vendor: github.com/google/go-cmp v0.5.5

it was downgraded to v0.2.0, but should be safe to upgrade

full diff: https://github.com/google/go-cmp/compare/v0.2.0...v0.5.5

Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
This commit is contained in:
Sebastiaan van Stijn 2022-03-01 16:34:33 +01:00
parent 9f0430b8fb
commit 58747a6316
No known key found for this signature in database
GPG Key ID: 76698F39D527CE8C
53 changed files with 4423 additions and 1070 deletions

View File

@ -52,7 +52,6 @@ replace (
github.com/docker/distribution => github.com/docker/distribution v2.7.1-0.20190205005809-0d3efadf0154+incompatible
github.com/docker/docker => github.com/docker/docker v20.10.3-0.20210811141259-343665850e3a+incompatible // master (v21.xx-dev)
github.com/gogo/googleapis => github.com/gogo/googleapis v1.3.2
github.com/google/go-cmp => github.com/google/go-cmp v0.2.0
github.com/prometheus/client_golang => github.com/prometheus/client_golang v1.6.0
github.com/prometheus/common => github.com/prometheus/common v0.9.1
github.com/prometheus/procfs => github.com/prometheus/procfs v0.0.11

View File

@ -348,8 +348,16 @@ github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Z
github.com/google/btree v1.0.0/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
github.com/google/certificate-transparency-go v1.0.10-0.20180222191210-5ab67e519c93 h1:jc2UWq7CbdszqeH6qu1ougXMIUBfSy8Pbh/anURYbGI=
github.com/google/certificate-transparency-go v1.0.10-0.20180222191210-5ab67e519c93/go.mod h1:QeJfpSbVSfYc7RgB3gJFj9cbuQMMchQxrWXz8Ruopmg=
github.com/google/go-cmp v0.2.0 h1:+dTQ8DZQJz0Mb/HjFlkptS1FeQ4cWSnN941F8aEG4SQ=
github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M=
github.com/google/go-cmp v0.3.0/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
github.com/google/go-cmp v0.3.1/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.1/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.2/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.4/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/go-cmp v0.5.5 h1:Khx7svrCpmxxtHBq5j2mp/xVjsi8hQMfNLvJFAlrGgU=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/gofuzz v1.1.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/google/martian v2.1.0+incompatible/go.mod h1:9I4somxYTbIHy5NJKHRl3wXiIaQGbYVAs8BPL6v8lEs=
@ -930,6 +938,7 @@ golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4f
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1 h1:go1bK/D/BFZV2I8cIQd1NKEZ+0owSTG1fDTci4IqFcE=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
google.golang.org/api v0.4.0/go.mod h1:8k5glujaEP+g9n7WNsDg8QP6cUVNI86fCNMcbazEtwE=
google.golang.org/api v0.7.0/go.mod h1:WtwebWUNSVBH/HAw79HIFXZNqEvBhG+Ra+ax0hx3E3M=

View File

@ -1,6 +1,6 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
// Package cmpopts provides common options for the cmp package.
package cmpopts
@ -8,6 +8,7 @@ package cmpopts
import (
"math"
"reflect"
"time"
"github.com/google/go-cmp/cmp"
)
@ -87,3 +88,61 @@ func areNaNsF64s(x, y float64) bool {
func areNaNsF32s(x, y float32) bool {
return areNaNsF64s(float64(x), float64(y))
}
// EquateApproxTime returns a Comparer option that determines two non-zero
// time.Time values to be equal if they are within some margin of one another.
// If both times have a monotonic clock reading, then the monotonic time
// difference will be used. The margin must be non-negative.
func EquateApproxTime(margin time.Duration) cmp.Option {
if margin < 0 {
panic("margin must be a non-negative number")
}
a := timeApproximator{margin}
return cmp.FilterValues(areNonZeroTimes, cmp.Comparer(a.compare))
}
func areNonZeroTimes(x, y time.Time) bool {
return !x.IsZero() && !y.IsZero()
}
type timeApproximator struct {
margin time.Duration
}
func (a timeApproximator) compare(x, y time.Time) bool {
// Avoid subtracting times to avoid overflow when the
// difference is larger than the largest representible duration.
if x.After(y) {
// Ensure x is always before y
x, y = y, x
}
// We're within the margin if x+margin >= y.
// Note: time.Time doesn't have AfterOrEqual method hence the negation.
return !x.Add(a.margin).Before(y)
}
// AnyError is an error that matches any non-nil error.
var AnyError anyError
type anyError struct{}
func (anyError) Error() string { return "any error" }
func (anyError) Is(err error) bool { return err != nil }
// EquateErrors returns a Comparer option that determines errors to be equal
// if errors.Is reports them to match. The AnyError error can be used to
// match any non-nil error.
func EquateErrors() cmp.Option {
return cmp.FilterValues(areConcreteErrors, cmp.Comparer(compareErrors))
}
// areConcreteErrors reports whether x and y are types that implement error.
// The input types are deliberately of the interface{} type rather than the
// error type so that we can handle situations where the current type is an
// interface{}, but the underlying concrete types both happen to implement
// the error interface.
func areConcreteErrors(x, y interface{}) bool {
_, ok1 := x.(error)
_, ok2 := y.(error)
return ok1 && ok2
}

