DockerCLI/vendor/github.com/theupdateframework/notary/tuf/signed/verifiers.go

265 lines
7.6 KiB
Go

package signed
import (
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"encoding/pem"
"fmt"
"math/big"
"github.com/sirupsen/logrus"
"github.com/theupdateframework/notary/tuf/data"
"golang.org/x/crypto/ed25519"
)
const (
minRSAKeySizeBit = 2048 // 2048 bits = 256 bytes
minRSAKeySizeByte = minRSAKeySizeBit / 8
)
// Verifiers serves as a map of all verifiers available on the system and
// can be injected into a verificationService. For testing and configuration
// purposes, it will not be used by default.
var Verifiers = map[data.SigAlgorithm]Verifier{
data.RSAPSSSignature: RSAPSSVerifier{},
data.RSAPKCS1v15Signature: RSAPKCS1v15Verifier{},
data.PyCryptoSignature: RSAPyCryptoVerifier{},
data.ECDSASignature: ECDSAVerifier{},
data.EDDSASignature: Ed25519Verifier{},
}
// Ed25519Verifier used to verify Ed25519 signatures
type Ed25519Verifier struct{}
// Verify checks that an ed25519 signature is valid
func (v Ed25519Verifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
if key.Algorithm() != data.ED25519Key {
return ErrInvalidKeyType{}
}
sigBytes := make([]byte, ed25519.SignatureSize)
if len(sig) != ed25519.SignatureSize {
logrus.Debugf("signature length is incorrect, must be %d, was %d.", ed25519.SignatureSize, len(sig))
return ErrInvalid
}
copy(sigBytes, sig)
keyBytes := make([]byte, ed25519.PublicKeySize)
pub := key.Public()
if len(pub) != ed25519.PublicKeySize {
logrus.Errorf("public key is incorrect size, must be %d, was %d.", ed25519.PublicKeySize, len(pub))
return ErrInvalidKeyLength{msg: fmt.Sprintf("ed25519 public key must be %d bytes.", ed25519.PublicKeySize)}
}
n := copy(keyBytes, key.Public())
if n < ed25519.PublicKeySize {
logrus.Errorf("failed to copy the key, must have %d bytes, copied %d bytes.", ed25519.PublicKeySize, n)
return ErrInvalid
}
if !ed25519.Verify(ed25519.PublicKey(keyBytes), msg, sigBytes) {
logrus.Debugf("failed ed25519 verification")
return ErrInvalid
}
return nil
}
func verifyPSS(key interface{}, digest, sig []byte) error {
rsaPub, ok := key.(*rsa.PublicKey)
if !ok {
logrus.Debugf("value was not an RSA public key")
return ErrInvalid
}
if rsaPub.N.BitLen() < minRSAKeySizeBit {
logrus.Debugf("RSA keys less than 2048 bits are not acceptable, provided key has length %d.", rsaPub.N.BitLen())
return ErrInvalidKeyLength{msg: fmt.Sprintf("RSA key must be at least %d bits.", minRSAKeySizeBit)}
}
if len(sig) < minRSAKeySizeByte {
logrus.Debugf("RSA keys less than 2048 bits are not acceptable, provided signature has length %d.", len(sig))
return ErrInvalid
}
opts := rsa.PSSOptions{SaltLength: sha256.Size, Hash: crypto.SHA256}
if err := rsa.VerifyPSS(rsaPub, crypto.SHA256, digest[:], sig, &opts); err != nil {
logrus.Debugf("failed RSAPSS verification: %s", err)
return ErrInvalid
}
return nil
}
func getRSAPubKey(key data.PublicKey) (crypto.PublicKey, error) {
algorithm := key.Algorithm()
var pubKey crypto.PublicKey
switch algorithm {
case data.RSAx509Key:
pemCert, _ := pem.Decode([]byte(key.Public()))
if pemCert == nil {
logrus.Debugf("failed to decode PEM-encoded x509 certificate")
return nil, ErrInvalid
}
cert, err := x509.ParseCertificate(pemCert.Bytes)
if err != nil {
logrus.Debugf("failed to parse x509 certificate: %s\n", err)
return nil, ErrInvalid
}
pubKey = cert.PublicKey
case data.RSAKey:
var err error
pubKey, err = x509.ParsePKIXPublicKey(key.Public())
if err != nil {
logrus.Debugf("failed to parse public key: %s\n", err)
return nil, ErrInvalid
}
default:
// only accept RSA keys
logrus.Debugf("invalid key type for RSAPSS verifier: %s", algorithm)
return nil, ErrInvalidKeyType{}
}
return pubKey, nil
}
// RSAPSSVerifier checks RSASSA-PSS signatures
type RSAPSSVerifier struct{}
// Verify does the actual check.
