DockerCLI/vendor/google.golang.org/grpc/transport/http2_client.go

1073 lines
30 KiB
Go
Raw Normal View History

/*
*
* Copyright 2014, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
package transport
import (
"bytes"
"fmt"
"io"
"math"
"net"
"strings"
"sync"
"time"
"golang.org/x/net/context"
"golang.org/x/net/http2"
"golang.org/x/net/http2/hpack"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/grpclog"
"google.golang.org/grpc/metadata"
"google.golang.org/grpc/peer"
)
// http2Client implements the ClientTransport interface with HTTP2.
type http2Client struct {
target string // server name/addr
userAgent string
md interface{}
conn net.Conn // underlying communication channel
authInfo credentials.AuthInfo // auth info about the connection
nextID uint32 // the next stream ID to be used
// writableChan synchronizes write access to the transport.
// A writer acquires the write lock by sending a value on writableChan
// and releases it by receiving from writableChan.
writableChan chan int
// shutdownChan is closed when Close is called.
// Blocking operations should select on shutdownChan to avoid
// blocking forever after Close.
// TODO(zhaoq): Maybe have a channel context?
shutdownChan chan struct{}
// errorChan is closed to notify the I/O error to the caller.
errorChan chan struct{}
// goAway is closed to notify the upper layer (i.e., addrConn.transportMonitor)
// that the server sent GoAway on this transport.
goAway chan struct{}
framer *framer
hBuf *bytes.Buffer // the buffer for HPACK encoding
hEnc *hpack.Encoder // HPACK encoder
// controlBuf delivers all the control related tasks (e.g., window
// updates, reset streams, and various settings) to the controller.
controlBuf *recvBuffer
fc *inFlow
// sendQuotaPool provides flow control to outbound message.
sendQuotaPool *quotaPool
// streamsQuota limits the max number of concurrent streams.
streamsQuota *quotaPool
// The scheme used: https if TLS is on, http otherwise.
scheme string
creds []credentials.PerRPCCredentials
mu sync.Mutex // guard the following variables
state transportState // the state of underlying connection
activeStreams map[uint32]*Stream
// The max number of concurrent streams
maxStreams int
// the per-stream outbound flow control window size set by the peer.
streamSendQuota uint32
// goAwayID records the Last-Stream-ID in the GoAway frame from the server.
goAwayID uint32
// prevGoAway ID records the Last-Stream-ID in the previous GOAway frame.
prevGoAwayID uint32
}
func dial(ctx context.Context, fn func(context.Context, string) (net.Conn, error), addr string) (net.Conn, error) {
if fn != nil {
return fn(ctx, addr)
}
return dialContext(ctx, "tcp", addr)
}
func isTemporary(err error) bool {
switch err {
case io.EOF:
// Connection closures may be resolved upon retry, and are thus
// treated as temporary.
return true
case context.DeadlineExceeded:
// In Go 1.7, context.DeadlineExceeded implements Timeout(), and this
// special case is not needed. Until then, we need to keep this
// clause.
return true
}
switch err := err.(type) {
case interface {
Temporary() bool
}:
return err.Temporary()
case interface {
Timeout() bool
}:
// Timeouts may be resolved upon retry, and are thus treated as
// temporary.
return err.Timeout()
}
return false
}
// newHTTP2Client constructs a connected ClientTransport to addr based on HTTP2
// and starts to receive messages on it. Non-nil error returns if construction
// fails.
func newHTTP2Client(ctx context.Context, addr TargetInfo, opts ConnectOptions) (_ ClientTransport, err error) {
scheme := "http"
conn, err := dial(ctx, opts.Dialer, addr.Addr)
if err != nil {
return nil, connectionErrorf(true, err, "transport: %v", err)
}
// Any further errors will close the underlying connection
defer func(conn net.Conn) {
if err != nil {
conn.Close()
}
}(conn)
var authInfo credentials.AuthInfo
if creds := opts.TransportCredentials; creds != nil {
scheme = "https"
conn, authInfo, err = creds.ClientHandshake(ctx, addr.Addr, conn)
if err != nil {
// Credentials handshake errors are typically considered permanent
// to avoid retrying on e.g. bad certificates.
