sqwarmed/sdk_src/game/shared/blob_networkbypass.cpp

354 lines
13 KiB
C++
Raw Normal View History

2024-08-29 19:18:30 -04:00
//========= Copyright <20> 1996-2007, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "blob_networkbypass.h"
#include "ispsharedmemory.h"
#ifndef CLIENT_DLL
#include "npc_surface.h"
#endif
#include "tier0/memdbgon.h"
BlobNetworkBypass_t *g_pBlobNetworkBypass;
#ifdef CLIENT_DLL
CInterpolatedVar< Vector > s_PositionInterpolators[BLOB_MAX_LEVEL_PARTICLES];
CInterpolatedVar< float > s_RadiusInterpolators[BLOB_MAX_LEVEL_PARTICLES];
CInterpolatedVar< Vector > s_ClosestSurfDirInterpolators[BLOB_MAX_LEVEL_PARTICLES];
BlobParticleInterpolation_t g_BlobParticleInterpolation;
void BlobNetworkBypass_CustomDemoDataCallback( uint8 *pData, size_t iSize );
#endif
class CBlobParticleNetworkBypassAutoGame : public CAutoGameSystemPerFrame
{
public:
virtual bool Init()
{
m_pSharedMemory = engine->GetSinglePlayerSharedMemorySpace( "BlobParticleNetworkBypass" );
m_pSharedMemory->Init( sizeof( BlobNetworkBypass_t ) );
g_pBlobNetworkBypass = (BlobNetworkBypass_t *)m_pSharedMemory->Base();
#ifdef CLIENT_DLL
float fInterpAmount = TICK_INTERVAL * (C_BaseEntity::IsSimulatingOnAlternateTicks()?2:1);
for( int i = 0; i != BLOB_MAX_LEVEL_PARTICLES; ++i )
{
s_PositionInterpolators[i].Setup( &g_BlobParticleInterpolation.vInterpolatedPositions[i], LATCH_ANIMATION_VAR ); //LATCH_SIMULATION_VAR, LATCH_ANIMATION_VAR
s_PositionInterpolators[i].SetInterpolationAmount( fInterpAmount ); //fInterpAmount
s_RadiusInterpolators[i].Setup( &g_BlobParticleInterpolation.vInterpolatedRadii[i], LATCH_ANIMATION_VAR ); //LATCH_SIMULATION_VAR, LATCH_ANIMATION_VAR
s_RadiusInterpolators[i].SetInterpolationAmount( fInterpAmount ); //fInterpAmount
s_ClosestSurfDirInterpolators[i].Setup( &g_BlobParticleInterpolation.vInterpolatedClosestSurfDir[i], LATCH_ANIMATION_VAR ); //LATCH_SIMULATION_VAR, LATCH_ANIMATION_VAR
s_ClosestSurfDirInterpolators[i].SetInterpolationAmount( fInterpAmount ); //fInterpAmount
}
m_iOldHighestIndexUsed = 0;
memset( &m_bOldInUse, 0, sizeof( m_bOldInUse ) );
engine->RegisterDemoCustomDataCallback( MAKE_STRING( "BlobNetworkBypass_CustomDemoDataCallback" ), BlobNetworkBypass_CustomDemoDataCallback );
#endif
return true;
}
virtual void Shutdown()
{
m_pSharedMemory->Release();
m_pSharedMemory = NULL;
g_pBlobNetworkBypass = NULL;
}
#ifdef CLIENT_DLL
virtual void PreRender( void );
unsigned int m_iOldHighestIndexUsed;
CBitVec<BLOB_MAX_LEVEL_PARTICLES> m_bOldInUse;
#else
virtual void PreClientUpdate()
{
CNPC_Surface::UpdateBypassParticleData();
}
#endif
ISPSharedMemory *m_pSharedMemory;
};
static CBlobParticleNetworkBypassAutoGame s_CBPNBAG;
#ifndef CLIENT_DLL