View File

@ -0,0 +1,15 @@
// Copyright 2021, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.13
package cmpopts
import "errors"
func compareErrors(x, y interface{}) bool {
xe := x.(error)
ye := y.(error)
return errors.Is(xe, ye) || errors.Is(ye, xe)
}

View File

@ -0,0 +1,18 @@
// Copyright 2021, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.13
// TODO(≥go1.13): For support on <go1.13, we use the xerrors package.
// Drop this file when we no longer support older Go versions.
package cmpopts
import "golang.org/x/xerrors"
func compareErrors(x, y interface{}) bool {
xe := x.(error)
ye := y.(error)
return xerrors.Is(xe, ye) || xerrors.Is(ye, xe)
}

View File

@ -1,6 +1,6 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
package cmpopts
@ -11,16 +11,16 @@ import (
"unicode/utf8"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
)
// IgnoreFields returns an Option that ignores exported fields of the
// given names on a single struct type.
// IgnoreFields returns an Option that ignores fields of the
// given names on a single struct type. It respects the names of exported fields
// that are forwarded due to struct embedding.
// The struct type is specified by passing in a value of that type.
//
// The name may be a dot-delimited string (e.g., "Foo.Bar") to ignore a
// specific sub-field that is embedded or nested within the parent struct.
//
// This does not handle unexported fields; use IgnoreUnexported instead.
func IgnoreFields(typ interface{}, names ...string) cmp.Option {
sf := newStructFilter(typ, names...)
return cmp.FilterPath(sf.filter, cmp.Ignore())
@ -112,6 +112,10 @@ func (tf ifaceFilter) filter(p cmp.Path) bool {
// In particular, unexported fields within the struct's exported fields
// of struct types, including anonymous fields, will not be ignored unless the
// type of the field itself is also passed to IgnoreUnexported.
//
// Avoid ignoring unexported fields of a type which you do not control (i.e. a
// type from another repository), as changes to the implementation of such types
// may change how the comparison behaves. Prefer a custom Comparer instead.
func IgnoreUnexported(typs ...interface{}) cmp.Option {
ux := newUnexportedFilter(typs...)
return cmp.FilterPath(ux.filter, cmp.Ignore())
@ -124,7 +128,7 @@ func newUnexportedFilter(typs ...interface{}) unexportedFilter {
for _, typ := range typs {
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("invalid struct type: %T", typ))
panic(fmt.Sprintf("%T must be a non-pointer struct", typ))
}
ux.m[t] = true
}
@ -143,3 +147,60 @@ func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}
// IgnoreSliceElements returns an Option that ignores elements of []V.
// The discard function must be of the form "func(T) bool" which is used to
// ignore slice elements of type V, where V is assignable to T.
// Elements are ignored if the function reports true.
func IgnoreSliceElements(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.ValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
si, ok := p.Index(-1).(cmp.SliceIndex)
if !ok {
return false
}
if !si.Type().AssignableTo(vf.Type().In(0)) {
return false
}
vx, vy := si.Values()
if vx.IsValid() && vf.Call([]reflect.Value{vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}
// IgnoreMapEntries returns an Option that ignores entries of map[K]V.
// The discard function must be of the form "func(T, R) bool" which is used to
// ignore map entries of type K and V, where K and V are assignable to T and R.
// Entries are ignored if the function reports true.
func IgnoreMapEntries(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.KeyValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
if !mi.Key().Type().AssignableTo(vf.Type().In(0)) || !mi.Type().AssignableTo(vf.Type().In(1)) {
return false
}
k := mi.Key()
vx, vy := mi.Values()
if vx.IsValid() && vf.Call([]reflect.Value{k, vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{k, vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}