func (v RSAPSSVerifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
// will return err if keytype is not a recognized RSA type
pubKey, err := getRSAPubKey(key)
if err != nil {
return err
}
digest := sha256.Sum256(msg)
return verifyPSS(pubKey, digest[:], sig)
}
// RSAPKCS1v15Verifier checks RSA PKCS1v15 signatures
type RSAPKCS1v15Verifier struct{}
// Verify does the actual verification
func (v RSAPKCS1v15Verifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
// will return err if keytype is not a recognized RSA type
pubKey, err := getRSAPubKey(key)
if err != nil {
return err
}
digest := sha256.Sum256(msg)
rsaPub, ok := pubKey.(*rsa.PublicKey)
if !ok {
logrus.Debugf("value was not an RSA public key")
return ErrInvalid
}
if rsaPub.N.BitLen() < minRSAKeySizeBit {
logrus.Debugf("RSA keys less than 2048 bits are not acceptable, provided key has length %d.", rsaPub.N.BitLen())
return ErrInvalidKeyLength{msg: fmt.Sprintf("RSA key must be at least %d bits.", minRSAKeySizeBit)}
}
if len(sig) < minRSAKeySizeByte {
logrus.Debugf("RSA keys less than 2048 bits are not acceptable, provided signature has length %d.", len(sig))
return ErrInvalid
}
if err = rsa.VerifyPKCS1v15(rsaPub, crypto.SHA256, digest[:], sig); err != nil {
logrus.Errorf("Failed verification: %s", err.Error())
return ErrInvalid
}
return nil
}
// RSAPyCryptoVerifier checks RSASSA-PSS signatures
type RSAPyCryptoVerifier struct{}
// Verify does the actual check.
// N.B. We have not been able to make this work in a way that is compatible
// with PyCrypto.
func (v RSAPyCryptoVerifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
digest := sha256.Sum256(msg)
if key.Algorithm() != data.RSAKey {
return ErrInvalidKeyType{}
}
k, _ := pem.Decode([]byte(key.Public()))
if k == nil {
logrus.Debugf("failed to decode PEM-encoded x509 certificate")
return ErrInvalid
}
pub, err := x509.ParsePKIXPublicKey(k.Bytes)
if err != nil {
logrus.Debugf("failed to parse public key: %s\n", err)
return ErrInvalid
}
return verifyPSS(pub, digest[:], sig)
}
// ECDSAVerifier checks ECDSA signatures, decoding the keyType appropriately
type ECDSAVerifier struct{}
// Verify does the actual check.
func (v ECDSAVerifier) Verify(key data.PublicKey, sig []byte, msg []byte) error {
algorithm := key.Algorithm()
var pubKey crypto.PublicKey
switch algorithm {
case data.ECDSAx509Key:
pemCert, _ := pem.Decode([]byte(key.Public()))
if pemCert == nil {
logrus.Debugf("failed to decode PEM-encoded x509 certificate for keyID: %s", key.ID())
logrus.Debugf("certificate bytes: %s", string(key.Public()))
return ErrInvalid
}
cert, err := x509.ParseCertificate(pemCert.Bytes)
if err != nil {
logrus.Debugf("failed to parse x509 certificate: %s\n", err)
return ErrInvalid
}
pubKey = cert.PublicKey
case data.ECDSAKey:
var err error
pubKey, err = x509.ParsePKIXPublicKey(key.Public())
if err != nil {
logrus.Debugf("Failed to parse private key for keyID: %s, %s\n", key.ID(), err)
return ErrInvalid
}
default:
// only accept ECDSA keys.
logrus.Debugf("invalid key type for ECDSA verifier: %s", algorithm)
return ErrInvalidKeyType{}
}
ecdsaPubKey, ok := pubKey.(*ecdsa.PublicKey)
if !ok {
logrus.Debugf("value isn't an ECDSA public key")
return ErrInvalid
}
sigLength := len(sig)
expectedOctetLength := 2 * ((ecdsaPubKey.Params().BitSize + 7) >> 3)
if sigLength != expectedOctetLength {
logrus.Debugf("signature had an unexpected length")
return ErrInvalid
}
rBytes, sBytes := sig[:sigLength/2], sig[sigLength/2:]
r := new(big.Int).SetBytes(rBytes)
s := new(big.Int).SetBytes(sBytes)
digest := sha256.Sum256(msg)
if !ecdsa.Verify(ecdsaPubKey, digest[:], r, s) {
logrus.Debugf("failed ECDSA signature validation")
return ErrInvalid
}
return nil
}