DockerCLI/vendor/github.com/klauspost/compress/huff0/huff0.go

338 lines
8.9 KiB
Go

// Package huff0 provides fast huffman encoding as used in zstd.
//
// See README.md at https://github.com/klauspost/compress/tree/master/huff0 for details.
package huff0
import (
"errors"
"fmt"
"math"
"math/bits"
"sync"
"github.com/klauspost/compress/fse"
)
const (
maxSymbolValue = 255
// zstandard limits tablelog to 11, see:
// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#huffman-tree-description
tableLogMax = 11
tableLogDefault = 11
minTablelog = 5
huffNodesLen = 512
// BlockSizeMax is maximum input size for a single block uncompressed.
BlockSizeMax = 1<<18 - 1
)
var (
// ErrIncompressible is returned when input is judged to be too hard to compress.
ErrIncompressible = errors.New("input is not compressible")
// ErrUseRLE is returned from the compressor when the input is a single byte value repeated.
ErrUseRLE = errors.New("input is single value repeated")
// ErrTooBig is return if input is too large for a single block.
ErrTooBig = errors.New("input too big")
// ErrMaxDecodedSizeExceeded is return if input is too large for a single block.
ErrMaxDecodedSizeExceeded = errors.New("maximum output size exceeded")
)
type ReusePolicy uint8
const (
// ReusePolicyAllow will allow reuse if it produces smaller output.
ReusePolicyAllow ReusePolicy = iota
// ReusePolicyPrefer will re-use aggressively if possible.
// This will not check if a new table will produce smaller output,
// except if the current table is impossible to use or
// compressed output is bigger than input.
ReusePolicyPrefer
// ReusePolicyNone will disable re-use of tables.
// This is slightly faster than ReusePolicyAllow but may produce larger output.
ReusePolicyNone
// ReusePolicyMust must allow reuse and produce smaller output.
ReusePolicyMust
)
type Scratch struct {
count [maxSymbolValue + 1]uint32
// Per block parameters.
// These can be used to override compression parameters of the block.
// Do not touch, unless you know what you are doing.
// Out is output buffer.
// If the scratch is re-used before the caller is done processing the output,
// set this field to nil.
// Otherwise the output buffer will be re-used for next Compression/Decompression step
// and allocation will be avoided.
Out []byte
// OutTable will contain the table data only, if a new table has been generated.
// Slice of the returned data.
OutTable []byte
// OutData will contain the compressed data.
// Slice of the returned data.
OutData []byte
// MaxDecodedSize will set the maximum allowed output size.
// This value will automatically be set to BlockSizeMax if not set.
// Decoders will return ErrMaxDecodedSizeExceeded is this limit is exceeded.
MaxDecodedSize int
srcLen int
// MaxSymbolValue will override the maximum symbol value of the next block.
MaxSymbolValue uint8
// TableLog will attempt to override the tablelog for the next block.
// Must be <= 11 and >= 5.
TableLog uint8
// Reuse will specify the reuse policy
Reuse ReusePolicy
// WantLogLess allows to specify a log 2 reduction that should at least be achieved,
// otherwise the block will be returned as incompressible.
// The reduction should then at least be (input size >> WantLogLess)
// If WantLogLess == 0 any improvement will do.
WantLogLess uint8
symbolLen uint16 // Length of active part of the symbol table.
maxCount int // count of the most probable symbol
clearCount bool // clear count
actualTableLog uint8 // Selected tablelog.
prevTableLog uint8 // Tablelog for previous table
prevTable cTable // Table used for previous compression.
cTable cTable // compression table
dt dTable // decompression table
nodes []nodeElt
tmpOut [4][]byte
fse *fse.Scratch
decPool sync.Pool // *[4][256]byte buffers.
huffWeight [maxSymbolValue + 1]byte
}
// TransferCTable will transfer the previously used compression table.
func (s *Scratch) TransferCTable(src *Scratch) {
if cap(s.prevTable) < len(src.prevTable) {
s.prevTable = make(cTable, 0, maxSymbolValue+1)
}
s.prevTable = s.prevTable[:len(src.prevTable)]
copy(s.prevTable, src.prevTable)
s.prevTableLog = src.prevTableLog
}
func (s *Scratch) prepare(in []byte) (*Scratch, error) {
if len(in) > BlockSizeMax {
return nil, ErrTooBig
}
if s == nil {
s = &Scratch{}
}
if s.MaxSymbolValue == 0 {
s.MaxSymbolValue = maxSymbolValue
}
if s.TableLog == 0 {
s.TableLog = tableLogDefault
}
if s.TableLog > tableLogMax || s.TableLog < minTablelog {
return nil, fmt.Errorf(" invalid tableLog %d (%d -> %d)", s.TableLog, minTablelog, tableLogMax)
}
if s.MaxDecodedSize <= 0 || s.MaxDecodedSize > BlockSizeMax {
s.MaxDecodedSize = BlockSizeMax
}
if s.clearCount && s.maxCount == 0 {
for i := range s.count {
s.count[i] = 0
}
s.clearCount = false
}
if cap(s.Out) == 0 {
s.Out = make([]byte, 0, len(in))
}
s.Out = s.Out[:0]
s.OutTable = nil
s.OutData = nil
if cap(s.nodes) < huffNodesLen+1 {
s.nodes = make([]nodeElt, 0, huffNodesLen+1)
}
s.nodes = s.nodes[:0]
if s.fse == nil {
s.fse = &fse.Scratch{}
}
s.srcLen = len(in)
return s, nil
}
type cTable []cTableEntry
func (c cTable) write(s *Scratch) error {
var (
// precomputed conversion table
bitsToWeight [tableLogMax + 1]byte
huffLog = s.actualTableLog
// last weight is not saved.