View File

@ -1,12 +1,13 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
package cmpopts
import (
"fmt"
"reflect"
"sort"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
@ -25,13 +26,13 @@ import (
// !less(y, x) for two elements x and y, their relative order is maintained.
//
// SortSlices can be used in conjunction with EquateEmpty.
func SortSlices(less interface{}) cmp.Option {
vf := reflect.ValueOf(less)
func SortSlices(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", less))
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ss := sliceSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ss.filter, cmp.Transformer("Sort", ss.sort))
return cmp.FilterValues(ss.filter, cmp.Transformer("cmpopts.SortSlices", ss.sort))
}
type sliceSorter struct {
@ -48,8 +49,8 @@ func (ss sliceSorter) filter(x, y interface{}) bool {
}
// Check whether the slices are already sorted to avoid an infinite
// recursion cycle applying the same transform to itself.
ok1 := sliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) })
ok2 := sliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) })
ok1 := sort.SliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) })
ok2 := sort.SliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) })
return !ok1 || !ok2
}
func (ss sliceSorter) sort(x interface{}) interface{} {
@ -58,7 +59,7 @@ func (ss sliceSorter) sort(x interface{}) interface{} {
for i := 0; i < src.Len(); i++ {
dst.Index(i).Set(src.Index(i))
}
sortSliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) })
sort.SliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) })
ss.checkSort(dst)
return dst.Interface()
}
@ -96,13 +97,13 @@ func (ss sliceSorter) less(v reflect.Value, i, j int) bool {
// • Total: if x != y, then either less(x, y) or less(y, x)
//
// SortMaps can be used in conjunction with EquateEmpty.
func SortMaps(less interface{}) cmp.Option {
vf := reflect.ValueOf(less)
func SortMaps(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", less))
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ms := mapSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ms.filter, cmp.Transformer("Sort", ms.sort))
return cmp.FilterValues(ms.filter, cmp.Transformer("cmpopts.SortMaps", ms.sort))
}
type mapSorter struct {
@ -118,7 +119,10 @@ func (ms mapSorter) filter(x, y interface{}) bool {
}
func (ms mapSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x)
outType := mapEntryType(src.Type())
outType := reflect.StructOf([]reflect.StructField{
{Name: "K", Type: src.Type().Key()},
{Name: "V", Type: src.Type().Elem()},
})
dst := reflect.MakeSlice(reflect.SliceOf(outType), src.Len(), src.Len())
for i, k := range src.MapKeys() {
v := reflect.New(outType).Elem()
@ -126,7 +130,7 @@ func (ms mapSorter) sort(x interface{}) interface{} {
v.Field(1).Set(src.MapIndex(k))
dst.Index(i).Set(v)
}
sortSlice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) })
sort.Slice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) })
ms.checkSort(dst)
return dst.Interface()
}
@ -139,8 +143,5 @@ func (ms mapSorter) checkSort(v reflect.Value) {
}
func (ms mapSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i).Field(0), v.Index(j).Field(0)
if !hasReflectStructOf {
vx, vy = vx.Elem(), vy.Elem()
}
return ms.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
}

View File

@ -1,46 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !go1.8
package cmpopts
import (
"reflect"
"sort"
)
const hasReflectStructOf = false
func mapEntryType(reflect.Type) reflect.Type {
return reflect.TypeOf(struct{ K, V interface{} }{})
}
func sliceIsSorted(slice interface{}, less func(i, j int) bool) bool {
return sort.IsSorted(reflectSliceSorter{reflect.ValueOf(slice), less})
}
func sortSlice(slice interface{}, less func(i, j int) bool) {
sort.Sort(reflectSliceSorter{reflect.ValueOf(slice), less})
}
func sortSliceStable(slice interface{}, less func(i, j int) bool) {
sort.Stable(reflectSliceSorter{reflect.ValueOf(slice), less})
}
type reflectSliceSorter struct {
slice reflect.Value
less func(i, j int) bool
}
func (ss reflectSliceSorter) Len() int {
return ss.slice.Len()
}
func (ss reflectSliceSorter) Less(i, j int) bool {
return ss.less(i, j)
}
func (ss reflectSliceSorter) Swap(i, j int) {
vi := ss.slice.Index(i).Interface()
vj := ss.slice.Index(j).Interface()
ss.slice.Index(i).Set(reflect.ValueOf(vj))
ss.slice.Index(j).Set(reflect.ValueOf(vi))
}

