--- title: "service create" description: "The service create command description and usage" keywords: "service, create" --- # service create ```Markdown Usage: docker service create [OPTIONS] IMAGE [COMMAND] [ARG...] Create a new service Options: --constraint list Placement constraints (default []) --container-label list Container labels (default []) --dns list Set custom DNS servers (default []) --dns-option list Set DNS options (default []) --dns-search list Set custom DNS search domains (default []) --endpoint-mode string Endpoint mode (vip or dnsrr) -e, --env list Set environment variables (default []) --env-file list Read in a file of environment variables (default []) --group list Set one or more supplementary user groups for the container (default []) --health-cmd string Command to run to check health --health-interval duration Time between running the check (ns|us|ms|s|m|h) (default none) --health-retries int Consecutive failures needed to report unhealthy --health-timeout duration Maximum time to allow one check to run (ns|us|ms|s|m|h) (default none) --help Print usage --host list Set one or more custom host-to-IP mappings (host:ip) (default []) --hostname string Container hostname -l, --label list Service labels (default []) --limit-cpu decimal Limit CPUs (default 0.000) --limit-memory bytes Limit Memory (default 0 B) --log-driver string Logging driver for service --log-opt list Logging driver options (default []) --mode string Service mode (replicated or global) (default "replicated") --mount mount Attach a filesystem mount to the service --name string Service name --network list Network attachments (default []) --no-healthcheck Disable any container-specified HEALTHCHECK -p, --publish list Publish a port as a node port (default []) --replicas uint Number of tasks (default none) --reserve-cpu decimal Reserve CPUs (default 0.000) --reserve-memory bytes Reserve Memory (default 0 B) --restart-condition string Restart when condition is met (none, on-failure, or any) --restart-delay duration Delay between restart attempts (ns|us|ms|s|m|h) (default none) --restart-max-attempts uint Maximum number of restarts before giving up (default none) --restart-window duration Window used to evaluate the restart policy (ns|us|ms|s|m|h) (default none) --secret value Specify secrets to expose to the service (default []) --stop-grace-period duration Time to wait before force killing a container (ns|us|ms|s|m|h) (default none) -t, --tty Allocate a pseudo-TTY --update-delay duration Delay between updates (ns|us|ms|s|m|h) (default 0s) --update-failure-action string Action on update failure (pause|continue) (default "pause") --update-max-failure-ratio float Failure rate to tolerate during an update --update-monitor duration Duration after each task update to monitor for failure (ns|us|ms|s|m|h) (default 0s) --update-parallelism uint Maximum number of tasks updated simultaneously (0 to update all at once) (default 1) -u, --user string Username or UID (format: [:]) --with-registry-auth Send registry authentication details to swarm agents -w, --workdir string Working directory inside the container ``` Creates a service as described by the specified parameters. You must run this command on a manager node. ## Examples ### Create a service ```bash $ docker service create --name redis redis:3.0.6 dmu1ept4cxcfe8k8lhtux3ro3 $ docker service create --mode global --name redis2 redis:3.0.6 a8q9dasaafudfs8q8w32udass $ docker service ls ID NAME MODE REPLICAS IMAGE dmu1ept4cxcf redis replicated 1/1 redis:3.0.6 a8q9dasaafud redis2 global 1/1 redis:3.0.6 ``` ### Create a service with 5 replica tasks (--replicas) Use the `--replicas` flag to set the number of replica tasks for a replicated service. The following command creates a `redis` service with `5` replica tasks: ```bash $ docker service create --name redis --replicas=5 redis:3.0.6 4cdgfyky7ozwh3htjfw0d12qv ``` The above command sets the *desired* number of tasks for the service. Even though the command returns immediately, actual scaling of the service may take some time. The `REPLICAS` column shows both the *actual* and *desired* number of replica tasks for the service. In the following example the desired state is `5` replicas, but the current number of `RUNNING` tasks is `3`: ```bash $ docker service ls ID NAME MODE REPLICAS IMAGE 4cdgfyky7ozw redis replicated 3/5 redis:3.0.7 ``` Once all the tasks are created and `RUNNING`, the actual number of tasks is equal to the desired number: ```bash $ docker service ls ID NAME MODE REPLICAS IMAGE 4cdgfyky7ozw redis replicated 5/5 redis:3.0.7 ``` ### Create a service with secrets Use the `--secret` flag to give a container access to a [secret](secret_create.md). Create a service specifying a secret: ```bash $ docker service create --name redis --secret secret.json redis:3.0.6 4cdgfyky7ozwh3htjfw0d12qv ``` Create a service specifying the secret, target, user/group ID and mode: ```bash $ docker service create --name redis \ --secret source=ssh-key,target=ssh \ --secret src=app-key,target=app,uid=1000,gid=1001,mode=0400 \ redis:3.0.6 4cdgfyky7ozwh3htjfw0d12qv ``` Secrets are located in `/run/secrets` in the container. If no target is specified, the name of the secret will be used as the in memory file in the container. If a target is specified, that will be the filename. In the example above, two files will be created: `/run/secrets/ssh` and `/run/secrets/app` for each of the secret targets specified. ### Create a service with a rolling update policy ```bash $ docker service create \ --replicas 10 \ --name redis \ --update-delay 10s \ --update-parallelism 2 \ redis:3.0.6 ``` When you run a [service update](service_update.md), the scheduler updates a maximum of 2 tasks at a time, with `10s` between updates. For more information, refer to the [rolling updates tutorial](https://docs.docker.com/engine/swarm/swarm-tutorial/rolling-update/). ### Set environment variables (-e, --env) This sets environmental variables for all tasks in a service. For example: ```bash $ docker service create --name redis_2 --replicas 5 --env MYVAR=foo redis:3.0.6 ``` ### Create a docker service with specific hostname (--hostname) This option sets the docker service containers hostname to a specific string. For example: ```bash $ docker service create --name redis --hostname myredis redis:3.0.6 ``` ### Set metadata on a service (-l, --label) A label is a `key=value` pair that applies metadata to a service. To label a service with two labels: ```bash $ docker service create \ --name redis_2 \ --label com.example.foo="bar" --label bar=baz \ redis:3.0.6 ``` For more information about labels, refer to [apply custom metadata](https://docs.docker.com/engine/userguide/labels-custom-metadata/). ### Add bind-mounts or volumes Docker supports two different kinds of mounts, which allow containers to read to or write from files or directories on other containers or the host operating system. These types are _data volumes_ (often referred to simply as volumes) and _bind-mounts_. Additionally, Docker also supports tmpfs mounts. A **bind-mount** makes a file or directory on the host available to the container it is mounted within. A bind-mount may be either read-only or read-write. For example, a container might share its host's DNS information by means of a bind-mount of the host's `/etc/resolv.conf` or a container might write logs to its host's `/var/log/myContainerLogs` directory. If you use bind-mounts and your host and containers have different notions of permissions, access controls, or other such details, you will run into portability issues. A **named volume** is a mechanism for decoupling persistent data needed by your container from the image used to create the container and from the host machine. Named volumes are created and managed by Docker, and a named volume persists even when no container is currently using it. Data in named volumes can be shared between a container and the host machine, as well as between multiple containers. Docker uses a _volume driver_ to create, manage, and mount volumes. You can back up or restore volumes using Docker commands. A **tmpfs** mounts a tmpfs inside a container for volatile data. Consider a situation where your image starts a lightweight web server. You could use that image as a base image, copy in your website's HTML files, and package that into another image. Each time your website changed, you'd need to update the new image and redeploy all of the containers serving your website. A better solution is to store the website in a named volume which is attached to each of your web server containers when they start. To update the website, you just update the named volume. For more information about named volumes, see [Data Volumes](https://docs.docker.com/engine/tutorials/dockervolumes/). The following table describes options which apply to both bind-mounts and named volumes in a service: | Option | Required | Description |:-----------------------------------------|:--------------------------|:----------------------------------------------------------------------------------------- | **type** | | The type of mount, can be either `volume`, `bind`, or `tmpfs`. Defaults to `volume` if no type is specified. | **src** or **source** | for `type=bind` only | | **dst** or **destination** or **target** | yes | Mount path inside the container, for example `/some/path/in/container/`. If the path does not exist in the container's filesystem, the Engine creates a directory at the specified location before mounting the volume or bind-mount. | **readonly** or **ro** | | The Engine mounts binds and volumes `read-write` unless `readonly` option is given when mounting the bind or volume.

