName1,const char*fileName2,int iCaseSensitivity) { if (iCaseSensitivity==1) return strcmp(fileName1,fileName2); else return strcmpcasenosensitive_internal(fileName1,fileName2); } #define BUFREADCOMMENT (0x400) // Locate the Central directory of a zipfile (at the end, just before // the global comment) uLong unzlocal_SearchCentralDir(LUFILE *fin) { if (lufseek(fin,0,SEEK_END) != 0) return 0; uLong uSizeFile = luftell(fin); uLong uMaxBack=0xffff; // maximum size of global comment if (uMaxBack>uSizeFile) uMaxBack = uSizeFile; unsigned char *buf = (unsigned char*)zmalloc(BUFREADCOMMENT+4); if (buf==NULL) return 0; uLong uPosFound=0; uLong uBackRead = 4; while (uBackReaduMaxBack) uBackRead = uMaxBack; else uBackRead+=BUFREADCOMMENT; uReadPos = uSizeFile-uBackRead ; uReadSize = ((BUFREADCOMMENT+4) < (uSizeFile-uReadPos)) ? (BUFREADCOMMENT+4) : (uSizeFile-uReadPos); if (lufseek(fin,uReadPos,SEEK_SET)!=0) break; if (lufread(buf,(uInt)uReadSize,1,fin)!=1) break; for (i=(int)uReadSize-3; (i--)>0;) { if (((*(buf+i))==0x50) && ((*(buf+i+1))==0x4b) && ((*(buf+i+2))==0x05) && ((*(buf+i+3))==0x06)) { uPosFound = uReadPos+i; break; } } if (uPosFound!=0) break; } if (buf) zfree(buf); return uPosFound; } int unzGoToFirstFile (unzFile file); int unzCloseCurrentFile (unzFile file); // Open a Zip file. // If the zipfile cannot be opened (file don't exist or in not valid), return NULL. // Otherwise, the return value is a unzFile Handle, usable with other unzip functions unzFile unzOpenInternal(LUFILE *fin) { if (fin==NULL) return NULL; if (unz_copyright[0]!=' ') {lufclose(fin); return NULL;} int err=UNZ_OK; unz_s us; uLong central_pos,uL; central_pos = unzlocal_SearchCentralDir(fin); if (central_pos==0) err=UNZ_ERRNO; if (lufseek(fin,central_pos,SEEK_SET)!=0) err=UNZ_ERRNO; // the signature, already checked if (unzlocal_getLong(fin,&uL)!=UNZ_OK) err=UNZ_ERRNO; // number of this disk uLong number_disk; // number of the current dist, used for spanning ZIP, unsupported, always 0 if (unzlocal_getShort(fin,&number_disk)!=UNZ_OK) err=UNZ_ERRNO; // number of the disk with the start of the central directory uLong number_disk_with_CD; // number the the disk with central dir, used for spaning ZIP, unsupported, always 0 if (unzlocal_getShort(fin,&number_disk_with_CD)!=UNZ_OK) err=UNZ_ERRNO; // total number of entries in the central dir on this disk if (unzlocal_getShort(fin,&us.gi.number_entry)!=UNZ_OK) err=UNZ_ERRNO; // total number of entries in the central dir uLong number_entry_CD; // total number of entries in the central dir (same than number_entry on nospan) if (unzlocal_getShort(fin,&number_entry_CD)!=UNZ_OK) err=UNZ_ERRNO; if ((number_entry_CD!=us.gi.number_entry) || (number_disk_with_CD!=0) || (number_disk!=0)) err=UNZ_BADZIPFILE; // size of the central directory if (unzlocal_getLong(fin,&us.size_central_dir)!=UNZ_OK) err=UNZ_ERRNO; // offset of start of central directory with respect to the starting disk number if (unzlocal_getLong(fin,&us.offset_central_dir)!=UNZ_OK) err=UNZ_ERRNO; // zipfile comment length if (unzlocal_getShort(fin,&us.gi.size_comment)!=UNZ_OK) err=UNZ_ERRNO; if ((central_pos+fin->initial_offsetinitial_offset - (us.offset_central_dir+us.size_central_dir); us.central_pos = central_pos; us.pfile_in_zip_read = NULL; fin->initial_offset = 0; // since the zipfile itself is expected to handle this unz_s *s = (unz_s*)zmalloc(sizeof(unz_s)); *s=us; unzGoToFirstFile((unzFile)s); return (unzFile)s; } // Close a ZipFile opened with unzipOpen. // If there is files inside the .Zip opened with unzipOpenCurrentFile (see later), // these files MUST be closed with unzipCloseCurrentFile before call unzipClose. // return UNZ_OK if there is no problem. int unzClose (unzFile file) { unz_s* s; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (s->pfile_in_zip_read!