View File

@ -1,31 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build go1.8
package cmpopts
import (
"reflect"
"sort"
)
const hasReflectStructOf = true
func mapEntryType(t reflect.Type) reflect.Type {
return reflect.StructOf([]reflect.StructField{
{Name: "K", Type: t.Key()},
{Name: "V", Type: t.Elem()},
})
}
func sliceIsSorted(slice interface{}, less func(i, j int) bool) bool {
return sort.SliceIsSorted(slice, less)
}
func sortSlice(slice interface{}, less func(i, j int) bool) {
sort.Slice(slice, less)
}
func sortSliceStable(slice interface{}, less func(i, j int) bool) {
sort.SliceStable(slice, less)
}

View File

@ -1,6 +1,6 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
package cmpopts
@ -42,7 +42,7 @@ func newStructFilter(typ interface{}, names ...string) structFilter {
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T must be a struct", typ))
panic(fmt.Sprintf("%T must be a non-pointer struct", typ))
}
var ft fieldTree
for _, name := range names {
@ -160,14 +160,19 @@ func canonicalName(t reflect.Type, sel string) ([]string, error) {
// Find the canonical name for this current field name.
// If the field exists in an embedded struct, then it will be expanded.
sf, _ := t.FieldByName(name)
if !isExported(name) {
// Disallow unexported fields:
// * To discourage people from actually touching unexported fields
// * FieldByName is buggy (https://golang.org/issue/4876)
return []string{name}, fmt.Errorf("name must be exported")
// Avoid using reflect.Type.FieldByName for unexported fields due to
// buggy behavior with regard to embeddeding and unexported fields.
// See https://golang.org/issue/4876 for details.
sf = reflect.StructField{}
for i := 0; i < t.NumField() && sf.Name == ""; i++ {
if t.Field(i).Name == name {
sf = t.Field(i)
}
}
}
sf, ok := t.FieldByName(name)
if !ok {
if sf.Name == "" {
return []string{name}, fmt.Errorf("does not exist")
}
var ss []string

35
vendor/github.com/google/go-cmp/cmp/cmpopts/xform.go generated vendored Normal file
View File

@ -0,0 +1,35 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmpopts
import (
"github.com/google/go-cmp/cmp"
)
type xformFilter struct{ xform cmp.Option }
func (xf xformFilter) filter(p cmp.Path) bool {
for _, ps := range p {
if t, ok := ps.(cmp.Transform); ok && t.Option() == xf.xform {
return false
}
}
return true
}
// AcyclicTransformer returns a Transformer with a filter applied that ensures
// that the transformer cannot be recursively applied upon its own output.
//
// An example use case is a transformer that splits a string by lines:
// AcyclicTransformer("SplitLines", func(s string) []string{
// return strings.Split(s, "\n")
// })
//
// Had this been an unfiltered Transformer instead, this would result in an
// infinite cycle converting a string to []string to [][]string and so on.
func AcyclicTransformer(name string, xformFunc interface{}) cmp.Option {
xf := xformFilter{cmp.Transformer(name, xformFunc)}
return cmp.FilterPath(xf.filter, xf.xform)
}

