DockerCLI/docs/reference/commandline/service_create.md

418 lines
19 KiB
Markdown
Raw Normal View History

<!--[metadata]>
+++
title = "service create"
description = "The service create command description and usage"
keywords = ["service, create"]
[menu.main]
parent = "smn_cli"
+++
<![end-metadata]-->
# service create
```Markdown
Usage: docker service create [OPTIONS] IMAGE [COMMAND] [ARG...]
Create a new service
Options:
--constraint value Placement constraints (default [])
--container-label value Service container labels (default [])
--endpoint-mode string Endpoint mode (vip or dnsrr)
-e, --env value Set environment variables (default [])
--group-add value Add additional user groups to the container (default [])
--help Print usage
-l, --label value Service labels (default [])
--limit-cpu value Limit CPUs (default 0.000)
--limit-memory value Limit Memory (default 0 B)
--log-driver string Logging driver for service
--log-opt value Logging driver options (default [])
--mode string Service mode (replicated or global) (default "replicated")
--mount value Attach a mount to the service
--name string Service name
--network value Network attachments (default [])
-p, --publish value Publish a port as a node port (default [])
--replicas value Number of tasks (default none)
--reserve-cpu value Reserve CPUs (default 0.000)
--reserve-memory value Reserve Memory (default 0 B)
--restart-condition string Restart when condition is met (none, on-failure, or any)
--restart-delay value Delay between restart attempts (default none)
--restart-max-attempts value Maximum number of restarts before giving up (default none)
--restart-window value Window used to evaluate the restart policy (default none)
--stop-grace-period value Time to wait before force killing a container (default none)
--update-delay duration Delay between updates
--update-failure-action string Action on update failure (pause|continue) (default "pause")
--update-parallelism uint Maximum number of tasks updated simultaneously (0 to update all at once) (default 1)
-u, --user string Username or UID (format: <name|uid>[:<group|gid>])
--with-registry-auth Send registry authentication details to Swarm agents
-w, --workdir string Working directory inside the container
```
Creates a service as described by the specified parameters. You must run this
command on a manager node.
## Examples
### Create a service
```bash
$ docker service create --name redis redis:3.0.6
dmu1ept4cxcfe8k8lhtux3ro3
$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
dmu1ept4cxcf redis 1/1 redis:3.0.6
```
### Create a service with 5 replica tasks (--replicas)
Use the `--replicas` flag to set the number of replica tasks for a replicated
service. The following command creates a `redis` service with `5` replica tasks:
```bash
$ docker service create --name redis --replicas=5 redis:3.0.6
4cdgfyky7ozwh3htjfw0d12qv
```
The above command sets the *desired* number of tasks for the service. Even
though the command returns immediately, actual scaling of the service may take
some time. The `REPLICAS` column shows both the *actual* and *desired* number
of replica tasks for the service.
In the following example the desired state is `5` replicas, but the current
number of `RUNNING` tasks is `3`:
```bash
$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
4cdgfyky7ozw redis 3/5 redis:3.0.7
```
Once all the tasks are created and `RUNNING`, the actual number of tasks is
equal to the desired number:
```bash
$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
4cdgfyky7ozw redis 5/5 redis:3.0.7
```
### Create a service with a rolling update policy
```bash
$ docker service create \
--replicas 10 \
--name redis \
--update-delay 10s \
--update-parallelism 2 \
redis:3.0.6
```
When you run a [service update](service_update.md), the scheduler updates a
maximum of 2 tasks at a time, with `10s` between updates. For more information,
refer to the [rolling updates
tutorial](../../swarm/swarm-tutorial/rolling-update.md).
### Set environment variables (-e, --env)
This sets environmental variables for all tasks in a service. For example:
```bash
$ docker service create --name redis_2 --replicas 5 --env MYVAR=foo redis:3.0.6
```
### Set metadata on a service (-l, --label)
A label is a `key=value` pair that applies metadata to a service. To label a
service with two labels:
```bash
$ docker service create \
--name redis_2 \
--label com.example.foo="bar"
--label bar=baz \
redis:3.0.6
```
For more information about labels, refer to [apply custom
metadata](../../userguide/labels-custom-metadata.md).
