sqwarmed/sdk_src/game/server/h_ai.cpp

267 lines
10 KiB
C++
Raw Normal View History

2024-08-29 19:18:30 -04:00
//========= Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Utility functions used by AI code.
//
//=============================================================================//
#include "cbase.h"
#include "game.h"
#include "vstdlib/random.h"
#include "movevars_shared.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define NUM_LATERAL_CHECKS 13 // how many checks are made on each side of a NPC looking for lateral cover
#define NUM_LATERAL_LOS_CHECKS 6 // how many checks are made on each side of a NPC looking for lateral cover
#define TOSS_HEIGHT_MAX 300 // altitude of initial trace done to see how high something can be tossed
//float flRandom = random->RandomFloat(0,1);
bool g_fDrawLines = FALSE;
//=========================================================
// FBoxVisible - a more accurate ( and slower ) version
// of FVisible.
//
// !!!UNDONE - make this CAI_BaseNPC?
//=========================================================
bool FBoxVisible( CBaseEntity *pLooker, CBaseEntity *pTarget, Vector &vecTargetOrigin, float flSize )
{
// don't look through water
if ((pLooker->GetWaterLevel() != 3 && pTarget->GetWaterLevel() == 3)
|| (pLooker->GetWaterLevel() == 3 && pTarget->GetWaterLevel() == 0))
return FALSE;
trace_t tr;
Vector vecLookerOrigin = pLooker->EyePosition();//look through the NPC's 'eyes'
for (int i = 0; i < 5; i++)
{
Vector vecTarget = pTarget->GetAbsOrigin();
vecTarget.x += random->RandomFloat( pTarget->WorldAlignMins().x + flSize, pTarget->WorldAlignMaxs().x - flSize);
vecTarget.y += random->RandomFloat( pTarget->WorldAlignMins().y + flSize, pTarget->WorldAlignMaxs().y - flSize);
vecTarget.z += random->RandomFloat( pTarget->WorldAlignMins().z + flSize, pTarget->WorldAlignMaxs().z - flSize);
UTIL_TraceLine(vecLookerOrigin, vecTarget, MASK_BLOCKLOS, pLooker, COLLISION_GROUP_NONE, &tr);
if (tr.fraction == 1.0)
{
vecTargetOrigin = vecTarget;
return TRUE;// line of sight is valid.
}
}
return FALSE;// Line of sight is not established
}
//-----------------------------------------------------------------------------
// Purpose: Returns the correct toss velocity to throw a given object at a point.
// Like the other version of VecCheckToss, but allows you to filter for any
// number of entities to ignore.
// Input : pEntity - The object doing the throwing. Is *NOT* automatically included in the
// filter below.
// pFilter - A trace filter of entities to ignore in the object's collision sweeps.
// It is recommended to include at least the thrower.
// vecSpot1 - The point from which the object is being thrown.
// vecSpot2 - The point TO which the object is being thrown.
// flHeightMaxRatio - A scale factor indicating the maximum ratio of height
// to total throw distance, measured from the higher of the two endpoints to
// the apex. -1 indicates that there is no maximum.
// flGravityAdj - Scale factor for gravity - should match the gravity scale
// that the object will use in midair.
// bRandomize - when true, introduces a little fudge to the throw
// Output : Velocity to throw the object with.
//-----------------------------------------------------------------------------
Vector VecCheckToss( CBaseEntity *pEntity, ITraceFilter *pFilter, Vector vecSpot1, Vector vecSpot2, float flHeightMaxRatio, float flGravityAdj, bool bRandomize, Vector *vecMins, Vector *vecMaxs )
{
trace_t tr;
Vector vecMidPoint;// halfway point between Spot1 and Spot2
Vector vecApex;// highest point
Vector vecScale;
Vector vecTossVel;
Vector vecTemp;
float flGravity = sv_gravity.GetFloat() * flGravityAdj;
if (vecSpot2.z - vecSpot1.z > 500)
{
// to high, fail
return vec3_origin;
}
Vector forward, right;
AngleVectors( pEntity->GetLocalAngles(), &forward, &right, NULL );
if (bRandomize)
{
// toss a little bit to the left or right, not right down on the enemy's bean (head).
vecSpot2 += right * ( random->RandomFloat(-8,8) + random->RandomFloat(-16,16) );
vecSpot2 += forward * ( random->RandomFloat(-8,8) + random->RandomFloat(-16,16) );
}
// calculate the midpoint and apex of the 'triangle'
// UNDONE: normalize any Z position differences between spot1 and spot2 so that triangle is always RIGHT
// get a rough idea of how high it can be thrown
vecMidPoint = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5;
UTIL_TraceLine(vecMidPoint, vecMidPoint + Vector(0,0,TOSS_HEIGHT_MAX), MASK_SOLID_BRUSHONLY, pFilter, &tr);
vecMidPoint = tr.endpos;
if( tr.fraction != 1.0 )
{
// (subtract 15 so the object doesn't hit the ceiling)
vecMidPoint.z -= 15;
}
if (flHeightMaxRatio != -1)
{
// But don't throw so high that it looks silly. Maximize the height of the
// throw above the highest of the two endpoints to a ratio of the throw length.
float flHeightMax = flHeightMaxRatio * (vecSpot2 - vecSpot1).Length();
float flHighestEndZ = MAX(vecSpot1.z, vecSpot2.z);
if ((vecMidPoint.z - flHighestEndZ) > flHeightMax)
{
vecMidPoint.z = flHighestEndZ + flHeightMax;
}
}
if (vecMidPoint.z < vecSpot1.z || vecMidPoint.z < vecSpot2.z)
{
// Not enough space, fail
return vec3_origin;
}
// How high should the object travel to reach the apex
float distance1 = (vecMidPoint.z - vecSpot1.z);
float distance2 = (vecMidPoint.z - vecSpot2.z);
// How long will it take for the object to travel this distance
float time1 = sqrt( distance1 / (0.5 * flGravity) );
float time2 = sqrt( distance2 / (0.5 * flGravity) );
if (time1 < 0.1)
{
// too close
return vec3_origin;
}
// how hard to throw sideways to get there in time.