View File

@ -1,11 +1,15 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
// Package cmp determines equality of values.
//
// This package is intended to be a more powerful and safer alternative to
// reflect.DeepEqual for comparing whether two values are semantically equal.
// It is intended to only be used in tests, as performance is not a goal and
// it may panic if it cannot compare the values. Its propensity towards
// panicking means that its unsuitable for production environments where a
// spurious panic may be fatal.
//
// The primary features of cmp are:
//
@ -22,33 +26,24 @@
// equality is determined by recursively comparing the primitive kinds on both
// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
// fields are not compared by default; they result in panics unless suppressed
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly compared
// using the AllowUnexported option.
// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly
// compared using the Exporter option.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/diff"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/function"
"github.com/google/go-cmp/cmp/internal/value"
)
// BUG(dsnet): Maps with keys containing NaN values cannot be properly compared due to
// the reflection package's inability to retrieve such entries. Equal will panic
// anytime it comes across a NaN key, but this behavior may change.
//
// See https://golang.org/issue/11104 for more details.
var nothing = reflect.Value{}
// Equal reports whether x and y are equal by recursively applying the
// following rules in the given order to x and y and all of their sub-values:
//
// • If two values are not of the same type, then they are never equal
// and the overall result is false.
//
// • Let S be the set of all Ignore, Transformer, and Comparer options that
// remain after applying all path filters, value filters, and type filters.
// If at least one Ignore exists in S, then the comparison is ignored.
@ -61,71 +56,137 @@ var nothing = reflect.Value{}
//
// • If the values have an Equal method of the form "(T) Equal(T) bool" or
// "(T) Equal(I) bool" where T is assignable to I, then use the result of
// x.Equal(y) even if x or y is nil.
// Otherwise, no such method exists and evaluation proceeds to the next rule.
// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
// evaluation proceeds to the next rule.
//
// • Lastly, try to compare x and y based on their basic kinds.
// Simple kinds like booleans, integers, floats, complex numbers, strings, and
// channels are compared using the equivalent of the == operator in Go.
// Functions are only equal if they are both nil, otherwise they are unequal.
// Pointers are equal if the underlying values they point to are also equal.
// Interfaces are equal if their underlying concrete values are also equal.
//
// Structs are equal if all of their fields are equal. If a struct contains
// unexported fields, Equal panics unless the AllowUnexported option is used or
// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field.
// Structs are equal if recursively calling Equal on all fields report equal.
// If a struct contains unexported fields, Equal panics unless an Ignore option
// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
// explicitly permits comparing the unexported field.
//
// Arrays, slices, and maps are equal if they are both nil or both non-nil
// with the same length and the elements at each index or key are equal.
// Note that a non-nil empty slice and a nil slice are not equal.
// To equate empty slices and maps, consider using cmpopts.EquateEmpty.
// Slices are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored slice or array elements report equal.
// Empty non-nil slices and nil slices are not equal; to equate empty slices,
// consider using cmpopts.EquateEmpty.
//
// Maps are equal if they are both nil or both non-nil, where recursively
// calling Equal on all non-ignored map entries report equal.
// Map keys are equal according to the == operator.
// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
// Empty non-nil maps and nil maps are not equal; to equate empty maps,
// consider using cmpopts.EquateEmpty.
//
// Pointers and interfaces are equal if they are both nil or both non-nil,
// where they have the same underlying concrete type and recursively
// calling Equal on the underlying values reports equal.
//
// Before recursing into a pointer, slice element, or map, the current path
// is checked to detect whether the address has already been visited.
// If there is a cycle, then the pointed at values are considered equal
// only if both addresses were previously visited in the same path step.
func Equal(x, y interface{}, opts ...Option) bool {
s := newState(opts)
s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y))
s.compareAny(rootStep(x, y))
return s.result.Equal()
}
// Diff returns a human-readable report of the differences between two values.
// It returns an empty string if and only if Equal returns true for the same
// input values and options. The output string will use the "-" symbol to