### Add bind-mounts or volumes
Docker supports two different kinds of mounts, which allow containers to read to
or write from files or directories on other containers or the host operating
system. These types are _data volumes_ (often referred to simply as volumes) and
_bind-mounts_.
A **bind-mount** makes a file or directory on the host available to the
container it is mounted within. A bind-mount may be either read-only or
read-write. For example, a container might share its host's DNS information by
means of a bind-mount of the host's `/etc/resolv.conf` or a container might
write logs to its host's `/var/log/myContainerLogs` directory. If you use
bind-mounts and your host and containers have different notions of permissions,
access controls, or other such details, you will run into portability issues.
A **named volume** is a mechanism for decoupling persistent data needed by your
container from the image used to create the container and from the host machine.
Named volumes are created and managed by Docker, and a named volume persists
even when no container is currently using it. Data in named volumes can be
shared between a container and the host machine, as well as between multiple
containers. Docker uses a _volume driver_ to create, manage, and mount volumes.
You can back up or restore volumes using Docker commands.
Consider a situation where your image starts a lightweight web server. You could
use that image as a base image, copy in your website's HTML files, and package
that into another image. Each time your website changed, you'd need to update
the new image and redeploy all of the containers serving your website. A better
solution is to store the website in a named volume which is attached to each of
your web server containers when they start. To update the website, you just
update the named volume.
For more information about named volumes, see
[Data Volumes](https://docs.docker.com/engine/tutorials/dockervolumes/).
The following table describes options which apply to both bind-mounts and named
volumes in a service:
| Option | Required | Description
|:-----------------------------------------|:--------------------------|:-----------------------------------------------------------------------------------------
| **type** | | The type of mount, can be either `volume`, or `bind`. Defaults to `volume` if no type is specified.<ul><li>`volume`: mounts a [managed volume](volume_create.md) into the container.</li><li>`bind`: bind-mounts a directory or file from the host into the container.</li></ul>
| **src** or **source** | for `type=bind`&nbsp;only | <ul><li>`type=volume`: `src` is an optional way to specify the name of the volume (for example, `src=my-volume`). If the named volume does not exist, it is automatically created. If no `src` is specified, the volume is assigned a random name which is guaranteed to be unique on the host, but may not be unique cluster-wide. A randomly-named volume has the same lifecycle as its container and is destroyed when the *container* is destroyed (which is upon `service update`, or when scaling or re-balancing the service).</li><li>`type=bind`: `src` is required, and specifies an absolute path to the file or directory to bind-mount (for example, `src=/path/on/host/`). An error is produced if the file or directory does not exist.</li></ul>
| **dst** or **destination** or **target** | yes | Mount path inside the container, for example `/some/path/in/container/`. If the path does not exist in the container's filesystem, the Engine creates a directory at the specified location before mounting the volume or bind-mount.
| **readonly** or **ro** | | The Engine mounts binds and volumes `read-write` unless `readonly` option is given when mounting the bind or volume.<br /><br /><ul><li>`true` or `1` or no value: Mounts the bind or volume read-only.</li><li>`false` or `0`: Mounts the bind or volume read-write.</li></ul>
#### Bind Propagation
Bind propagation refers to whether or not mounts created within a given
bind-mount or named volume can be propagated to replicas of that mount. Consider
a mount point `/mnt`, which is also mounted on `/tmp`. The propation settings
control whether a mount on `/tmp/a` would also be available on `/mnt/a`. Each
propagation setting has a recursive counterpoint. In the case of recursion,
consider that `/tmp/a` is also mounted as `/foo`. The propagation settings
control whether `/mnt/a` and/or `/tmp/a` would exist.