temp := isTemporary(err)
return nil, connectionErrorf(temp, err, "transport: %v", err)
}
}
ua := primaryUA
if opts.UserAgent != "" {
ua = opts.UserAgent + " " + ua
}
var buf bytes.Buffer
t := &http2Client{
target: addr.Addr,
userAgent: ua,
md: addr.Metadata,
conn: conn,
authInfo: authInfo,
// The client initiated stream id is odd starting from 1.
nextID: 1,
writableChan: make(chan int, 1),
shutdownChan: make(chan struct{}),
errorChan: make(chan struct{}),
goAway: make(chan struct{}),
framer: newFramer(conn),
hBuf: &buf,
hEnc: hpack.NewEncoder(&buf),
controlBuf: newRecvBuffer(),
fc: &inFlow{limit: initialConnWindowSize},
sendQuotaPool: newQuotaPool(defaultWindowSize),
scheme: scheme,
state: reachable,
activeStreams: make(map[uint32]*Stream),
creds: opts.PerRPCCredentials,
maxStreams: math.MaxInt32,
streamSendQuota: defaultWindowSize,
}
// Start the reader goroutine for incoming message. Each transport has
// a dedicated goroutine which reads HTTP2 frame from network. Then it
// dispatches the frame to the corresponding stream entity.
go t.reader()
// Send connection preface to server.
n, err := t.conn.Write(clientPreface)
if err != nil {
t.Close()
return nil, connectionErrorf(true, err, "transport: %v", err)
}
if n != len(clientPreface) {
t.Close()
return nil, connectionErrorf(true, err, "transport: preface mismatch, wrote %d bytes; want %d", n, len(clientPreface))
}
if initialWindowSize != defaultWindowSize {
err = t.framer.writeSettings(true, http2.Setting{
ID: http2.SettingInitialWindowSize,
Val: uint32(initialWindowSize),
})
} else {
err = t.framer.writeSettings(true)
}
if err != nil {
t.Close()
return nil, connectionErrorf(true, err, "transport: %v", err)
}
// Adjust the connection flow control window if needed.
if delta := uint32(initialConnWindowSize - defaultWindowSize); delta > 0 {
if err := t.framer.writeWindowUpdate(true, 0, delta); err != nil {
t.Close()
return nil, connectionErrorf(true, err, "transport: %v", err)
}
}
go t.controller()
t.writableChan <- 0
return t, nil
}
func (t *http2Client) newStream(ctx context.Context, callHdr *CallHdr) *Stream {
// TODO(zhaoq): Handle uint32 overflow of Stream.id.
s := &Stream{
id: t.nextID,
done: make(chan struct{}),
goAway: make(chan struct{}),
method: callHdr.Method,
sendCompress: callHdr.SendCompress,
buf: newRecvBuffer(),
fc: &inFlow{limit: initialWindowSize},
sendQuotaPool: newQuotaPool(int(t.streamSendQuota)),
headerChan: make(chan struct{}),
}
t.nextID += 2
s.windowHandler = func(n int) {
t.updateWindow(s, uint32(n))
}
// The client side stream context should have exactly the same life cycle with the user provided context.
// That means, s.ctx should be read-only. And s.ctx is done iff ctx is done.
// So we use the original context here instead of creating a copy.
s.ctx = ctx
s.dec = &recvBufferReader{
ctx: s.ctx,
goAway: s.goAway,
recv: s.buf,
}
return s
}
// NewStream creates a stream and register it into the transport as "active"
// streams.
func (t *http2Client) NewStream(ctx context.Context, callHdr *CallHdr) (_ *Stream, err error) {
pr := &peer.Peer{
Addr: t.conn.RemoteAddr(),
}
// Attach Auth info if there is any.
if t.authInfo != nil {
pr.AuthInfo = t.authInfo
}
ctx = peer.NewContext(ctx, pr)
authData := make(map[string]string)
for _, c := range t.creds {
// Construct URI required to get auth request metadata.
var port string
if pos := strings.LastIndex(t.target, ":"); pos != -1 {
// Omit port if it is the default one.