=NULL) unzCloseCurrentFile(file); lufclose(s->file); if (s) zfree(s); // unused s=0; return UNZ_OK; } // Write info about the ZipFile in the *pglobal_info structure. // No preparation of the structure is needed // return UNZ_OK if there is no problem. int unzGetGlobalInfo (unzFile file,unz_global_info *pglobal_info) { unz_s* s; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; *pglobal_info=s->gi; return UNZ_OK; } // Translate date/time from Dos format to tm_unz (readable more easilty) void unzlocal_DosDateToTmuDate (uLong ulDosDate, tm_unz* ptm) { uLong uDate; uDate = (uLong)(ulDosDate>>16); ptm->tm_mday = (uInt)(uDate&0x1f) ; ptm->tm_mon = (uInt)((((uDate)&0x1E0)/0x20)-1) ; ptm->tm_year = (uInt)(((uDate&0x0FE00)/0x0200)+1980) ; ptm->tm_hour = (uInt) ((ulDosDate &0xF800)/0x800); ptm->tm_min = (uInt) ((ulDosDate&0x7E0)/0x20) ; ptm->tm_sec = (uInt) (2*(ulDosDate&0x1f)) ; } // Get Info about the current file in the zipfile, with internal only info int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info, unz_file_info_internal *pfile_info_internal, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize); int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info, unz_file_info_internal *pfile_info_internal, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize) { unz_s* s; unz_file_info file_info; unz_file_info_internal file_info_internal; int err=UNZ_OK; uLong uMagic; long lSeek=0; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (lufseek(s->file,s->pos_in_central_dir+s->byte_before_the_zipfile,SEEK_SET)!=0) err=UNZ_ERRNO; // we check the magic if (err==UNZ_OK) if (unzlocal_getLong(s->file,&uMagic) != UNZ_OK) err=UNZ_ERRNO; else if (uMagic!=0x02014b50) err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&file_info.version) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.version_needed) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.flag) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.compression_method) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.dosDate) != UNZ_OK) err=UNZ_ERRNO; unzlocal_DosDateToTmuDate(file_info.dosDate,&file_info.tmu_date); if (unzlocal_getLong(s->file,&file_info.crc) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.compressed_size) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.uncompressed_size) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.size_filename) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.size_file_extra) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.size_file_comment) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.disk_num_start) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&file_info.internal_fa) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info.external_fa) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&file_info_internal.offset_curfile) != UNZ_OK) err=UNZ_ERRNO; lSeek+=file_info.size_filename; if ((err==UNZ_OK) && (szFileName!=NULL)) { uLong uSizeRead ; if (file_info.size_filename0) && (fileNameBufferSize>0)) if (lufread(szFileName,(uInt)uSizeRead,1,s->file)!=1) err=UNZ_ERRNO; lSeek -= uSizeRead; } if ((err==UNZ_OK) && (extraField!=NULL)) { uLong uSizeRead ; if (file_info.size_file_extrafile,lSeek,SEEK_CUR)==0) lSeek=0; else err=UNZ_ERRNO; if ((file_info.size_file_extra>0) && (extraFieldBufferSize>0)) if (lufread(extraField,(uInt)uSizeRead,1,s->file)!=1) err=UNZ_ERRNO; lSeek += file_info.size_file_extra - uSizeRead; } else lSeek+=file_info.size_file_extra; if ((err==UNZ_OK) && (szComment!=NULL)) { uLong uSizeRead ; if (file_info.size_file_commentfile,lSeek,SEEK_CUR)==0) {} // unused lSeek=0; else err=UNZ_ERRNO; if ((file_info.size_file_comment>0) && (commentBufferSize>0)) if (lufread(szComment,(uInt)uSizeRead,1,s->file)!=1) err=UNZ_ERRNO; //unused lSeek+=file_info.size_file_comment - uSizeRead; } else {} //unused lSeek+=file_info.size_file_comment; if ((err==UNZ_OK) && (pfile_info!=NULL)) *pfile_info=file_info; if ((err==UNZ_OK) && (pfile_info_internal!