#### Bind Propagation Bind propagation refers to whether or not mounts created within a given bind-mount or named volume can be propagated to replicas of that mount. Consider a mount point `/mnt`, which is also mounted on `/tmp`. The propation settings control whether a mount on `/tmp/a` would also be available on `/mnt/a`. Each propagation setting has a recursive counterpoint. In the case of recursion, consider that `/tmp/a` is also mounted as `/foo`. The propagation settings control whether `/mnt/a` and/or `/tmp/a` would exist. The `bind-propagation` option defaults to `rprivate` for both bind-mounts and volume mounts, and is only configurable for bind-mounts. In other words, named volumes do not support bind propagation. - **`shared`**: Sub-mounts of the original mount are exposed to replica mounts, and sub-mounts of replica mounts are also propagated to the original mount. - **`slave`**: similar to a shared mount, but only in one direction. If the original mount exposes a sub-mount, the replica mount can see it. However, if the replica mount exposes a sub-mount, the original mount cannot see it. - **`private`**: The mount is private. Sub-mounts within it are not exposed to replica mounts, and sub-mounts of replica mounts are not exposed to the original mount. - **`rshared`**: The same as shared, but the propagation also extends to and from mount points nested within any of the original or replica mount points. - **`rslave`**: The same as `slave`, but the propagation also extends to and from mount points nested within any of the original or replica mount points. - **`rprivate`**: The default. The same as `private`, meaning that no mount points anywhere within the original or replica mount points propagate in either direction. For more information about bind propagation, see the [Linux kernel documentation for shared subtree](https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt). #### Options for Named Volumes The following options can only be used for named volumes (`type=volume`); | Option | Description |:----------------------|:-------------------------------------------------------------------------------------------------------------------- | **volume-driver** | Name of the volume-driver plugin to use for the volume. Defaults to ``"local"``, to use the local volume driver to create the volume if the volume does not exist. | **volume-label** | One or more custom metadata ("labels") to apply to the volume upon creation. For example, `volume-label=mylabel=hello-world,my-other-label=hello-mars`. For more information about labels, refer to [apply custom metadata](https://docs.docker.com/engine/userguide/labels-custom-metadata/). | **volume-nocopy** | By default, if you attach an empty volume to a container, and files or directories already existed at the mount-path in the container (`dst`), the Engine copies those files and directories into the volume, allowing the host to access them. Set `volume-nocopy` to disables copying files from the container's filesystem to the volume and mount the empty volume.

A value is optional: | **volume-opt** | Options specific to a given volume driver, which will be passed to the driver when creating the volume. Options are provided as a comma-separated list of key/value pairs, for example, `volume-opt=some-option=some-value,some-other-option=some-other-value`. For available options for a given driver, refer to that driver's documentation. #### Options for tmpfs The following options can only be used for tmpfs mounts (`type=tmpfs`); | Option | Description |:----------------------|:-------------------------------------------------------------------------------------------------------------------- | **tmpfs-size** | Size of the tmpfs mount in bytes. Unlimited by default in Linux. | **tmpfs-mode** | File mode of the tmpfs in octal. (e.g. `"700"` or `"0700"`.) Defaults to ``"1777"`` in Linux. #### Differences between "--mount" and "--volume" The `--mount` flag supports most options that are supported by the `-v` or `--volume` flag for `docker run`, with some important exceptions: - The `--mount` flag allows you to specify a volume driver and volume driver options *per volume*, without creating the volumes in advance. In contrast, `docker run` allows you to specify a single volume driver which is shared by all volumes, using the `--volume-driver` flag. - The `--mount` flag allows you to specify custom metadata ("labels") for a volume, before the volume is created. - When you use `--mount` with `type=bind`, the host-path must refer to an *existing* path on the host. The path will not be created for you and the service will fail with an error if the path does not exist. - The `--mount` flag does not allow you to relabel a volume with `Z` or `z` flags, which are used for `selinux` labeling. #### Create a service using a named volume The following example creates a service that uses a named volume: ```bash $ docker service create \ --name my-service \ --replicas 3 \ --mount type=volume,source=my-volume,destination=/path/in/container,volume-label="color=red",volume-label="shape=round" \ nginx:alpine ``` For each replica of the service, the engine requests a volume named "my-volume" from the default ("local") volume driver where the task is deployed. If the volume does not exist, the engine creates a new volume and applies the "color" and "shape" labels. When the task is started, the volume is mounted on `/path/in/container/` inside the container. Be aware that the default ("local") volume is a locally scoped volume driver. This means that depending on where a task is deployed, either that task gets a *new* volume named "my-volume", or shares the same "my-volume" with other tasks of the same service. Multiple containers writing to a single shared volume can cause data corruption if the software running inside the container is not designed to handle concurrent processes writing to the same location. Also take into account that containers can be re-scheduled by the Swarm orchestrator and be deployed on a different node. #### Create a service that uses an anonymous volume The following