if t.target[pos+1:] != "443" {
port = ":" + t.target[pos+1:]
}
}
pos := strings.LastIndex(callHdr.Method, "/")
if pos == -1 {
return nil, streamErrorf(codes.InvalidArgument, "transport: malformed method name: %q", callHdr.Method)
}
audience := "https://" + callHdr.Host + port + callHdr.Method[:pos]
data, err := c.GetRequestMetadata(ctx, audience)
if err != nil {
return nil, streamErrorf(codes.InvalidArgument, "transport: %v", err)
}
for k, v := range data {
authData[k] = v
}
}
t.mu.Lock()
if t.activeStreams == nil {
t.mu.Unlock()
return nil, ErrConnClosing
}
if t.state == draining {
t.mu.Unlock()
return nil, ErrStreamDrain
}
if t.state != reachable {
t.mu.Unlock()
return nil, ErrConnClosing
}
checkStreamsQuota := t.streamsQuota != nil
t.mu.Unlock()
if checkStreamsQuota {
sq, err := wait(ctx, nil, nil, t.shutdownChan, t.streamsQuota.acquire())
if err != nil {
return nil, err
}
// Returns the quota balance back.
if sq > 1 {
t.streamsQuota.add(sq - 1)
}
}
if _, err := wait(ctx, nil, nil, t.shutdownChan, t.writableChan); err != nil {
// Return the quota back now because there is no stream returned to the caller.
if _, ok := err.(StreamError); ok && checkStreamsQuota {
t.streamsQuota.add(1)
}
return nil, err
}
t.mu.Lock()
if t.state == draining {
t.mu.Unlock()
if checkStreamsQuota {
t.streamsQuota.add(1)
}
// Need to make t writable again so that the rpc in flight can still proceed.
t.writableChan <- 0
return nil, ErrStreamDrain
}
if t.state != reachable {
t.mu.Unlock()
return nil, ErrConnClosing
}
s := t.newStream(ctx, callHdr)
t.activeStreams[s.id] = s
// This stream is not counted when applySetings(...) initialize t.streamsQuota.
// Reset t.streamsQuota to the right value.
var reset bool
if !checkStreamsQuota && t.streamsQuota != nil {
reset = true
}
t.mu.Unlock()
if reset {
t.streamsQuota.reset(-1)
}
// HPACK encodes various headers. Note that once WriteField(...) is
// called, the corresponding headers/continuation frame has to be sent
// because hpack.Encoder is stateful.
t.hBuf.Reset()
t.hEnc.WriteField(hpack.HeaderField{Name: ":method", Value: "POST"})
t.hEnc.WriteField(hpack.HeaderField{Name: ":scheme", Value: t.scheme})
t.hEnc.WriteField(hpack.HeaderField{Name: ":path", Value: callHdr.Method})
t.hEnc.WriteField(hpack.HeaderField{Name: ":authority", Value: callHdr.Host})
t.hEnc.WriteField(hpack.HeaderField{Name: "content-type", Value: "application/grpc"})
t.hEnc.WriteField(hpack.HeaderField{Name: "user-agent", Value: t.userAgent})
t.hEnc.WriteField(hpack.HeaderField{Name: "te", Value: "trailers"})
if callHdr.SendCompress != "" {
t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-encoding", Value: callHdr.SendCompress})
}
if dl, ok := ctx.Deadline(); ok {
// Send out timeout regardless its value. The server can detect timeout context by itself.
timeout := dl.Sub(time.Now())
t.hEnc.WriteField(hpack.HeaderField{Name: "grpc-timeout", Value: encodeTimeout(timeout)})
}
for k, v := range authData {
// Capital header names are illegal in HTTP/2.
k = strings.ToLower(k)
t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: v})
}
var (
hasMD bool
endHeaders bool
)
if md, ok := metadata.FromContext(ctx); ok {
hasMD = true
for k, v := range md {
// HTTP doesn't allow you to set pseudoheaders after non pseudoheaders were set.
if isReservedHeader(k) {
continue
}
for _, entry := range v {
t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: entry})
}
}
}
if md, ok := t.md.(*metadata.MD); ok {
for k, v := range *md {
if isReservedHeader(k) {
continue
}
for _, entry := range v {
t.hEnc.WriteField(hpack.HeaderField{Name: k, Value: entry})
}
}
}
first := true
// Sends the headers in a single batch even when they span multiple frames.
for !endHeaders {
size := t.hBuf.Len()
if size > http2MaxFrameLen {
size = http2MaxFrameLen
} else {
endHeaders = true
}
var flush bool
if endHeaders && (hasMD || callHdr.Flush) {
flush = true
}
if first {
// Sends a HeadersFrame to server to start a new stream.