The `bind-propagation` option defaults to `rprivate` for both bind-mounts and
volume mounts, and is only configurable for bind-mounts. In other words, named
volumes do not support bind propagation.
- **`shared`**: Sub-mounts of the original mount are exposed to replica mounts,
and sub-mounts of replica mounts are also propagated to the
original mount.
- **`slave`**: similar to a shared mount, but only in one direction. If the
original mount exposes a sub-mount, the replica mount can see it.
However, if the replica mount exposes a sub-mount, the original
mount cannot see it.
- **`private`**: The mount is private. Sub-mounts within it are not exposed to
replica mounts, and sub-mounts of replica mounts are not
exposed to the original mount.
- **`rshared`**: The same as shared, but the propagation also extends to and from
mount points nested within any of the original or replica mount
points.
- **`rslave`**: The same as `slave`, but the propagation also extends to and from
mount points nested within any of the original or replica mount
points.
- **`rprivate`**: The default. The same as `private`, meaning that no mount points
anywhere within the original or replica mount points propagate
in either direction.
For more information about bind propagation, see the
[Linux kernel documentation for shared subtree](https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt).
#### Options for Named Volumes
The following options can only be used for named volumes (`type=volume`);
| Option | Description
|:----------------------|:--------------------------------------------------------------------------------------------------------------------
| **volume-driver** | Name of the volume-driver plugin to use for the volume. Defaults to ``"local"``, to use the local volume driver to create the volume if the volume does not exist.
| **volume-label** | One or more custom metadata ("labels") to apply to the volume upon creation. For example, `volume-label=mylabel=hello-world,my-other-label=hello-mars`. For more information about labels, refer to [apply custom metadata](../../userguide/labels-custom-metadata.md).
| **volume-nocopy** | By default, if you attach an empty volume to a container, and files or directories already existed at the mount-path in the container (`dst`), the Engine copies those files and directories into the volume, allowing the host to access them. Set `volume-nocopy` to disables copying files from the container's filesystem to the volume and mount the empty volume.<br /><br />A value is optional:<ul><li>`true` or `1`: Default if you do not provide a value. Disables copying.</li><li>`false` or `0`: Enables copying.</li></ul>
| **volume-opt** | Options specific to a given volume driver, which will be passed to the driver when creating the volume. Options are provided as a comma-separated list of key/value pairs, for example, `volume-opt=some-option=some-value,some-other-option=some-other-value`. For available options for a given driver, refer to that driver's documentation.
#### Differences between "--mount" and "--volume"
The `--mount` flag supports most options that are supported by the `-v`
or `--volume` flag for `docker run`, with some important exceptions:
- The `--mount` flag allows you to specify a volume driver and volume driver
options *per volume*, without creating the volumes in advance. In contrast,
`docker run` allows you to specify a single volume driver which is shared
by all volumes, using the `--volume-driver` flag.
- The `--mount` flag allows you to specify custom metadata ("labels") for a volume,
before the volume is created.
- When you use `--mount` with `type=bind`, the host-path must refer to an *existing*
path on the host. The path will not be created for you and the service will fail
with an error if the path does not exist.
- The `--mount` flag does not allow you to relabel a volume with `Z` or `z` flags,
which are used for `selinux` labeling.
#### Create a service using a named volume
The following example creates a service that uses a named volume:
```bash
$ docker service create \
--name my-service \
--replicas 3 \
--mount type=volume,source=my-volume,destination=/path/in/container,volume-label="color=red",volume-label="shape=round" \
nginx:alpine
```
For each replica of the service, the engine requests a volume named "my-volume"
from the default ("local") volume driver where the task is deployed. If the
volume does not exist, the engine creates a new volume and applies the "color"
and "shape" labels.
When the task is started, the volume is mounted on `/path/in/container/` inside
the container.
Be aware that the default ("local") volume is a locally scoped volume driver.