=NULL)) *pfile_info_internal=file_info_internal; return err; } // Write info about the ZipFile in the *pglobal_info structure. // No preparation of the structure is needed // return UNZ_OK if there is no problem. int unzGetCurrentFileInfo (unzFile file, unz_file_info *pfile_info, char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize, char *szComment, uLong commentBufferSize) { return unzlocal_GetCurrentFileInfoInternal(file,pfile_info,NULL,szFileName,fileNameBufferSize, extraField,extraFieldBufferSize, szComment,commentBufferSize); } // Set the current file of the zipfile to the first file. // return UNZ_OK if there is no problem int unzGoToFirstFile (unzFile file) { int err; unz_s* s; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; s->pos_in_central_dir=s->offset_central_dir; s->num_file=0; err=unzlocal_GetCurrentFileInfoInternal(file,&s->cur_file_info, &s->cur_file_info_internal, NULL,0,NULL,0,NULL,0); s->current_file_ok = (err == UNZ_OK); return err; } // Set the current file of the zipfile to the next file. // return UNZ_OK if there is no problem // return UNZ_END_OF_LIST_OF_FILE if the actual file was the latest. int unzGoToNextFile (unzFile file) { unz_s* s; int err; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (!s->current_file_ok) return UNZ_END_OF_LIST_OF_FILE; if (s->num_file+1==s->gi.number_entry) return UNZ_END_OF_LIST_OF_FILE; s->pos_in_central_dir += SIZECENTRALDIRITEM + s->cur_file_info.size_filename + s->cur_file_info.size_file_extra + s->cur_file_info.size_file_comment ; s->num_file++; err = unzlocal_GetCurrentFileInfoInternal(file,&s->cur_file_info, &s->cur_file_info_internal, NULL,0,NULL,0,NULL,0); s->current_file_ok = (err == UNZ_OK); return err; } // Try locate the file szFileName in the zipfile. // For the iCaseSensitivity signification, see unzStringFileNameCompare // return value : // UNZ_OK if the file is found. It becomes the current file. // UNZ_END_OF_LIST_OF_FILE if the file is not found int unzLocateFile (unzFile file, const TCHAR *szFileName, int iCaseSensitivity) { unz_s* s; int err; uLong num_fileSaved; uLong pos_in_central_dirSaved; if (file==NULL) return UNZ_PARAMERROR; if (_tcslen(szFileName)>=UNZ_MAXFILENAMEINZIP) return UNZ_PARAMERROR; char szFileNameA[MAX_PATH]; #ifdef _UNICODE GetAnsiFileName(szFileName, szFileNameA, MAX_PATH-1); #else strcpy(szFileNameA, szFileName); #endif s=(unz_s*)file; if (!s->current_file_ok) return UNZ_END_OF_LIST_OF_FILE; num_fileSaved = s->num_file; pos_in_central_dirSaved = s->pos_in_central_dir; err = unzGoToFirstFile(file); while (err == UNZ_OK) { char szCurrentFileName[UNZ_MAXFILENAMEINZIP+1]; unzGetCurrentFileInfo(file,NULL, szCurrentFileName,sizeof(szCurrentFileName)-1, NULL,0,NULL,0); if (unzStringFileNameCompare(szCurrentFileName,szFileNameA,iCaseSensitivity)==0) return UNZ_OK; err = unzGoToNextFile(file); } s->num_file = num_fileSaved ; s->pos_in_central_dir = pos_in_central_dirSaved ; return err; } // Read the local header of the current zipfile // Check the coherency of the local header and info in the end of central // directory about this file // store in *piSizeVar the size of extra info in local header // (filename and size of extra field data) int unzlocal_CheckCurrentFileCoherencyHeader (unz_s *s,uInt *piSizeVar, uLong *poffset_local_extrafield, uInt *psize_local_extrafield) { uLong uMagic,uData,uFlags; uLong size_filename; uLong size_extra_field; int err=UNZ_OK; *piSizeVar = 0; *poffset_local_extrafield = 0; *psize_local_extrafield = 0; if (lufseek(s->file,s->cur_file_info_internal.offset_curfile + s->byte_before_the_zipfile,SEEK_SET)!=0) return UNZ_ERRNO; if (err==UNZ_OK) if (unzlocal_getLong(s->file,&uMagic) != UNZ_OK) err=UNZ_ERRNO; else if (uMagic!=0x04034b50) err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&uData) != UNZ_OK) err=UNZ_ERRNO; // else if ((err==UNZ_OK) && (uData!=s->cur_file_info.wVersion)) // err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&uFlags) != UNZ_OK) err=UNZ_ERRNO; if (unzlocal_getShort(s->file,&uData) != UNZ_OK) err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.compression_method)) err=UNZ_BADZIPFILE; if ((err==UNZ_OK) && (s->cur_file_info.compression_method!