// indicate elements removed from x, and the "+" symbol to indicate elements
// added to y.
// Diff returns a human-readable report of the differences between two values:
// y - x. It returns an empty string if and only if Equal returns true for the
// same input values and options.
//
// Do not depend on this output being stable.
// The output is displayed as a literal in pseudo-Go syntax.
// At the start of each line, a "-" prefix indicates an element removed from x,
// a "+" prefix to indicates an element added from y, and the lack of a prefix
// indicates an element common to both x and y. If possible, the output
// uses fmt.Stringer.String or error.Error methods to produce more humanly
// readable outputs. In such cases, the string is prefixed with either an
// 's' or 'e' character, respectively, to indicate that the method was called.
//
// Do not depend on this output being stable. If you need the ability to
// programmatically interpret the difference, consider using a custom Reporter.
func Diff(x, y interface{}, opts ...Option) string {
s := newState(opts)
// Optimization: If there are no other reporters, we can optimize for the
// common case where the result is equal (and thus no reported difference).
// This avoids the expensive construction of a difference tree.
if len(s.reporters) == 0 {
s.compareAny(rootStep(x, y))
if s.result.Equal() {
return ""
}
s.result = diff.Result{} // Reset results
}
r := new(defaultReporter)
opts = Options{Options(opts), r}
eq := Equal(x, y, opts...)
s.reporters = append(s.reporters, reporter{r})
s.compareAny(rootStep(x, y))
d := r.String()
if (d == "") != eq {
if (d == "") != s.result.Equal() {
panic("inconsistent difference and equality results")
}
return d
}
// rootStep constructs the first path step. If x and y have differing types,
// then they are stored within an empty interface type.
func rootStep(x, y interface{}) PathStep {
vx := reflect.ValueOf(x)
vy := reflect.ValueOf(y)
// If the inputs are different types, auto-wrap them in an empty interface
// so that they have the same parent type.
var t reflect.Type
if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
t = reflect.TypeOf((*interface{})(nil)).Elem()
if vx.IsValid() {
vvx := reflect.New(t).Elem()
vvx.Set(vx)
vx = vvx
}
if vy.IsValid() {
vvy := reflect.New(t).Elem()
vvy.Set(vy)
vy = vvy
}
} else {
t = vx.Type()
}
return &pathStep{t, vx, vy}
}
type state struct {
// These fields represent the "comparison state".
// Calling statelessCompare must not result in observable changes to these.
result diff.Result // The current result of comparison
curPath Path // The current path in the value tree
reporter reporter // Optional reporter used for difference formatting
result diff.Result // The current result of comparison
curPath Path // The current path in the value tree
curPtrs pointerPath // The current set of visited pointers
reporters []reporter // Optional reporters
// recChecker checks for infinite cycles applying the same set of
// transformers upon the output of itself.
recChecker recChecker
// dynChecker triggers pseudo-random checks for option correctness.
// It is safe for statelessCompare to mutate this value.
dynChecker dynChecker
// These fields, once set by processOption, will not change.
exporters map[reflect.Type]bool // Set of structs with unexported field visibility
opts Options // List of all fundamental and filter options
exporters []exporter // List of exporters for structs with unexported fields
opts Options // List of all fundamental and filter options
}
func newState(opts []Option) *state {
s := new(state)
for _, opt := range opts {
s.processOption(opt)
}
// Always ensure a validator option exists to validate the inputs.
s := &state{opts: Options{validator{}}}
s.curPtrs.Init()
s.processOption(Options(opts))
return s
}
@ -144,18 +205,10 @@ func (s *state) processOption(opt Option) {
panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
}
s.opts = append(s.opts, opt)
case visibleStructs:
if s.exporters == nil {
s.exporters = make(map[reflect.Type]bool)
}
for t := range opt {
s.exporters[t] = true
}
case exporter:
s.exporters = append(s.exporters, opt)
case reporter:
if s.reporter != nil {
panic("difference reporter already registered")
}
s.reporter = opt
s.reporters = append(s.reporters, opt)
default:
panic(fmt.Sprintf("unknown option %T", opt))
}
@ -164,153 +217,96 @@ func (s *state) processOption(opt Option) {
// statelessCompare compares two values and returns the result.
// This function is stateless in that it does not alter the current result,
// or output to any registered reporters.
func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result {
// We do not save and restore the curPath because all of the compareX
// methods should properly push and pop from the path.
// It is an implementation bug if the contents of curPath differs from
func (s *state) statelessCompare(step PathStep) diff.Result {
// We do not save and restore curPath and curPtrs because all of the
// compareX methods should properly push and pop from them.