This means that depending on where a task is deployed, either that task gets a
*new* volume named "my-volume", or shares the same "my-volume" with other tasks
of the same service. Multiple containers writing to a single shared volume can
cause data corruption if the software running inside the container is not
designed to handle concurrent processes writing to the same location. Also take
into account that containers can be re-scheduled by the Swarm orchestrator and
be deployed on a different node.
#### Create a service that uses an anonymous volume
The following command creates a service with three replicas with an anonymous
volume on `/path/in/container`:
```bash
$ docker service create \
--name my-service \
--replicas 3 \
--mount type=volume,destination=/path/in/container \
nginx:alpine
```
In this example, no name (`source`) is specified for the volume, so a new volume
is created for each task. This guarantees that each task gets its own volume,
and volumes are not shared between tasks. Anonymous volumes are removed after
the task using them is complete.
#### Create a service that uses a bind-mounted host directory
The following example bind-mounts a host directory at `/path/in/container` in
the containers backing the service:
```bash
$ docker service create \
--name my-service \
--mount type=bind,source=/path/on/host,destination=/path/in/container \
nginx:alpine
```
### Set service mode (--mode)
The service mode determines whether this is a _replicated_ service or a _global_
service. A replicated service runs as many tasks as specified, while a global
service runs on each active node in the swarm.
The following command creates a global service:
```bash
$ docker service create \
--name redis_2 \
--mode global \
redis:3.0.6
```
### Specify service constraints (--constraint)
You can limit the set of nodes where a task can be scheduled by defining
constraint expressions. Multiple constraints find nodes that satisfy every
expression (AND match). Constraints can match node or Docker Engine labels as
follows:
| node attribute | matches | example |
|:----------------|:--------------------------|:------------------------------------------------|
| node.id | node ID | `node.id == 2ivku8v2gvtg4` |
| node.hostname | node hostname | `node.hostname != node-2` |
| node.role | node role: manager | `node.role == manager` |
| node.labels | user defined node labels | `node.labels.security == high` |
| engine.labels | Docker Engine's labels | `engine.labels.operatingsystem == ubuntu 14.04` |
`engine.labels` apply to Docker Engine labels like operating system,
drivers, etc. Swarm administrators add `node.labels` for operational purposes by
using the [`docker node update`](node_update.md) command.
For example, the following limits tasks for the redis service to nodes where the
node type label equals queue:
```bash
$ docker service create \
--name redis_2 \
--constraint 'node.labels.type == queue' \
redis:3.0.6
```
### Attach a service to an existing network (--network)
You can use overlay networks to connect one or more services within the swarm.
First, create an overlay network on a manager node the docker network create
command:
```bash
$ docker network create --driver overlay my-network
etjpu59cykrptrgw0z0hk5snf
```
After you create an overlay network in swarm mode, all manager nodes have
access to the network.
When you create a service and pass the --network flag to attach the service to
the overlay network:
```bash
$ docker service create \
--replicas 3 \
--network my-network \
--name my-web \
nginx
716thylsndqma81j6kkkb5aus
```
The swarm extends my-network to each node running the service.
Containers on the same network can access each other using
[service discovery](../../swarm/networking.md#use-swarm-mode-service-discovery).
### Publish service ports externally to the swarm (-p, --publish)
You can publish service ports to make them available externally to the swarm
using the `--publish` flag:
```bash
$ docker service create --publish <TARGET-PORT>:<SERVICE-PORT> nginx
```
For example:
```bash
$ docker service create --name my_web --replicas 3 --publish 8080:80 nginx
```
When you publish a service port, the swarm routing mesh makes the service
accessible at the target port on every node regardless if there is a task for
the service running on the node. For more information refer to
[Use swarm mode routing mesh](../../swarm/ingress.md).
## Related information
* [service inspect](service_inspect.md)
* [service ls](service_ls.md)
* [service rm](service_rm.md)
* [service scale](service_scale.md)
* [service ps](service_ps.md)
* [service update](service_update.md)
<style>table tr > td:first-child { white-space: nowrap;}</style>