=0) && (s->cur_file_info.compression_method!=Z_DEFLATED)) err=UNZ_BADZIPFILE; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // date/time err=UNZ_ERRNO; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // crc err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.crc) && ((uFlags & 8)==0)) err=UNZ_BADZIPFILE; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // size compr err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.compressed_size) && ((uFlags & 8)==0)) err=UNZ_BADZIPFILE; if (unzlocal_getLong(s->file,&uData) != UNZ_OK) // size uncompr err=UNZ_ERRNO; else if ((err==UNZ_OK) && (uData!=s->cur_file_info.uncompressed_size) && ((uFlags & 8)==0)) err=UNZ_BADZIPFILE; if (unzlocal_getShort(s->file,&size_filename) != UNZ_OK) err=UNZ_ERRNO; else if ((err==UNZ_OK) && (size_filename!=s->cur_file_info.size_filename)) err=UNZ_BADZIPFILE; *piSizeVar += (uInt)size_filename; if (unzlocal_getShort(s->file,&size_extra_field) != UNZ_OK) err=UNZ_ERRNO; *poffset_local_extrafield= s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + size_filename; *psize_local_extrafield = (uInt)size_extra_field; *piSizeVar += (uInt)size_extra_field; return err; } // Open for reading data the current file in the zipfile. // If there is no error and the file is opened, the return value is UNZ_OK. int unzOpenCurrentFile (unzFile file) { int err; int Store; uInt iSizeVar; unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; uLong offset_local_extrafield; // offset of the local extra field uInt size_local_extrafield; // size of the local extra field if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; if (!s->current_file_ok) return UNZ_PARAMERROR; if (s->pfile_in_zip_read != NULL) unzCloseCurrentFile(file); if (unzlocal_CheckCurrentFileCoherencyHeader(s,&iSizeVar, &offset_local_extrafield,&size_local_extrafield)!=UNZ_OK) return UNZ_BADZIPFILE; pfile_in_zip_read_info = (file_in_zip_read_info_s*)zmalloc(sizeof(file_in_zip_read_info_s)); if (pfile_in_zip_read_info==NULL) return UNZ_INTERNALERROR; pfile_in_zip_read_info->read_buffer=(char*)zmalloc(UNZ_BUFSIZE); pfile_in_zip_read_info->offset_local_extrafield = offset_local_extrafield; pfile_in_zip_read_info->size_local_extrafield = size_local_extrafield; pfile_in_zip_read_info->pos_local_extrafield=0; if (pfile_in_zip_read_info->read_buffer==NULL) { if (pfile_in_zip_read_info!=0) zfree(pfile_in_zip_read_info); //unused pfile_in_zip_read_info=0; return UNZ_INTERNALERROR; } pfile_in_zip_read_info->stream_initialised=0; if ((s->cur_file_info.compression_method!=0) && (s->cur_file_info.compression_method!=Z_DEFLATED)) { // unused err=UNZ_BADZIPFILE; } Store = s->cur_file_info.compression_method==0; pfile_in_zip_read_info->crc32_wait=s->cur_file_info.crc; pfile_in_zip_read_info->crc32=0; pfile_in_zip_read_info->compression_method = s->cur_file_info.compression_method; pfile_in_zip_read_info->file=s->file; pfile_in_zip_read_info->byte_before_the_zipfile=s->byte_before_the_zipfile; pfile_in_zip_read_info->stream.total_out = 0; if (!Store) { pfile_in_zip_read_info->stream.zalloc = (alloc_func)0; pfile_in_zip_read_info->stream.zfree = (free_func)0; pfile_in_zip_read_info->stream.opaque = (voidpf)0; err=inflateInit2(&pfile_in_zip_read_info->stream); if (err == Z_OK) pfile_in_zip_read_info->stream_initialised=1; // windowBits is passed < 0 to tell that there is no zlib header. // Note that in this case inflate *requires* an extra "dummy" byte // after the compressed stream in order to complete decompression and // return Z_STREAM_END. // In unzip, i don't wait absolutely Z_STREAM_END because I known the // size of both compressed and uncompressed data } pfile_in_zip_read_info->rest_read_compressed = s->cur_file_info.compressed_size ; pfile_in_zip_read_info->rest_read_uncompressed = s->cur_file_info.uncompressed_size ; pfile_in_zip_read_info->pos_in_zipfile = s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + iSizeVar; pfile_in_zip_read_info->stream.avail_in = (uInt)0; s->pfile_in_zip_read = pfile_in_zip_read_info; return UNZ_OK; } // Read bytes from the current file. // buf contain buffer where data must be copied // len the size of buf. // return the number of byte copied if somes bytes are copied // return 0 if the end of file was reached // return <0 with error code if there is an error // (UNZ_ERRNO for IO error, or zLib error for uncompress error) int unzReadCurrentFile (unzFile file, voidp buf, unsigned len) { int err=UNZ_OK; uInt iRead = 0; unz_s *s = (unz_s*)file; if (s==NULL) return UNZ_PARAMERROR; file_in_zip_read_info_s* pfile_in_zip_read_info = s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; if ((pfile_in_zip_read_info->read_buffer == NULL)) return UNZ_END_OF_LIST_OF_FILE; if (len==0) return 0; pfile_in_zip_read_info->stream.next_out = (Byte*)buf; pfile_in_zip_read_info->stream.avail_out = (uInt)len; if (len>pfile_in_zip_read_info->rest_read_uncompressed) { pfile_in_zip_read_info->stream.avail_out = (uInt)pfile_in_zip_read_info->rest_read_uncompressed; } while (pfile_in_zip_read_info->stream.avail_out>0) { if ((pfile_in_zip_read_info->stream.avail_in==0) && (pfile_in_zip_read_info->rest_read_compressed>0)) { uInt uReadThis = UNZ_BUFSIZE; if (pfile_in_zip_read_info->rest_read_compressedrest_read_compressed; if (uReadThis == 0) return UNZ_EOF; if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->pos_in_zipfile + pfile_in_zip_read_info->byte_before_the_zipfile,SEEK_SET)!=0) return UNZ_ERRNO; if (lufread(pfile_in_zip_read_info->read_buffer,uReadThis,1,pfile_in_zip_read_info->file)!=1) return UNZ_ERRNO; pfile_in_zip_read_info->pos_in_zipfile += uReadThis; pfile_in_zip_read_info->rest_read_compressed-=uReadThis; pfile_in_zip_read_info->stream.next_in = (Byte*)pfile_in_zip_read_info->read_buffer; pfile_in_zip_read_info->stream.avail_in = (uInt)uReadThis; } if (pfile_in_zip_read_info->compression_method==0) { uInt uDoCopy,i ; if (pfile_in_zip_read_info->stream.avail_out < pfile_in_zip_read_info->stream.avail_in) { uDoCopy = pfile_in_zip_read_info->stream.avail_out ; } else { uDoCopy = pfile_in_zip_read_info->stream.avail_in ; } for (i=0;istream.next_out+i) = *(pfile_in_zip_read_info->stream.next_in+i); } pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32,pfile_in_zip_read_info->stream.next_out,uDoCopy); pfile_in_zip_read_info->rest_read_uncompressed-=uDoCopy; pfile_in_zip_read_info->stream.avail_in -= uDoCopy; pfile_in_zip_read_info->stream.avail_out -= uDoCopy; pfile_in_zip_read_info->stream.next_out += uDoCopy; pfile_in_zip_read_info->stream.next_in += uDoCopy; pfile_in_zip_read_info->stream.total_out += uDoCopy; iRead += uDoCopy; } else { uLong uTotalOutBefore,uTotalOutAfter; const Byte *bufBefore; uLong uOutThis; int flush=Z_SYNC_FLUSH; uTotalOutBefore = pfile_in_zip_read_info->stream.total_out; bufBefore = pfile_in_zip_read_info->stream.next_out; err=inflate(&pfile_in_zip_read_info->stream,flush); uTotalOutAfter = pfile_in_zip_read_info->stream.total_out; uOutThis = uTotalOutAfter-uTotalOutBefore; pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32,bufBefore,(uInt)(uOutThis)); pfile_in_zip_read_info->rest_read_uncompressed -= uOutThis; iRead += (uInt)(uTotalOutAfter - uTotalOutBefore); if (err==Z_STREAM_END) return (iRead==0) ? UNZ_EOF : iRead; if (err!=Z_OK) break; } } if (err==Z_OK) return iRead; return err; } // Give the current position in uncompressed data z_off_t unztell (unzFile file) { unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; return (z_off_t)pfile_in_zip_read_info->stream.total_out; } // return 1 if the end of file was reached, 0 elsewhere int unzeof (unzFile file) { unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; if (pfile_in_zip_read_info->rest_read_uncompressed == 0) return 1; else return 0; } // Read extra field from the current file (opened by unzOpenCurrentFile) // This is the local-header version of the extra field (sometimes, there is // more info in the local-header version than in the central-header) // if buf==NULL, it return the size of the local extra field that can be read // if buf!