// It is an implementation bug if the contents of the paths differ from
// when calling this function to when returning from it.
oldResult, oldReporter := s.result, s.reporter
oldResult, oldReporters := s.result, s.reporters
s.result = diff.Result{} // Reset result
s.reporter = nil // Remove reporter to avoid spurious printouts
s.compareAny(vx, vy)
s.reporters = nil // Remove reporters to avoid spurious printouts
s.compareAny(step)
res := s.result
s.result, s.reporter = oldResult, oldReporter
s.result, s.reporters = oldResult, oldReporters
return res
}
func (s *state) compareAny(vx, vy reflect.Value) {
// TODO: Support cyclic data structures.
func (s *state) compareAny(step PathStep) {
// Update the path stack.
s.curPath.push(step)
defer s.curPath.pop()
for _, r := range s.reporters {
r.PushStep(step)
defer r.PopStep()
}
s.recChecker.Check(s.curPath)
// Rule 0: Differing types are never equal.
if !vx.IsValid() || !vy.IsValid() {
s.report(vx.IsValid() == vy.IsValid(), vx, vy)
return
// Cycle-detection for slice elements (see NOTE in compareSlice).
t := step.Type()
vx, vy := step.Values()
if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
px, py := vx.Addr(), vy.Addr()
if eq, visited := s.curPtrs.Push(px, py); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(px, py)
}
if vx.Type() != vy.Type() {
s.report(false, vx, vy) // Possible for path to be empty
return
}
t := vx.Type()
if len(s.curPath) == 0 {
s.curPath.push(&pathStep{typ: t})
defer s.curPath.pop()
}
vx, vy = s.tryExporting(vx, vy)
// Rule 1: Check whether an option applies on this node in the value tree.
if s.tryOptions(vx, vy, t) {
if s.tryOptions(t, vx, vy) {
return
}
// Rule 2: Check whether the type has a valid Equal method.
if s.tryMethod(vx, vy, t) {
if s.tryMethod(t, vx, vy) {
return
}
// Rule 3: Recursively descend into each value's underlying kind.
// Rule 3: Compare based on the underlying kind.
switch t.Kind() {
case reflect.Bool:
s.report(vx.Bool() == vy.Bool(), vx, vy)
return
s.report(vx.Bool() == vy.Bool(), 0)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
s.report(vx.Int() == vy.Int(), vx, vy)
return
s.report(vx.Int() == vy.Int(), 0)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
s.report(vx.Uint() == vy.Uint(), vx, vy)
return
s.report(vx.Uint() == vy.Uint(), 0)
case reflect.Float32, reflect.Float64:
s.report(vx.Float() == vy.Float(), vx, vy)
return
s.report(vx.Float() == vy.Float(), 0)
case reflect.Complex64, reflect.Complex128:
s.report(vx.Complex() == vy.Complex(), vx, vy)
return
s.report(vx.Complex() == vy.Complex(), 0)
case reflect.String:
s.report(vx.String() == vy.String(), vx, vy)
return
s.report(vx.String() == vy.String(), 0)
case reflect.Chan, reflect.UnsafePointer:
s.report(vx.Pointer() == vy.Pointer(), vx, vy)
return
s.report(vx.Pointer() == vy.Pointer(), 0)
case reflect.Func:
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
case reflect.Ptr:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
s.curPath.push(&indirect{pathStep{t.Elem()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Interface:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
if vx.Elem().Type() != vy.Elem().Type() {
s.report(false, vx.Elem(), vy.Elem())
return
}
s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}})
defer s.curPath.pop()
s.compareAny(vx.Elem(), vy.Elem())
return
case reflect.Slice:
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
fallthrough
case reflect.Array:
s.compareArray(vx, vy, t)
return
case reflect.Map:
s.compareMap(vx, vy, t)
return
s.report(vx.IsNil() && vy.IsNil(), 0)
case reflect.Struct:
s.compareStruct(vx, vy, t)
return
s.compareStruct(t, vx, vy)
case reflect.Slice, reflect.Array:
s.compareSlice(t, vx, vy)
case reflect.Map:
s.compareMap(t, vx, vy)
case reflect.Ptr:
s.comparePtr(t, vx, vy)
case reflect.Interface:
s.compareInterface(t, vx, vy)
default:
panic(fmt.Sprintf("%v kind not handled", t.Kind()))
}
}
func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) {
if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported {
if sf.force {
// Use unsafe pointer arithmetic to get read-write access to an
// unexported field in the struct.
vx = unsafeRetrieveField(sf.pvx, sf.field)
vy = unsafeRetrieveField(sf.pvy, sf.field)
} else {
// We are not allowed to export the value, so invalidate them
// so that tryOptions can panic later if not explicitly ignored.
vx = nothing
vy = nothing
}
}
return vx, vy
}
func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool {
// If there were no FilterValues, we will not detect invalid inputs,
// so manually check for them and append invalid if necessary.
// We still evaluate the options since an ignore can override invalid.
opts := s.opts
if !vx.IsValid() || !vy.IsValid() {
opts = Options{opts, invalid{}}
}
func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
// Evaluate all filters and apply the remaining options.
if opt := opts.filter(s, vx, vy, t); opt != nil {
if opt := s.opts.filter(s, t, vx, vy); opt != nil {
opt.apply(s, vx, vy)
return true
}
return false
}
func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
// Check if this type even has an Equal method.