int AllocateBlobNetworkBypassIndex( void )
{
int retval;
if( g_pBlobNetworkBypass->iNumParticlesAllocated == g_pBlobNetworkBypass->iHighestIndexUsed )
{
//no holes in the allocations, allocate from the end
retval = g_pBlobNetworkBypass->iHighestIndexUsed;
++g_pBlobNetworkBypass->iHighestIndexUsed;
}
else
{
CBitVec<BLOB_MAX_LEVEL_PARTICLES> notUsed;
g_pBlobNetworkBypass->bCurrentlyInUse.Not( &notUsed );
retval = notUsed.FindNextSetBit( 0 );
Assert( retval < (int)g_pBlobNetworkBypass->iHighestIndexUsed );
}
++g_pBlobNetworkBypass->iNumParticlesAllocated;
g_pBlobNetworkBypass->bCurrentlyInUse.Set( retval );
return retval;
}
void ReleaseBlobNetworkBypassIndex( int iIndex )
{
Assert( g_pBlobNetworkBypass->bCurrentlyInUse.IsBitSet( iIndex ) );
g_pBlobNetworkBypass->bCurrentlyInUse.Clear( iIndex );
g_pBlobNetworkBypass->vParticlePositions[iIndex] = vec3_origin;
g_pBlobNetworkBypass->vParticleRadii[iIndex] = 1.0f;
g_pBlobNetworkBypass->vParticleClosestSurfDir[iIndex] = vec3_origin;
--g_pBlobNetworkBypass->iNumParticlesAllocated;
Assert( iIndex < (int)g_pBlobNetworkBypass->iHighestIndexUsed );
if( iIndex == ((int)g_pBlobNetworkBypass->iHighestIndexUsed - 1) )
{
//search for newest high index
int iOldHighestIntUsed = g_pBlobNetworkBypass->iHighestIndexUsed / BITS_PER_INT;
for( int i = iOldHighestIntUsed; i >= 0; --i )
{
if( (g_pBlobNetworkBypass->bCurrentlyInUse.GetDWord( i ) & (-1)) != 0 )
{
int iLowBit = i * BITS_PER_INT;
int iHighBit = iLowBit + BITS_PER_INT;
for( int j = iHighBit; --j >= iLowBit; )
{
if( g_pBlobNetworkBypass->bCurrentlyInUse.IsBitSet( j ) )
{
g_pBlobNetworkBypass->iHighestIndexUsed = (uint32)j + 1;
break;
}
}
break;
}
}
}
Assert( g_pBlobNetworkBypass->iHighestIndexUsed >= g_pBlobNetworkBypass->iNumParticlesAllocated );
}
#else
void CBlobParticleNetworkBypassAutoGame::PreRender( void )
{
if( engine->IsRecordingDemo() && g_pBlobNetworkBypass->bDataUpdated )
{
//record the update, TODO: compress the data by omitting the holes
int iMaxIndex = MAX(g_pBlobNetworkBypass->iHighestIndexUsed, m_iOldHighestIndexUsed);
int iBitMax = (iMaxIndex / BITS_PER_INT) + 1;
size_t iDataSize = sizeof( int ) + sizeof( float ) + sizeof( int ) + sizeof( int ) + (sizeof( int ) * iBitMax) +
iMaxIndex*( sizeof( Vector ) + sizeof( float ) + sizeof( Vector ) );
uint8 *pData = new uint8 [iDataSize];
uint8 *pWrite = pData;
//let the receiver know how much of each array to expect
*(int *)pWrite = LittleDWord( iMaxIndex );
pWrite += sizeof( int );
//write the update timestamp
*(float *)pWrite = g_pBlobNetworkBypass->fTimeDataUpdated;
pWrite += sizeof( float );
//record usage information, also helps us effectively compress the subsequent data by omitting the holes.