command creates a service with three replicas with an anonymous volume on `/path/in/container`: ```bash $ docker service create \ --name my-service \ --replicas 3 \ --mount type=volume,destination=/path/in/container \ nginx:alpine ``` In this example, no name (`source`) is specified for the volume, so a new volume is created for each task. This guarantees that each task gets its own volume, and volumes are not shared between tasks. Anonymous volumes are removed after the task using them is complete. #### Create a service that uses a bind-mounted host directory The following example bind-mounts a host directory at `/path/in/container` in the containers backing the service: ```bash $ docker service create \ --name my-service \ --mount type=bind,source=/path/on/host,destination=/path/in/container \ nginx:alpine ``` ### Set service mode (--mode) The service mode determines whether this is a _replicated_ service or a _global_ service. A replicated service runs as many tasks as specified, while a global service runs on each active node in the swarm. The following command creates a global service: ```bash $ docker service create \ --name redis_2 \ --mode global \ redis:3.0.6 ``` ### Specify service constraints (--constraint) You can limit the set of nodes where a task can be scheduled by defining constraint expressions. Multiple constraints find nodes that satisfy every expression (AND match). Constraints can match node or Docker Engine labels as follows: | node attribute | matches | example | |:----------------|:--------------------------|:------------------------------------------------| | node.id | node ID | `node.id == 2ivku8v2gvtg4` | | node.hostname | node hostname | `node.hostname != node-2` | | node.role | node role: manager | `node.role == manager` | | node.labels | user defined node labels | `node.labels.security == high` | | engine.labels | Docker Engine's labels | `engine.labels.operatingsystem == ubuntu 14.04` | `engine.labels` apply to Docker Engine labels like operating system, drivers, etc. Swarm administrators add `node.labels` for operational purposes by using the [`docker node update`](node_update.md) command. For example, the following limits tasks for the redis service to nodes where the node type label equals queue: ```bash $ docker service create \ --name redis_2 \ --constraint 'node.labels.type == queue' \ redis:3.0.6 ``` ### Attach a service to an existing network (--network) You can use overlay networks to connect one or more services within the swarm. First, create an overlay network on a manager node the docker network create command: ```bash $ docker network create --driver overlay my-network etjpu59cykrptrgw0z0hk5snf ``` After you create an overlay network in swarm mode, all manager nodes have access to the network. When you create a service and pass the --network flag to attach the service to the overlay network: ```bash $ docker service create \ --replicas 3 \ --network my-network \ --name my-web \ nginx 716thylsndqma81j6kkkb5aus ``` The swarm extends my-network to each node running the service. Containers on the same network can access each other using [service discovery](https://docs.docker.com/engine/swarm/networking/#use-swarm-mode-service-discovery). ### Publish service ports externally to the swarm (-p, --publish) You can publish service ports to make them available externally to the swarm using the `--publish` flag: ```bash $ docker service create --publish : nginx ``` For example: ```bash $ docker service create --name my_web --replicas 3 --publish 8080:80 nginx ``` When you publish a service port, the swarm routing mesh makes the service accessible at the target port on every node regardless if there is a task for the service running on the node. For more information refer to [Use swarm mode routing mesh](https://docs.docker.com/engine/swarm/ingress/). ### Publish a port for TCP only or UCP only By default, when you publish a port, it is a TCP port. You can specifically publish a UDP port instead of or in addition to a TCP port. When you publish both TCP and UDP ports, Docker 1.12.2 and earlier require you to add the suffix `/tcp` for TCP ports. Otherwise it is optional. #### TCP only The following two commands are equivalent. ```bash $ docker service create --name dns-cache -p 53:53 dns-cache $ docker service create --name dns-cache -p 53:53/tcp dns-cache ``` #### TCP and UDP ```bash $ docker service create --name dns-cache -p 53:53/tcp -p 53:53/udp dns-cache ``` #### UDP only ```bash $ docker service create --name dns-cache -p 53:53/udp dns-cache ``` ### Create services using templates You can use templates for some flags of `service create`, using the syntax provided by the Go's [text/template](http://golange.org/pkg/text/template/) package. The supported flags are the following : - `--hostname` - `--mount` - `--env` Valid placeholders for the Go template are listed below: Placeholder | Description ----------------- | -------------------------------------------- `.Service.ID` | Service ID `.Service.Name` | Service name `.Service.Labels` | Service labels `.Node.ID` | Node ID `.Task.ID` | Task ID `.Task.Name` | Task name `.Task.Slot` | Task slot #### Template example In this example, we are going to set the template of the created containers based on the service's name and the node's ID where it sits. ```bash $ docker service create --name hosttempl --hostname={% raw %}"{{.Node.ID}}-{{.Service.Name}}"{% endraw %} busybox top va8ew30grofhjoychbr6iot8c $ docker service ps va8ew30grofhjoychbr6iot8c NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS hosttempl.1.wo41w8hg8qan busybox:latest@sha256:29f5d56d12684887bdfa50dcd29fc31eea4aaf4ad3bec43daf19026a7ce69912 2e7a8a9c4da2 Running Running about a minute ago $ docker inspect --format={% raw %}"{{.Config.Hostname}}"{% endraw %} hosttempl.1.wo41w8hg8qanxwjwsg4kxpprj x3ti0erg11rjpg64m75kej2mz-hosttempl ``` ## Related information * [service inspect](service_inspect.md) * [service ls](service_ls.md) * [service rm](service_rm.md) * [service scale](service_scale.md) * [service ps](service_ps.md) * [service update](service_update.md)