74 lines
2.7 KiB
C
74 lines
2.7 KiB
C
|
//====== Copyright <20> 2007-2007, Valve Corporation, All rights reserved. =======//
|
|||
|
//
|
|||
|
// Purpose: Functions for spherical geometry.
|
|||
|
//
|
|||
|
// $NoKeywords: $
|
|||
|
//
|
|||
|
//=============================================================================//
|
|||
|
|
|||
|
#ifndef SPHERICAL_GEOMETRY_H
|
|||
|
#define SPHERICAL_GEOMETRY_H
|
|||
|
|
|||
|
#ifdef _WIN32
|
|||
|
#pragma once
|
|||
|
#endif
|
|||
|
|
|||
|
#include <math.h>
|
|||
|
#include <float.h>
|
|||
|
|
|||
|
// see http://mathworld.wolfram.com/SphericalTrigonometry.html
|
|||
|
|
|||
|
// return the spherical distance, in radians, between 2 points on the unit sphere.
|
|||
|
FORCEINLINE float UnitSphereLineSegmentLength( Vector const &a, Vector const &b )
|
|||
|
{
|
|||
|
// check unit length
|
|||
|
Assert( fabs( VectorLength( a ) - 1.0 ) < 1.0e-3 );
|
|||
|
Assert( fabs( VectorLength( b ) - 1.0 ) < 1.0e-3 );
|
|||
|
return acos( DotProduct( a, b ) );
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// given 3 points on the unit sphere, return the spherical area (in radians) of the triangle they form.
|
|||
|
// valid for "small" triangles.
|
|||
|
FORCEINLINE float UnitSphereTriangleArea( Vector const &a, Vector const &b , Vector const &c )
|
|||
|
{
|
|||
|
float flLengthA = UnitSphereLineSegmentLength( b, c );
|
|||
|
float flLengthB = UnitSphereLineSegmentLength( c, a );
|
|||
|
float flLengthC = UnitSphereLineSegmentLength( a, b );
|
|||
|
|
|||
|
if ( ( flLengthA == 0. ) || ( flLengthB == 0. ) || ( flLengthC == 0. ) )
|
|||
|
return 0.; // zero area triangle
|
|||
|
|
|||
|
// now, find the 3 incribed angles for the triangle
|
|||
|
float flHalfSumLens = 0.5 * ( flLengthA + flLengthB + flLengthC );
|
|||
|
float flSinSums = sin( flHalfSumLens );
|
|||
|
float flSinSMinusA= sin( flHalfSumLens - flLengthA );
|
|||
|
float flSinSMinusB= sin( flHalfSumLens - flLengthB );
|
|||
|
float flSinSMinusC= sin( flHalfSumLens - flLengthC );
|
|||
|
|
|||
|
float flTanAOver2 = sqrt ( ( flSinSMinusB * flSinSMinusC ) / ( flSinSums * flSinSMinusA ) );
|
|||
|
float flTanBOver2 = sqrt ( ( flSinSMinusA * flSinSMinusC ) / ( flSinSums * flSinSMinusB ) );
|
|||
|
float flTanCOver2 = sqrt ( ( flSinSMinusA * flSinSMinusB ) / ( flSinSums * flSinSMinusC ) );
|
|||
|
|
|||
|
// Girards formula : area = sum of angles - pi.
|
|||
|
return 2.0 * ( atan( flTanAOver2 ) + atan( flTanBOver2 ) + atan( flTanCOver2 ) ) - M_PI;
|
|||
|
}
|
|||
|
|
|||
|
// spherical harmonics-related functions. Best explanation at http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf
|
|||
|
|
|||
|
// Evaluate associated legendre polynomial P( l, m ) at flX, using recurrence relation
|
|||
|
float AssociatedLegendrePolynomial( int nL, int nM, float flX );
|
|||
|
|
|||
|
// Evaluate order N spherical harmonic with spherical coordinates
|
|||
|
// nL = band, 0..N
|
|||
|
// nM = -nL .. nL
|
|||
|
// theta = 0..M_PI
|
|||
|
// phi = 0.. 2 * M_PHI
|
|||
|
float SphericalHarmonic( int nL, int nM, float flTheta, float flPhi );
|
|||
|
|
|||
|
// evaluate spherical harmonic with normalized vector direction
|
|||
|
float SphericalHarmonic( int nL, int nM, Vector const &vecDirection );
|
|||
|
|
|||
|
|
|||
|
#endif // SPHERICAL_GEOMETRY_H
|