=NULL, len is the size of the buffer, the extra header is copied in buf. // the return value is the number of bytes copied in buf, or (if <0) the error code int unzGetLocalExtrafield (unzFile file,voidp buf,unsigned len) { unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; uInt read_now; uLong size_to_read; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; size_to_read = (pfile_in_zip_read_info->size_local_extrafield - pfile_in_zip_read_info->pos_local_extrafield); if (buf==NULL) return (int)size_to_read; if (len>size_to_read) read_now = (uInt)size_to_read; else read_now = (uInt)len ; if (read_now==0) return 0; if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->offset_local_extrafield + pfile_in_zip_read_info->pos_local_extrafield,SEEK_SET)!=0) return UNZ_ERRNO; if (lufread(buf,(uInt)size_to_read,1,pfile_in_zip_read_info->file)!=1) return UNZ_ERRNO; return (int)read_now; } // Close the file in zip opened with unzipOpenCurrentFile // Return UNZ_CRCERROR if all the file was read but the CRC is not good int unzCloseCurrentFile (unzFile file) { int err=UNZ_OK; unz_s* s; file_in_zip_read_info_s* pfile_in_zip_read_info; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; pfile_in_zip_read_info=s->pfile_in_zip_read; if (pfile_in_zip_read_info==NULL) return UNZ_PARAMERROR; if (pfile_in_zip_read_info->rest_read_uncompressed == 0) { if (pfile_in_zip_read_info->crc32 != pfile_in_zip_read_info->crc32_wait) err=UNZ_CRCERROR; } if (pfile_in_zip_read_info->read_buffer!=0) { void *buf = pfile_in_zip_read_info->read_buffer; zfree(buf); pfile_in_zip_read_info->read_buffer=0; } pfile_in_zip_read_info->read_buffer = NULL; if (pfile_in_zip_read_info->stream_initialised) inflateEnd(&pfile_in_zip_read_info->stream); pfile_in_zip_read_info->stream_initialised = 0; if (pfile_in_zip_read_info!=0) zfree(pfile_in_zip_read_info); // unused pfile_in_zip_read_info=0; s->pfile_in_zip_read=NULL; return err; } // Get the global comment string of the ZipFile, in the szComment buffer. // uSizeBuf is the size of the szComment buffer. // return the number of byte copied or an error code <0 int unzGetGlobalComment (unzFile file, char *szComment, uLong uSizeBuf) { //int err=UNZ_OK; unz_s* s; uLong uReadThis ; if (file==NULL) return UNZ_PARAMERROR; s=(unz_s*)file; uReadThis = uSizeBuf; if (uReadThis>s->gi.size_comment) uReadThis = s->gi.size_comment; if (lufseek(s->file,s->central_pos+22,SEEK_SET)!=0) return UNZ_ERRNO; if (uReadThis>0) { *szComment='\0'; if (lufread(szComment,(uInt)uReadThis,1,s->file)!=1) return UNZ_ERRNO; } if ((szComment != NULL) && (uSizeBuf > s->gi.size_comment)) *(szComment+s->gi.size_comment)='\0'; return (int)uReadThis; } int unzOpenCurrentFile (unzFile file); int unzReadCurrentFile (unzFile file, void *buf, unsigned len); int unzCloseCurrentFile (unzFile file); #ifdef _WIN32 FILETIME timet2filetime(const time_t timer) { struct tm *tm = gmtime(&timer); SYSTEMTIME st; st.wYear = (WORD)(tm->tm_year+1900); st.wMonth = (WORD)(tm->tm_mon+1); st.wDay = (WORD)(tm->tm_mday); st.wHour = (WORD)(tm->tm_hour); st.wMinute = (WORD)(tm->tm_min); st.wSecond = (WORD)(tm->tm_sec); st.wMilliseconds=0; FILETIME ft; SystemTimeToFileTime(&st,&ft); return ft; } #endif /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// class TUnzip { public: TUnzip() : uf(0), currentfile(-1), czei(-1) {} unzFile uf; int currentfile; ZIPENTRY cze; int czei; TCHAR rootdir[MAX_PATH]; ZRESULT Open(void *z,unsigned int len,DWORD flags); ZRESULT Get(int index,ZIPENTRY *ze); ZRESULT Find(const TCHAR *name,bool ic,int *index,ZIPENTRY *ze); ZRESULT Unzip(int index,void *dst,unsigned int len,DWORD flags); ZRESULT Close(); }; ZRESULT TUnzip::Open(void *z,unsigned int len,DWORD flags) { if (uf!=0 || currentfile!=-1) return ZR_NOTINITED; #ifdef _WIN32 GetCurrentDirectory(MAX_PATH,rootdir); _tcscat(rootdir,_T("\\")); if (flags==ZIP_HANDLE) { DWORD type = GetFileType(z); if (type!