maxSymbolValue = uint8(s.symbolLen - 1)
huffWeight = s.huffWeight[:256]
)
const (
maxFSETableLog = 6
)
// convert to weight
bitsToWeight[0] = 0
for n := uint8(1); n < huffLog+1; n++ {
bitsToWeight[n] = huffLog + 1 - n
}
// Acquire histogram for FSE.
hist := s.fse.Histogram()
hist = hist[:256]
for i := range hist[:16] {
hist[i] = 0
}
for n := uint8(0); n < maxSymbolValue; n++ {
v := bitsToWeight[c[n].nBits] & 15
huffWeight[n] = v
hist[v]++
}
// FSE compress if feasible.
if maxSymbolValue >= 2 {
huffMaxCnt := uint32(0)
huffMax := uint8(0)
for i, v := range hist[:16] {
if v == 0 {
continue
}
huffMax = byte(i)
if v > huffMaxCnt {
huffMaxCnt = v
}
}
s.fse.HistogramFinished(huffMax, int(huffMaxCnt))
s.fse.TableLog = maxFSETableLog
b, err := fse.Compress(huffWeight[:maxSymbolValue], s.fse)
if err == nil && len(b) < int(s.symbolLen>>1) {
s.Out = append(s.Out, uint8(len(b)))
s.Out = append(s.Out, b...)
return nil
}
// Unable to compress (RLE/uncompressible)
}
// write raw values as 4-bits (max : 15)
if maxSymbolValue > (256 - 128) {
// should not happen : likely means source cannot be compressed
return ErrIncompressible
}
op := s.Out
// special case, pack weights 4 bits/weight.
op = append(op, 128|(maxSymbolValue-1))
// be sure it doesn't cause msan issue in final combination
huffWeight[maxSymbolValue] = 0
for n := uint16(0); n < uint16(maxSymbolValue); n += 2 {
op = append(op, (huffWeight[n]<<4)|huffWeight[n+1])
}
s.Out = op
return nil
}
func (c cTable) estTableSize(s *Scratch) (sz int, err error) {
var (
// precomputed conversion table
bitsToWeight [tableLogMax + 1]byte
huffLog = s.actualTableLog
// last weight is not saved.
maxSymbolValue = uint8(s.symbolLen - 1)
huffWeight = s.huffWeight[:256]
)
const (
maxFSETableLog = 6
)
// convert to weight
bitsToWeight[0] = 0
for n := uint8(1); n < huffLog+1; n++ {
bitsToWeight[n] = huffLog + 1 - n
}
// Acquire histogram for FSE.
hist := s.fse.Histogram()
hist = hist[:256]
for i := range hist[:16] {
hist[i] = 0
}
for n := uint8(0); n < maxSymbolValue; n++ {
v := bitsToWeight[c[n].nBits] & 15
huffWeight[n] = v
hist[v]++
}
// FSE compress if feasible.
if maxSymbolValue >= 2 {
huffMaxCnt := uint32(0)
huffMax := uint8(0)
for i, v := range hist[:16] {
if v == 0 {
continue
}
huffMax = byte(i)
if v > huffMaxCnt {
huffMaxCnt = v
}
}
s.fse.HistogramFinished(huffMax, int(huffMaxCnt))
s.fse.TableLog = maxFSETableLog
b, err := fse.Compress(huffWeight[:maxSymbolValue], s.fse)
if err == nil && len(b) < int(s.symbolLen>>1) {
sz += 1 + len(b)
return sz, nil
}
// Unable to compress (RLE/uncompressible)
}
// write raw values as 4-bits (max : 15)
if maxSymbolValue > (256 - 128) {
// should not happen : likely means source cannot be compressed
return 0, ErrIncompressible
}
// special case, pack weights 4 bits/weight.
sz += 1 + int(maxSymbolValue/2)
return sz, nil
}
// estimateSize returns the estimated size in bytes of the input represented in the
// histogram supplied.
func (c cTable) estimateSize(hist []uint32) int {
nbBits := uint32(7)
for i, v := range c[:len(hist)] {
nbBits += uint32(v.nBits) * hist[i]
}
return int(nbBits >> 3)
}
// minSize returns the minimum possible size considering the shannon limit.
func (s *Scratch) minSize(total int) int {
nbBits := float64(7)
fTotal := float64(total)
for _, v := range s.count[:s.symbolLen] {
n := float64(v)
if n > 0 {
nbBits += math.Log2(fTotal/n) * n
}
}
return int(nbBits) >> 3
}
func highBit32(val uint32) (n uint32) {
return uint32(bits.Len32(val) - 1)
}