*(int *)pWrite = LittleDWord( g_pBlobNetworkBypass->iHighestIndexUsed );
pWrite += sizeof( int );
*(int *)pWrite = LittleDWord( g_pBlobNetworkBypass->iNumParticlesAllocated );
pWrite += sizeof( int );
int *pIntParser = (int *)&g_pBlobNetworkBypass->bCurrentlyInUse;
for( int i = 0; i != iBitMax; ++i )
{
//convert and write the bitfield integers
*(int *)pWrite = LittleDWord( *pIntParser );
pWrite += sizeof( int );
++pIntParser;
}
//write positions
memcpy( pWrite, g_pBlobNetworkBypass->vParticlePositions, sizeof( Vector ) * iMaxIndex );
pWrite += sizeof( Vector ) * iMaxIndex;
//write radii
memcpy( pWrite, g_pBlobNetworkBypass->vParticleRadii, sizeof( float ) * iMaxIndex );
pWrite += sizeof( float ) * iMaxIndex;
//write closest surface direction
memcpy( pWrite, g_pBlobNetworkBypass->vParticleClosestSurfDir, sizeof( Vector ) * iMaxIndex );
pWrite += sizeof( Vector ) * iMaxIndex;
engine->RecordDemoCustomData( BlobNetworkBypass_CustomDemoDataCallback, pData, iDataSize );
Assert( pWrite == (pData + iDataSize) );
delete []pData;
}
//invalidate interpolation on freed indices, do a quick update for brand new indices
{
//operate on smaller chunks based on the assumption that LARGE portions of the end of the bitvecs are empty
CBitVec<BITS_PER_INT> *pCurrentlyInUse = (CBitVec<BITS_PER_INT> *)&g_pBlobNetworkBypass->bCurrentlyInUse;
CBitVec<BITS_PER_INT> *pOldInUse = (CBitVec<BITS_PER_INT> *)&m_bOldInUse;
int iStop = (MAX(g_pBlobNetworkBypass->iHighestIndexUsed, m_iOldHighestIndexUsed) / BITS_PER_INT) + 1;
int iBaseIndex = 0;
//float fNewIndicesUpdateTime = g_pBlobNetworkBypass->bPositionsUpdated ? g_pBlobNetworkBypass->fTimeDataUpdated : gpGlobals->curtime;
for( int i = 0; i != iStop; ++i )
{
CBitVec<BITS_PER_INT> bInUseXOR;
pCurrentlyInUse->Xor( *pOldInUse, &bInUseXOR ); //find bits that changed
int j = 0;
while( (j = bInUseXOR.FindNextSetBit( j )) != -1 )
{
int iChangedUsageIndex = iBaseIndex + j;
if( pOldInUse->IsBitSet( iChangedUsageIndex ) )
{
//index no longer used
g_BlobParticleInterpolation.vInterpolatedPositions[iChangedUsageIndex] = vec3_origin;
s_PositionInterpolators[iChangedUsageIndex].ClearHistory();
g_BlobParticleInterpolation.vInterpolatedRadii[iChangedUsageIndex] = 1.0f;
s_RadiusInterpolators[iChangedUsageIndex].ClearHistory();
g_BlobParticleInterpolation.vInterpolatedClosestSurfDir[iChangedUsageIndex] = vec3_origin;
s_ClosestSurfDirInterpolators[iChangedUsageIndex].ClearHistory();
}
else
{
//index just started being used. Assume we got an out of band update to the position
g_BlobParticleInterpolation.vInterpolatedPositions[iChangedUsageIndex] = g_pBlobNetworkBypass->vParticlePositions[iChangedUsageIndex];
s_PositionInterpolators[iChangedUsageIndex].Reset( gpGlobals->curtime );
g_BlobParticleInterpolation.vInterpolatedRadii[iChangedUsageIndex] = g_pBlobNetworkBypass->vParticleRadii[iChangedUsageIndex];
s_RadiusInterpolators[iChangedUsageIndex].Reset( gpGlobals->curtime );
g_BlobParticleInterpolation.vInterpolatedClosestSurfDir[iChangedUsageIndex] = g_pBlobNetworkBypass->vParticleClosestSurfDir[iChangedUsageIndex];
s_ClosestSurfDirInterpolators[iChangedUsageIndex].Reset( gpGlobals->curtime );
//s_PositionInterpolators[iChangedUsageIndex].NoteChanged( gpGlobals->curtime, fNewIndicesUpdateTime, true );
}
++j;
if( j == BITS_PER_INT )
break;
}
iBaseIndex += BITS_PER_INT;
++pCurrentlyInUse;
++pOldInUse;
}
memcpy( &m_bOldInUse, &g_pBlobNetworkBypass->bCurrentlyInUse, sizeof( m_bOldInUse ) );
