DockerCLI/vendor/k8s.io/apimachinery/pkg/util/clock/clock.go

328 lines
7.5 KiB
Go
Raw Normal View History

/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package clock
import (
"sync"
"time"
)
// Clock allows for injecting fake or real clocks into code that
// needs to do arbitrary things based on time.
type Clock interface {
Now() time.Time
Since(time.Time) time.Duration
After(d time.Duration) <-chan time.Time
NewTimer(d time.Duration) Timer
Sleep(d time.Duration)
Tick(d time.Duration) <-chan time.Time
}
var (
_ = Clock(RealClock{})
_ = Clock(&FakeClock{})
_ = Clock(&IntervalClock{})
)
// RealClock really calls time.Now()
type RealClock struct{}
// Now returns the current time.
func (RealClock) Now() time.Time {
return time.Now()
}
// Since returns time since the specified timestamp.
func (RealClock) Since(ts time.Time) time.Duration {
return time.Since(ts)
}
// Same as time.After(d).
func (RealClock) After(d time.Duration) <-chan time.Time {
return time.After(d)
}
func (RealClock) NewTimer(d time.Duration) Timer {
return &realTimer{
timer: time.NewTimer(d),
}
}
func (RealClock) Tick(d time.Duration) <-chan time.Time {
return time.Tick(d)
}
func (RealClock) Sleep(d time.Duration) {
time.Sleep(d)
}
// FakeClock implements Clock, but returns an arbitrary time.
type FakeClock struct {
lock sync.RWMutex
time time.Time
// waiters are waiting for the fake time to pass their specified time
waiters []fakeClockWaiter
}
type fakeClockWaiter struct {
targetTime time.Time
stepInterval time.Duration
skipIfBlocked bool
destChan chan time.Time
fired bool
}
func NewFakeClock(t time.Time) *FakeClock {
return &FakeClock{
time: t,
}
}
// Now returns f's time.
func (f *FakeClock) Now() time.Time {
f.lock.RLock()
defer f.lock.RUnlock()
return f.time
}
// Since returns time since the time in f.
func (f *FakeClock) Since(ts time.Time) time.Duration {
f.lock.RLock()
defer f.lock.RUnlock()
return f.time.Sub(ts)
}
// Fake version of time.After(d).
func (f *FakeClock) After(d time.Duration) <-chan time.Time {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
f.waiters = append(f.waiters, fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
})
return ch
}
// Fake version of time.NewTimer(d).
func (f *FakeClock) NewTimer(d time.Duration) Timer {
f.lock.Lock()
defer f.lock.Unlock()
stopTime := f.time.Add(d)
ch := make(chan time.Time, 1) // Don't block!
timer := &fakeTimer{
fakeClock: f,
waiter: fakeClockWaiter{
targetTime: stopTime,
destChan: ch,
},
}
f.waiters = append(f.waiters, timer.waiter)
return timer
}
func (f *FakeClock) Tick(d time.Duration) <-chan time.Time {
f.lock.Lock()
defer f.lock.Unlock()
tickTime := f.time.Add(d)
ch := make(chan time.Time, 1) // hold one tick
f.waiters = append(f.waiters, fakeClockWaiter{
targetTime: tickTime,
stepInterval: d,
skipIfBlocked: true,
destChan: ch,
})
return ch
}
// Move clock by Duration, notify anyone that's called After, Tick, or NewTimer
func (f *FakeClock) Step(d time.Duration) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(f.time.Add(d))
}
// Sets the time.
func (f *FakeClock) SetTime(t time.Time) {
f.lock.Lock()
defer f.lock.Unlock()
f.setTimeLocked(t)
}
// Actually changes the time and checks any waiters. f must be write-locked.
func (f *FakeClock) setTimeLocked(t time.Time) {
f.time = t
newWaiters := make([]fakeClockWaiter, 0, len(f.waiters))
for i := range f.waiters {
w := &f.waiters[i]
if !w.targetTime.After(t) {
if w.skipIfBlocked {
select {
case w.destChan <- t:
w.fired = true
default:
}
} else {
w.destChan <- t
w.fired = true
}
if w.stepInterval > 0 {
for !w.targetTime.After(t) {
w.targetTime = w.targetTime.Add(w.stepInterval)
}
newWaiters = append(newWaiters, *w)
}
} else {
newWaiters = append(newWaiters, f.waiters[i])
}
}
f.waiters = newWaiters
}
// Returns true if After has been called on f but not yet satisfied (so you can
// write race-free tests).
func (f *FakeClock) HasWaiters() bool {
f.lock.RLock()
defer f.lock.RUnlock()
return len(f.waiters) > 0
}
func (f *FakeClock) Sleep(d time.Duration) {
f.Step(d)
}
// IntervalClock implements Clock, but each invocation of Now steps the clock forward the specified duration
type IntervalClock struct {
Time time.Time
Duration time.Duration
}
// Now returns i's time.
func (i *IntervalClock) Now() time.Time {
i.Time = i.Time.Add(i.Duration)
return i.Time
}
// Since returns time since the time in i.
func (i *IntervalClock) Since(ts time.Time) time.Duration {
return i.Time.Sub(ts)
}
// Unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) After(d time.Duration) <-chan time.Time {
panic("IntervalClock doesn't implement After")
}
// Unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) NewTimer(d time.Duration) Timer {
panic("IntervalClock doesn't implement NewTimer")
}
// Unimplemented, will panic.
// TODO: make interval clock use FakeClock so this can be implemented.
func (*IntervalClock) Tick(d time.Duration) <-chan time.Time {
panic("IntervalClock doesn't implement Tick")
}
func (*IntervalClock) Sleep(d time.Duration) {
panic("IntervalClock doesn't implement Sleep")
}
// Timer allows for injecting fake or real timers into code that
// needs to do arbitrary things based on time.
type Timer interface {
C() <-chan time.Time
Stop() bool
Reset(d time.Duration) bool
}
var (
_ = Timer(&realTimer{})
_ = Timer(&fakeTimer{})
)
// realTimer is backed by an actual time.Timer.
type realTimer struct {
timer *time.Timer
}
// C returns the underlying timer's channel.
func (r *realTimer) C() <-chan time.Time {
return r.timer.C
}
// Stop calls Stop() on the underlying timer.
func (r *realTimer) Stop() bool {
return r.timer.Stop()
}
// Reset calls Reset() on the underlying timer.
func (r *realTimer) Reset(d time.Duration) bool {
return r.timer.Reset(d)
}
// fakeTimer implements Timer based on a FakeClock.
type fakeTimer struct {
fakeClock *FakeClock
waiter fakeClockWaiter
}
// C returns the channel that notifies when this timer has fired.
func (f *fakeTimer) C() <-chan time.Time {
return f.waiter.destChan
}
// Stop stops the timer and returns true if the timer has not yet fired, or false otherwise.
func (f *fakeTimer) Stop() bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
newWaiters := make([]fakeClockWaiter, 0, len(f.fakeClock.waiters))
for i := range f.fakeClock.waiters {
w := &f.fakeClock.waiters[i]
if w != &f.waiter {
newWaiters = append(newWaiters, *w)
}
}
f.fakeClock.waiters = newWaiters
return !f.waiter.fired
}
// Reset resets the timer to the fake clock's "now" + d. It returns true if the timer has not yet
// fired, or false otherwise.
func (f *fakeTimer) Reset(d time.Duration) bool {
f.fakeClock.lock.Lock()
defer f.fakeClock.lock.Unlock()
active := !f.waiter.fired
f.waiter.fired = false
f.waiter.targetTime = f.fakeClock.time.Add(d)
return active
}