vecTossVel = (vecSpot2 - vecSpot1) / (time1 + time2);
// how hard upwards to reach the apex at the right time.
vecTossVel.z = flGravity * time1;
// find the apex
vecApex = vecSpot1 + vecTossVel * time1;
vecApex.z = vecMidPoint.z;
// JAY: Repro behavior from HL1 -- toss check went through gratings
UTIL_TraceLine(vecSpot1, vecApex, (MASK_SOLID&(~CONTENTS_GRATE)), pFilter, &tr);
if (tr.fraction != 1.0)
{
// fail!
return vec3_origin;
}
// UNDONE: either ignore NPCs or change it to not care if we hit our enemy
UTIL_TraceLine(vecSpot2, vecApex, (MASK_SOLID_BRUSHONLY&(~CONTENTS_GRATE)), pFilter, &tr);
if (tr.fraction != 1.0)
{
// fail!
return vec3_origin;
}
if ( vecMins && vecMaxs )
{
// Check to ensure the entity's hull can travel the first half of the grenade throw
UTIL_TraceHull( vecSpot1, vecApex, *vecMins, *vecMaxs, (MASK_SOLID&(~CONTENTS_GRATE)), pFilter, &tr);
if ( tr.fraction < 1.0 )
return vec3_origin;
}
return vecTossVel;
}
//-----------------------------------------------------------------------------
// Purpose: Returns the correct toss velocity to throw a given object at a point.
// Input : pEntity - The entity that is throwing the object.
// vecSpot1 - The point from which the object is being thrown.
// vecSpot2 - The point TO which the object is being thrown.
// flHeightMaxRatio - A scale factor indicating the maximum ratio of height
// to total throw distance, measured from the higher of the two endpoints to
// the apex. -1 indicates that there is no maximum.
// flGravityAdj - Scale factor for gravity - should match the gravity scale
// that the object will use in midair.
// bRandomize - when true, introduces a little fudge to the throw
// Output : Velocity to throw the object with.
//-----------------------------------------------------------------------------
Vector VecCheckToss( CBaseEntity *pEntity, Vector vecSpot1, Vector vecSpot2, float flHeightMaxRatio, float flGravityAdj, bool bRandomize, Vector *vecMins, Vector *vecMaxs )
{
// construct a filter and call through to the other version of this function.
CTraceFilterSimple traceFilter( pEntity, COLLISION_GROUP_NONE );
return VecCheckToss( pEntity, &traceFilter, vecSpot1, vecSpot2,
flHeightMaxRatio, flGravityAdj, bRandomize,
vecMins, vecMaxs );
}
//
// VecCheckThrow - returns the velocity vector at which an object should be thrown from vecspot1 to hit vecspot2.
// returns vec3_origin if throw is not feasible.
//
Vector VecCheckThrow ( CBaseEntity *pEdict, const Vector &vecSpot1, Vector vecSpot2, float flSpeed, float flGravityAdj, Vector *vecMins, Vector *vecMaxs )
{
float flGravity = sv_gravity.GetFloat() * flGravityAdj;
Vector vecGrenadeVel = (vecSpot2 - vecSpot1);
// throw at a constant time
float time = vecGrenadeVel.Length( ) / flSpeed;
vecGrenadeVel = vecGrenadeVel * (1.0 / time);
// adjust upward toss to compensate for gravity loss
vecGrenadeVel.z += flGravity * time * 0.5;
Vector vecApex = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5;
vecApex.z += 0.5 * flGravity * (time * 0.5) * (time * 0.5);
trace_t tr;
UTIL_TraceLine(vecSpot1, vecApex, MASK_SOLID, pEdict, COLLISION_GROUP_NONE, &tr);
if (tr.fraction != 1.0)
{
// fail!
//NDebugOverlay::Line( vecSpot1, vecApex, 255, 0, 0, true, 5.0 );
return vec3_origin;
}
//NDebugOverlay::Line( vecSpot1, vecApex, 0, 255, 0, true, 5.0 );
UTIL_TraceLine(vecSpot2, vecApex, MASK_SOLID_BRUSHONLY, pEdict, COLLISION_GROUP_NONE, &tr);
if (tr.fraction != 1.0)
{
// fail!
//NDebugOverlay::Line( vecApex, vecSpot2, 255, 0, 0, true, 5.0 );
return vec3_origin;
}
//NDebugOverlay::Line( vecApex, vecSpot2, 0, 255, 0, true, 5.0 );
if ( vecMins && vecMaxs )
{
// Check to ensure the entity's hull can travel the first half of the grenade throw
UTIL_TraceHull( vecSpot1, vecApex, *vecMins, *vecMaxs, MASK_SOLID, pEdict, COLLISION_GROUP_NONE, &tr);
if ( tr.fraction < 1.0 )
{
//NDebugOverlay::SweptBox( vecSpot1, tr.endpos, *vecMins, *vecMaxs, vec3_angle, 255, 0, 0, 64, 5.0 );
return vec3_origin;
}
}
//NDebugOverlay::SweptBox( vecSpot1, vecApex, *vecMins, *vecMaxs, vec3_angle, 0, 255, 0, 64, 5.0 );
return vecGrenadeVel;
}