p := http2.HeadersFrameParam{
StreamID: s.id,
BlockFragment: t.hBuf.Next(size),
EndStream: false,
EndHeaders: endHeaders,
}
// Do a force flush for the buffered frames iff it is the last headers frame
// and there is header metadata to be sent. Otherwise, there is flushing until
// the corresponding data frame is written.
err = t.framer.writeHeaders(flush, p)
first = false
} else {
// Sends Continuation frames for the leftover headers.
err = t.framer.writeContinuation(flush, s.id, endHeaders, t.hBuf.Next(size))
}
if err != nil {
t.notifyError(err)
return nil, connectionErrorf(true, err, "transport: %v", err)
}
}
t.writableChan <- 0
return s, nil
}
// CloseStream clears the footprint of a stream when the stream is not needed any more.
// This must not be executed in reader's goroutine.
func (t *http2Client) CloseStream(s *Stream, err error) {
var updateStreams bool
t.mu.Lock()
if t.activeStreams == nil {
t.mu.Unlock()
return
}
if t.streamsQuota != nil {
updateStreams = true
}
delete(t.activeStreams, s.id)
if t.state == draining && len(t.activeStreams) == 0 {
// The transport is draining and s is the last live stream on t.
t.mu.Unlock()
t.Close()
return
}
t.mu.Unlock()
if updateStreams {
t.streamsQuota.add(1)
}
s.mu.Lock()
if q := s.fc.resetPendingData(); q > 0 {
if n := t.fc.onRead(q); n > 0 {
t.controlBuf.put(&windowUpdate{0, n})
}
}
if s.state == streamDone {
s.mu.Unlock()
return
}
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.state = streamDone
s.mu.Unlock()
if se, ok := err.(StreamError); ok && se.Code != codes.DeadlineExceeded {
t.controlBuf.put(&resetStream{s.id, http2.ErrCodeCancel})
}
}
// Close kicks off the shutdown process of the transport. This should be called
// only once on a transport. Once it is called, the transport should not be
// accessed any more.
func (t *http2Client) Close() (err error) {
t.mu.Lock()
if t.state == closing {
t.mu.Unlock()
return
}
if t.state == reachable || t.state == draining {
close(t.errorChan)
}
t.state = closing
t.mu.Unlock()
close(t.shutdownChan)
err = t.conn.Close()
t.mu.Lock()
streams := t.activeStreams
t.activeStreams = nil
t.mu.Unlock()
// Notify all active streams.
for _, s := range streams {
s.mu.Lock()
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.mu.Unlock()
s.write(recvMsg{err: ErrConnClosing})
}
return
}
func (t *http2Client) GracefulClose() error {
t.mu.Lock()
switch t.state {
case unreachable:
// The server may close the connection concurrently. t is not available for
// any streams. Close it now.
t.mu.Unlock()
t.Close()
return nil
case closing:
t.mu.Unlock()
return nil
}
// Notify the streams which were initiated after the server sent GOAWAY.
select {
case <-t.goAway:
n := t.prevGoAwayID
if n == 0 && t.nextID > 1 {
n = t.nextID - 2
}
m := t.goAwayID + 2
if m == 2 {
m = 1
}
for i := m; i <= n; i += 2 {
if s, ok := t.activeStreams[i]; ok {
close(s.goAway)
}
}
default:
}
if t.state == draining {
t.mu.Unlock()
return nil
}
t.state = draining
active := len(t.activeStreams)
t.mu.Unlock()
if active == 0 {
return t.Close()
}
return nil
}
// Write formats the data into HTTP2 data frame(s) and sends it out. The caller
// should proceed only if Write returns nil.
// TODO(zhaoq): opts.Delay is ignored in this implementation. Support it later
// if it improves the performance.
func (t *http2Client) Write(s *Stream, data []byte, opts *Options) error {
r := bytes.NewBuffer(data)
for {
var p []byte
if r.Len() > 0 {
size := http2MaxFrameLen
s.sendQuotaPool.add(0)
// Wait until the stream has some quota to send the data.
sq, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, s.sendQuotaPool.acquire())
if err != nil {
return err
}
t.sendQuotaPool.add(0)
// Wait until the transport has some quota to send the data.
tq, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, t.sendQuotaPool.acquire())
if err != nil {
if _, ok := err.(StreamError); ok || err == io.EOF {
t.sendQuotaPool.cancel()
}
return err
}
if sq < size {
size = sq
}
if tq < size {
size = tq
}
p = r.Next(size)
ps := len(p)
if ps < sq {
// Overbooked stream quota. Return it back.