m_iOldHighestIndexUsed = g_pBlobNetworkBypass->iHighestIndexUsed;
}
if( g_pBlobNetworkBypass->iHighestIndexUsed == 0 )
return;
static ConVarRef cl_interpREF( "cl_interp" );
//now do the interpolation of positions still in use
{
float fInterpTime = gpGlobals->curtime - cl_interpREF.GetFloat();
CBitVec<BITS_PER_INT> *pIntParser = (CBitVec<BITS_PER_INT> *)&g_pBlobNetworkBypass->bCurrentlyInUse;
int iStop = (g_pBlobNetworkBypass->iHighestIndexUsed / BITS_PER_INT) + 1;
int iBaseIndex = 0;
for( int i = 0; i != iStop; ++i )
{
int j = 0;
while( (j = pIntParser->FindNextSetBit( j )) != -1 )
{
int iUpdateIndex = iBaseIndex + j;
if( g_pBlobNetworkBypass->bDataUpdated )
{
g_BlobParticleInterpolation.vInterpolatedPositions[iUpdateIndex] = g_pBlobNetworkBypass->vParticlePositions[iUpdateIndex];
s_PositionInterpolators[iUpdateIndex].NoteChanged( gpGlobals->curtime, g_pBlobNetworkBypass->fTimeDataUpdated, true );
g_BlobParticleInterpolation.vInterpolatedRadii[iUpdateIndex] = g_pBlobNetworkBypass->vParticleRadii[iUpdateIndex];
s_RadiusInterpolators[iUpdateIndex].NoteChanged( gpGlobals->curtime, g_pBlobNetworkBypass->fTimeDataUpdated, true );
g_BlobParticleInterpolation.vInterpolatedClosestSurfDir[iUpdateIndex] = g_pBlobNetworkBypass->vParticleClosestSurfDir[iUpdateIndex];
s_ClosestSurfDirInterpolators[iUpdateIndex].NoteChanged( gpGlobals->curtime, g_pBlobNetworkBypass->fTimeDataUpdated, true );
//s_PositionInterpolators[iUpdateIndex].AddToHead( gpGlobals->curtime, &g_pBlobNetworkBypass->vParticlePositions[iUpdateIndex], false );
}
s_PositionInterpolators[iUpdateIndex].Interpolate( fInterpTime );
s_RadiusInterpolators[iUpdateIndex].Interpolate( fInterpTime );
s_ClosestSurfDirInterpolators[iUpdateIndex].Interpolate( fInterpTime );
++j;
if( j == BITS_PER_INT )
break;
}
iBaseIndex += BITS_PER_INT;
++pIntParser;
}
g_pBlobNetworkBypass->bDataUpdated = false;
}
}
void BlobNetworkBypass_CustomDemoDataCallback( uint8 *pData, size_t iSize )
{
// FIXME: need a version number!
uint8 *pParse = pData;
int iMaxIndex = LittleDWord( *(int *)pParse );
pParse += sizeof( int );
int iBitMax = (iMaxIndex / BITS_PER_INT) + 1;
Assert( iSize == (sizeof( int ) + sizeof( float ) + sizeof( int ) + sizeof( int ) + (sizeof( int ) * iBitMax) +
iMaxIndex*( sizeof( Vector ) + sizeof( float ) + sizeof( Vector ) )) );
g_pBlobNetworkBypass->fTimeDataUpdated = *(float *)pParse;
pParse += sizeof( float );
g_pBlobNetworkBypass->iHighestIndexUsed = LittleDWord( *(int *)pParse );
pParse += sizeof( int );
g_pBlobNetworkBypass->iNumParticlesAllocated = LittleDWord( *(int *)pParse );
pParse += sizeof( int );
int *pIntParser = (int *)&g_pBlobNetworkBypass->bCurrentlyInUse;
for( int i = 0; i != iBitMax; ++i )
{
//read and convert the bitfield integers
*pIntParser = LittleDWord( *(int *)pParse );
pParse += sizeof( int );
++pIntParser;
}
//read positions
memcpy( g_pBlobNetworkBypass->vParticlePositions, pParse, sizeof( Vector ) * iMaxIndex );
pParse += sizeof( Vector ) * iMaxIndex;
//read radii
memcpy( g_pBlobNetworkBypass->vParticleRadii, pParse, sizeof( float ) * iMaxIndex );
pParse += sizeof( float ) * iMaxIndex;
//read closest surface direction
memcpy( g_pBlobNetworkBypass->vParticleClosestSurfDir, pParse, sizeof( Vector ) * iMaxIndex );
pParse += sizeof( Vector ) * iMaxIndex;
g_pBlobNetworkBypass->bDataUpdated = true;
Assert( pParse == (pData + iSize) );
}
#endif