// $Id$ // halton.h - classes, etc for generating numbers using the Halton pseudo-random sequence. See // http://halton-sequences.wikiverse.org/. // // what this function is useful for is any sort of sampling/integration problem where // you want to solve it by random sampling. Each call the NextValue() generates // a random number between 0 and 1, in an unclumped manner, so that the space can be more // or less evenly sampled with a minimum number of samples. // // It is NOT useful for generating random numbers dynamically, since the outputs aren't // particularly random. // // To generate multidimensional sample values (points in a plane, etc), use two // HaltonSequenceGenerator_t's, with different (primes) bases. #ifndef HALTON_H #define HALTON_H #include #include class HaltonSequenceGenerator_t { int seed; int base; float fbase; //< base as a float public: HaltonSequenceGenerator_t(int base); //< base MUST be prime, >=2 float GetElement(int element); inline float NextValue(void) { return GetElement(seed++); } }; class DirectionalSampler_t //< pseudo-random sphere sampling { HaltonSequenceGenerator_t zdot; HaltonSequenceGenerator_t vrot; public: DirectionalSampler_t(void) : zdot(2),vrot(3) { } Vector NextValue(void) { float zvalue=zdot.NextValue(); zvalue=2*zvalue-1.0; // map from 0..1 to -1..1 float phi=acos(zvalue); // now, generate a random rotation angle for x/y float theta=2.0*M_PI*vrot.NextValue(); float sin_p=sin(phi); return Vector(cos(theta)*sin_p, sin(theta)*sin_p, zvalue); } }; #endif // halton_h