=FILE_TYPE_DISK) return ZR_SEEK; } #endif ZRESULT e; LUFILE *f = lufopen(z,len,flags,&e); if (f==NULL) return e; uf = unzOpenInternal(f); return uf ? ZR_OK : ZR_CORRUPT; } ZRESULT TUnzip::Get(int index,ZIPENTRY *ze) { if (index<-1 || index>=(int)uf->gi.number_entry) return ZR_ARGS; if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; if (index==czei && index!=-1) {memcpy(ze,&cze,sizeof(ZIPENTRY)); return ZR_OK;} if (index==-1) { ze->index = uf->gi.number_entry; ze->name[0]=0; ze->attr=0; #ifdef _WIN32 ze->atime.dwLowDateTime=0; ze->atime.dwHighDateTime=0; ze->ctime.dwLowDateTime=0; ze->ctime.dwHighDateTime=0; ze->mtime.dwLowDateTime=0; ze->mtime.dwHighDateTime=0; #else ze->atime = 0; ze->ctime = 0; ze->mtime = 0; #endif ze->comp_size=0; ze->unc_size=0; return ZR_OK; } if (index<(int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_filefile,offset,SEEK_SET)!=0) return ZR_READ; char *extra = new char[extralen]; if (lufread(extra,1,(uInt)extralen,uf->file)!=extralen) {delete[] extra; return ZR_READ;} // ze->index=uf->num_file; strcpy(ze->name,fn); // zip has an 'attribute' 32bit value. Its lower half is windows stuff // its upper half is standard unix attr. unsigned long a = ufi.external_fa; bool uisdir = (a&0x40000000)!=0; //bool uwriteable= (a&0x08000000)!=0; bool uwriteable= (a&0x00800000)!=0; // ***hd*** //bool ureadable= (a&0x01000000)!=0; //bool uexecutable=(a&0x00400000)!=0; bool wreadonly= (a&0x00000001)!=0; bool whidden= (a&0x00000002)!=0; bool wsystem= (a&0x00000004)!=0; bool wisdir= (a&0x00000010)!=0; bool warchive= (a&0x00000020)!=0; ze->attr=FILE_ATTRIBUTE_NORMAL; if (uisdir || wisdir) ze->attr |= FILE_ATTRIBUTE_DIRECTORY; if (warchive) ze->attr|=FILE_ATTRIBUTE_ARCHIVE; if (whidden) ze->attr|=FILE_ATTRIBUTE_HIDDEN; if (!uwriteable||wreadonly) ze->attr|=FILE_ATTRIBUTE_READONLY; if (wsystem) ze->attr|=FILE_ATTRIBUTE_SYSTEM; ze->comp_size = ufi.compressed_size; ze->unc_size = ufi.uncompressed_size; // #ifdef _WIN32 WORD dostime = (WORD)(ufi.dosDate&0xFFFF); WORD dosdate = (WORD)((ufi.dosDate>>16)&0xFFFF); FILETIME ft; DosDateTimeToFileTime(dosdate,dostime,&ft); ze->atime=ft; ze->ctime=ft; ze->mtime=ft; #else ze->atime=ufi.dosDate; ze->ctime=ufi.dosDate; ze->mtime=ufi.dosDate; #endif // the zip will always have at least that dostime. But if it also has // an extra header, then we'll instead get the info from that. unsigned int epos=0; while (epos+4mtime = timet2filetime(mtime); #else ze->mtime = mtime; #endif } if (hasatime) { time_t atime = *(time_t*)(extra+epos); epos+=4; #ifdef _WIN32 ze->atime = timet2filetime(atime); #else ze->atime = atime; #endif } if (hasctime) { time_t ctime = *(time_t*)(extra+epos); #ifdef _WIN32 ze->ctime = timet2filetime(ctime); #else ze->ctime = ctime; #endif } break; } // if (extra!=0) delete[] extra; memcpy(&cze,ze,sizeof(ZIPENTRY)); czei=index; return ZR_OK; } ZRESULT TUnzip::Find(const TCHAR *name, bool ic, int *index, ZIPENTRY *ze) { int res = unzLocateFile(uf,name,ic?CASE_INSENSITIVE:CASE_SENSITIVE); if (res!=UNZ_OK) { if (index!=0) *index=-1; if (ze!=NULL) { ZeroMemory(ze,sizeof(ZIPENTRY)); ze->index=-1; } return ZR_NOTFOUND; } if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; int i = (int)uf->num_file; if (index!=NULL) *index=i; if (ze!=NULL) { ZRESULT zres = Get(i,ze); if (zres!=ZR_OK) return zres; } return ZR_OK; } void EnsureDirectory(const TCHAR *rootdir, const TCHAR *dir) { if (dir==NULL || dir[0] == _T('\0')) return; TCHAR cd[MAX_PATH]; _tcscpy(cd,rootdir); _tcscat(cd,dir); for ( unsigned int iCD = 0; iCD < _tcslen( cd ); iCD++ ) { if ( cd[ iCD ] == _T( '/' ) || cd[ iCD ] == _T( '\\' ) ) { cd[ iCD ] = 0; CreateDirectory(cd,NULL); cd[ iCD ] = _T( '\\' ); } } CreateDirectory(cd,NULL); } ZRESULT TUnzip::Unzip(int index,void *dst,unsigned int len,DWORD flags) { if (flags!=ZIP_MEMORY && flags!=ZIP_FILENAME && flags!=ZIP_HANDLE) return ZR_ARGS; if (flags==ZIP_MEMORY) { if (index!