s.sendQuotaPool.add(sq - ps)
}
if ps < tq {
// Overbooked transport quota. Return it back.
t.sendQuotaPool.add(tq - ps)
}
}
var (
endStream bool
forceFlush bool
)
if opts.Last && r.Len() == 0 {
endStream = true
}
// Indicate there is a writer who is about to write a data frame.
t.framer.adjustNumWriters(1)
// Got some quota. Try to acquire writing privilege on the transport.
if _, err := wait(s.ctx, s.done, s.goAway, t.shutdownChan, t.writableChan); err != nil {
if _, ok := err.(StreamError); ok || err == io.EOF {
// Return the connection quota back.
t.sendQuotaPool.add(len(p))
}
if t.framer.adjustNumWriters(-1) == 0 {
// This writer is the last one in this batch and has the
// responsibility to flush the buffered frames. It queues
// a flush request to controlBuf instead of flushing directly
// in order to avoid the race with other writing or flushing.
t.controlBuf.put(&flushIO{})
}
return err
}
select {
case <-s.ctx.Done():
t.sendQuotaPool.add(len(p))
if t.framer.adjustNumWriters(-1) == 0 {
t.controlBuf.put(&flushIO{})
}
t.writableChan <- 0
return ContextErr(s.ctx.Err())
default:
}
if r.Len() == 0 && t.framer.adjustNumWriters(0) == 1 {
// Do a force flush iff this is last frame for the entire gRPC message
// and the caller is the only writer at this moment.
forceFlush = true
}
// If WriteData fails, all the pending streams will be handled
// by http2Client.Close(). No explicit CloseStream() needs to be
// invoked.
if err := t.framer.writeData(forceFlush, s.id, endStream, p); err != nil {
t.notifyError(err)
return connectionErrorf(true, err, "transport: %v", err)
}
if t.framer.adjustNumWriters(-1) == 0 {
t.framer.flushWrite()
}
t.writableChan <- 0
if r.Len() == 0 {
break
}
}
if !opts.Last {
return nil
}
s.mu.Lock()
if s.state != streamDone {
s.state = streamWriteDone
}
s.mu.Unlock()
return nil
}
func (t *http2Client) getStream(f http2.Frame) (*Stream, bool) {
t.mu.Lock()
defer t.mu.Unlock()
s, ok := t.activeStreams[f.Header().StreamID]
return s, ok
}
// updateWindow adjusts the inbound quota for the stream and the transport.
// Window updates will deliver to the controller for sending when
// the cumulative quota exceeds the corresponding threshold.
func (t *http2Client) updateWindow(s *Stream, n uint32) {
s.mu.Lock()
defer s.mu.Unlock()
if s.state == streamDone {
return
}
if w := t.fc.onRead(n); w > 0 {
t.controlBuf.put(&windowUpdate{0, w})
}
if w := s.fc.onRead(n); w > 0 {
t.controlBuf.put(&windowUpdate{s.id, w})
}
}
func (t *http2Client) handleData(f *http2.DataFrame) {
size := len(f.Data())
if err := t.fc.onData(uint32(size)); err != nil {
t.notifyError(connectionErrorf(true, err, "%v", err))
return
}
// Select the right stream to dispatch.
s, ok := t.getStream(f)
if !ok {
if w := t.fc.onRead(uint32(size)); w > 0 {
t.controlBuf.put(&windowUpdate{0, w})
}
return
}
if size > 0 {
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
// The stream has been closed. Release the corresponding quota.
if w := t.fc.onRead(uint32(size)); w > 0 {
t.controlBuf.put(&windowUpdate{0, w})
}
return
}
if err := s.fc.onData(uint32(size)); err != nil {
s.state = streamDone
s.statusCode = codes.Internal
s.statusDesc = err.Error()
close(s.done)
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
t.controlBuf.put(&resetStream{s.id, http2.ErrCodeFlowControl})
return
}
s.mu.Unlock()
// TODO(bradfitz, zhaoq): A copy is required here because there is no
// guarantee f.Data() is consumed before the arrival of next frame.
// Can this copy be eliminated?
data := make([]byte, size)
copy(data, f.Data())
s.write(recvMsg{data: data})
}
// The server has closed the stream without sending trailers. Record that
// the read direction is closed, and set the status appropriately.
if f.FrameHeader.Flags.Has(http2.FlagDataEndStream) {
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return
}
s.state = streamDone
s.statusCode = codes.Internal
s.statusDesc = "server closed the stream without sending trailers"
close(s.done)
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
}
}
func (t *http2Client) handleRSTStream(f *http2.RSTStreamFrame) {
s, ok := t.getStream(f)
if !ok {
return
}
s.mu.Lock()
if s.state == streamDone {
s.mu.Unlock()
return
}
s.state = streamDone
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.statusCode, ok = http2ErrConvTab[http2.ErrCode(f.ErrCode)]
if !ok {
grpclog.Println("transport: http2Client.handleRSTStream found no mapped gRPC status for the received http2 error ", f.ErrCode)
s.statusCode = codes.Unknown
}
s.statusDesc = fmt.Sprintf("stream terminated by RST_STREAM with error code: %d", f.ErrCode)
close(s.done)
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
}
func (t *http2Client) handleSettings(f *http2.SettingsFrame) {
if f.IsAck() {
return
}
var ss []http2.Setting
f.ForeachSetting(func(s http2.Setting) error {
ss = append(ss, s)
return nil
})
// The settings will be applied once the ack is sent.
t.controlBuf.put(&settings{ack: true, ss: ss})
}
func (t *http2Client) handlePing(f *http2.PingFrame) {
if f.IsAck() { // Do nothing.
return
}
pingAck := &ping{ack: true}
copy(pingAck.data[:], f.Data[:])
t.controlBuf.put(pingAck)
}
func (t *http2Client) handleGoAway(f *http2.GoAwayFrame) {
t.mu.Lock()
if t.state == reachable || t.state == draining {
if f.LastStreamID > 0 && f.LastStreamID%2 != 1 {
t.mu.Unlock()
t.notifyError(connectionErrorf(true, nil, "received illegal http2 GOAWAY frame: stream ID %d is even", f.LastStreamID))
return
}
select {
case <-t.goAway:
id := t.goAwayID
// t.goAway has been closed (i.e.,multiple GoAways).
if id < f.LastStreamID {
t.mu.Unlock()
t.notifyError(connectionErrorf(true, nil, "received illegal http2 GOAWAY frame: previously recv GOAWAY frame with LastStramID %d, currently recv %d", id, f.LastStreamID))
return
}
t.prevGoAwayID = id
t.goAwayID = f.LastStreamID
t.mu.Unlock()
return
default:
}
t.goAwayID = f.LastStreamID
close(t.goAway)
}
t.mu.Unlock()
}
func (t *http2Client) handleWindowUpdate(f *http2.WindowUpdateFrame) {
id := f.Header().StreamID
incr := f.Increment
if id == 0 {
t.sendQuotaPool.add(int(incr))
return
}
if s, ok := t.getStream(f); ok {
s.sendQuotaPool.add(int(incr))
}
}
// operateHeaders takes action on the decoded headers.
func (t *http2Client) operateHeaders(frame *http2.MetaHeadersFrame) {
s, ok := t.getStream(frame)
if !ok {
return
}
var state decodeState
for _, hf := range frame.Fields {
state.processHeaderField(hf)
}
if state.err != nil {
s.mu.Lock()
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.mu.Unlock()
s.write(recvMsg{err: state.err})
// Something wrong. Stops reading even when there is remaining.
return
}
endStream := frame.StreamEnded()
s.mu.Lock()
if !endStream {
s.recvCompress = state.encoding
}
if !s.headerDone {
if !endStream && len(state.mdata) > 0 {
s.header = state.mdata
}
close(s.headerChan)
s.headerDone = true
}
if !endStream || s.state == streamDone {
s.mu.Unlock()
return
}
if len(state.mdata) > 0 {
s.trailer = state.mdata
}
s.statusCode = state.statusCode
s.statusDesc = state.statusDesc
close(s.done)
s.state = streamDone
s.mu.Unlock()
s.write(recvMsg{err: io.EOF})
}
func handleMalformedHTTP2(s *Stream, err error) {
s.mu.Lock()
if !s.headerDone {
close(s.headerChan)
s.headerDone = true
}
s.mu.Unlock()
s.write(recvMsg{err: err})
}
// reader runs as a separate goroutine in charge of reading data from network
// connection.