=currentfile) { if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; if (index>=(int)uf->gi.number_entry) return ZR_ARGS; if (index<(int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_file0) return ZR_MORE; unzCloseCurrentFile(uf); currentfile=-1; if (res==0) return ZR_OK; else return ZR_FLATE; } // otherwise we're writing to a handle or a file if (currentfile!=-1) unzCloseCurrentFile(uf); currentfile=-1; if (index >= (int)uf->gi.number_entry) return ZR_ARGS; if (index < (int)uf->num_file) unzGoToFirstFile(uf); while ((int)uf->num_filelen) n=len-1; strncpy(buf,msg,n); buf[n]=0; return mlen; } typedef struct { DWORD flag; TUnzip *unz; } TUnzipHandleData; HZIP OpenZipU(void *z,unsigned int len,DWORD flags) { TUnzip *unz = new TUnzip(); lasterrorU = unz->Open(z,len,flags); if (lasterrorU!=ZR_OK) { delete unz; return 0; } TUnzipHandleData *han = new TUnzipHandleData; han->flag=1; han->unz=unz; return (HZIP)han; } ZRESULT GetZipItemA(HZIP hz, int index, ZIPENTRY *ze) { if (hz==0) { lasterrorU=ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) { lasterrorU=ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->Get(index,ze); return lasterrorU; } ZRESULT GetZipItemW(HZIP hz, int index, ZIPENTRYW *zew) { if (hz==0) { lasterrorU=ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) { lasterrorU=ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; ZIPENTRY ze; lasterrorU = unz->Get(index,&ze); if (lasterrorU == ZR_OK) { zew->index = ze.index; zew->attr = ze.attr; zew->atime = ze.atime; zew->ctime = ze.ctime; zew->mtime = ze.mtime; zew->comp_size = ze.comp_size; zew->unc_size = ze.unc_size; #ifdef _UNICODE GetUnicodeFileName(ze.name, zew->name, MAX_PATH-1); #else strcpy(zew->name, ze.name); #endif } return lasterrorU; } ZRESULT FindZipItemA(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze) { if (hz==0) { lasterrorU=ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) { lasterrorU=ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->Find(name,ic,index,ze); return lasterrorU; } ZRESULT FindZipItemW(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRYW *zew) { if (hz==0) { lasterrorU=ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) { lasterrorU=ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; ZIPENTRY ze; lasterrorU = unz->Find(name,ic,index,&ze); if (lasterrorU == ZR_OK) { zew->index = ze.index; zew->attr = ze.attr; zew->atime = ze.atime; zew->ctime = ze.ctime; zew->mtime = ze.mtime; zew->comp_size = ze.comp_size; zew->unc_size = ze.unc_size; #ifdef _UNICODE GetUnicodeFileName(ze.name, zew->name, MAX_PATH-1); #else strcpy(zew->name, ze.name); #endif } return lasterrorU; } ZRESULT UnzipItem(HZIP hz, int index, void *dst, unsigned int len, DWORD flags) { if (hz==0) { lasterrorU=ZR_ARGS; return ZR_ARGS; } TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) { lasterrorU=ZR_ZMODE; return ZR_ZMODE; } TUnzip *unz = han->unz; lasterrorU = unz->Unzip(index,dst,len,flags); return lasterrorU; } ZRESULT CloseZipU(HZIP hz) { if (hz==0) {lasterrorU=ZR_ARGS;return ZR_ARGS;} TUnzipHandleData *han = (TUnzipHandleData*)hz; if (han->flag!=1) {lasterrorU=ZR_ZMODE;return ZR_ZMODE;} TUnzip *unz = han->unz; lasterrorU = unz->Close(); delete unz; delete han; return lasterrorU; } bool IsZipHandleU(HZIP hz) { if (hz==0) return true; TUnzipHandleData *han = (TUnzipHandleData*)hz; return (han->flag==1); } bool SafeUnzipMemory( const void *pvZipped, int cubZipped, void *pvDest, int cubDest /* should be the exact expected unzipped size */ ) { // unzip HZIP hZip = OpenZip( (void *)pvZipped, cubZipped, ZIP_MEMORY ); // UnzipItem is returning ZR_MORE no matter what size buffer is passed in, we know the real size so just accept int iRes = ZR_CORRUPT; if ( hZip ) { try { iRes = UnzipItem( hZip, 0, pvDest, cubDest, ZIP_MEMORY ); } catch ( ... ) { // failed to unzip, try to continue iRes = ZR_CORRUPT; } CloseZip( hZip ); } // check for failure if ( ZR_OK != iRes && ZR_MORE != iRes ) return false; return true; }