//
// TODO(zhaoq): currently one reader per transport. Investigate whether this is
// optimal.
// TODO(zhaoq): Check the validity of the incoming frame sequence.
func (t *http2Client) reader() {
// Check the validity of server preface.
frame, err := t.framer.readFrame()
if err != nil {
t.notifyError(err)
return
}
sf, ok := frame.(*http2.SettingsFrame)
if !ok {
t.notifyError(err)
return
}
t.handleSettings(sf)
// loop to keep reading incoming messages on this transport.
for {
frame, err := t.framer.readFrame()
if err != nil {
// Abort an active stream if the http2.Framer returns a
// http2.StreamError. This can happen only if the server's response
// is malformed http2.
if se, ok := err.(http2.StreamError); ok {
t.mu.Lock()
s := t.activeStreams[se.StreamID]
t.mu.Unlock()
if s != nil {
// use error detail to provide better err message
handleMalformedHTTP2(s, streamErrorf(http2ErrConvTab[se.Code], "%v", t.framer.errorDetail()))
}
continue
} else {
// Transport error.
t.notifyError(err)
return
}
}
switch frame := frame.(type) {
case *http2.MetaHeadersFrame:
t.operateHeaders(frame)
case *http2.DataFrame:
t.handleData(frame)
case *http2.RSTStreamFrame:
t.handleRSTStream(frame)
case *http2.SettingsFrame:
t.handleSettings(frame)
case *http2.PingFrame:
t.handlePing(frame)
case *http2.GoAwayFrame:
t.handleGoAway(frame)
case *http2.WindowUpdateFrame:
t.handleWindowUpdate(frame)
default:
grpclog.Printf("transport: http2Client.reader got unhandled frame type %v.", frame)
}
}
}
func (t *http2Client) applySettings(ss []http2.Setting) {
for _, s := range ss {
switch s.ID {
case http2.SettingMaxConcurrentStreams:
// TODO(zhaoq): This is a hack to avoid significant refactoring of the
// code to deal with the unrealistic int32 overflow. Probably will try
// to find a better way to handle this later.
if s.Val > math.MaxInt32 {
s.Val = math.MaxInt32
}
t.mu.Lock()
reset := t.streamsQuota != nil
if !reset {
t.streamsQuota = newQuotaPool(int(s.Val) - len(t.activeStreams))
}
ms := t.maxStreams
t.maxStreams = int(s.Val)
t.mu.Unlock()
if reset {
t.streamsQuota.reset(int(s.Val) - ms)
}
case http2.SettingInitialWindowSize:
t.mu.Lock()
for _, stream := range t.activeStreams {
// Adjust the sending quota for each stream.
stream.sendQuotaPool.reset(int(s.Val - t.streamSendQuota))
}
t.streamSendQuota = s.Val
t.mu.Unlock()
}
}
}
// controller running in a separate goroutine takes charge of sending control
// frames (e.g., window update, reset stream, setting, etc.) to the server.
func (t *http2Client) controller() {
for {
select {
case i := <-t.controlBuf.get():
t.controlBuf.load()
select {
case <-t.writableChan:
switch i := i.(type) {
case *windowUpdate:
t.framer.writeWindowUpdate(true, i.streamID, i.increment)
case *settings:
if i.ack {
t.framer.writeSettingsAck(true)
t.applySettings(i.ss)
} else {
t.framer.writeSettings(true, i.ss...)
}
case *resetStream:
t.framer.writeRSTStream(true, i.streamID, i.code)
case *flushIO:
t.framer.flushWrite()
case *ping:
t.framer.writePing(true, i.ack, i.data)
default:
grpclog.Printf("transport: http2Client.controller got unexpected item type %v\n", i)
}
t.writableChan <- 0
continue
case <-t.shutdownChan:
return
}
case <-t.shutdownChan:
return
}
}
}
func (t *http2Client) Error() <-chan struct{} {
return t.errorChan
}
func (t *http2Client) GoAway() <-chan struct{} {
return t.goAway
}
func (t *http2Client) notifyError(err error) {
t.mu.Lock()
// make sure t.errorChan is closed only once.
if t.state == draining {
t.mu.Unlock()
t.Close()
return
}
if t.state == reachable {
t.state = unreachable
close(t.errorChan)
grpclog.Printf("transport: http2Client.notifyError got notified that the client transport was broken %v.", err)
}
t.mu.Unlock()
}