m, ok := t.MethodByName("Equal")
if !ok || !function.IsType(m.Type, function.EqualAssignable) {
@ -318,11 +314,11 @@ func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool {
}
eq := s.callTTBFunc(m.Func, vx, vy)
s.report(eq, vx, vy)
s.report(eq, reportByMethod)
return true
}
func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
v = sanitizeValue(v, f.Type().In(0))
if !s.dynChecker.Next() {
return f.Call([]reflect.Value{v})[0]
@ -333,15 +329,15 @@ func (s *state) callTRFunc(f, v reflect.Value) reflect.Value {
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, v)
got := <-c
want := f.Call([]reflect.Value{v})[0]
if got := <-c; !s.statelessCompare(got, want).Equal() {
if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
// To avoid false-positives with non-reflexive equality operations,
// we sanity check whether a value is equal to itself.
if !s.statelessCompare(want, want).Equal() {
if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
return want
}
fn := getFuncName(f.Pointer())
panic(fmt.Sprintf("non-deterministic function detected: %s", fn))
panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
}
return want
}
@ -359,10 +355,10 @@ func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
// unsafe mutations to the input.
c := make(chan reflect.Value)
go detectRaces(c, f, y, x)
got := <-c
want := f.Call([]reflect.Value{x, y})[0].Bool()
if got := <-c; !got.IsValid() || got.Bool() != want {
fn := getFuncName(f.Pointer())
panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn))
if !got.IsValid() || got.Bool() != want {
panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
}
return want
}
@ -380,140 +376,273 @@ func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
// assuming that T is assignable to R.
// Otherwise, it returns the input value as is.
func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value {
// TODO(dsnet): Remove this hacky workaround.
// See https://golang.org/issue/22143
if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
return reflect.New(t).Elem()
// TODO(≥go1.10): Workaround for reflect bug (https://golang.org/issue/22143).
if !flags.AtLeastGo110 {
if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t {
return reflect.New(t).Elem()
}
}
return v
}
func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) {
step := &sliceIndex{pathStep{t.Elem()}, 0, 0}
s.curPath.push(step)
// Compute an edit-script for slices vx and vy.
es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result {
step.xkey, step.ykey = ix, iy
return s.statelessCompare(vx.Index(ix), vy.Index(iy))
})
// Report the entire slice as is if the arrays are of primitive kind,
// and the arrays are different enough.
isPrimitive := false
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
isPrimitive = true
}
if isPrimitive && es.Dist() > (vx.Len()+vy.Len())/4 {
s.curPath.pop() // Pop first since we are reporting the whole slice
s.report(false, vx, vy)
return
}
// Replay the edit-script.
var ix, iy int
for _, e := range es {
switch e {
case diff.UniqueX:
step.xkey, step.ykey = ix, -1
s.report(false, vx.Index(ix), nothing)
ix++
case diff.UniqueY:
step.xkey, step.ykey = -1, iy
s.report(false, nothing, vy.Index(iy))
iy++
default:
step.xkey, step.ykey = ix, iy
if e == diff.Identity {
s.report(true, vx.Index(ix), vy.Index(iy))
} else {
s.compareAny(vx.Index(ix), vy.Index(iy))
}
ix++
iy++
}
}
s.curPath.pop()
return
}
func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), vx, vy)
return
}
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := &mapIndex{pathStep: pathStep{t.Elem()}}
s.curPath.push(step)
defer s.curPath.pop()
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.key = k
vvx := vx.MapIndex(k)
vvy := vy.MapIndex(k)
switch {
case vvx.IsValid() && vvy.IsValid():
s.compareAny(vvx, vvy)
case vvx.IsValid() && !vvy.IsValid():
s.report(false, vvx, nothing)
case !vvx.IsValid() && vvy.IsValid():
s.report(false, nothing, vvy)
default:
// It is possible for both vvx and vvy to be invalid if the
// key contained a NaN value in it. There is no way in
// reflection to be able to retrieve these values.
// See https://golang.org/issue/11104
panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath))
}
}
}
func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) {
func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
var addr bool
var vax, vay reflect.Value // Addressable versions of vx and vy
step := &structField{}
s.curPath.push(step)
defer s.curPath.pop()
var mayForce, mayForceInit bool
step := StructField{&structField{}}
for i := 0; i < t.NumField(); i++ {
vvx := vx.Field(i)
vvy := vy.Field(i)
step.typ = t.Field(i).Type
step.vx = vx.Field(i)
step.vy = vy.Field(i)
step.name = t.Field(i).Name
step.idx = i
step.unexported = !isExported(step.name)
if step.unexported {
if step.name == "_" {
continue
}
// Defer checking of unexported fields until later to give an
// Ignore a chance to ignore the field.
if !vax.IsValid() || !vay.IsValid() {
// For unsafeRetrieveField to work, the parent struct must
// For retrieveUnexportedField to work, the parent struct must
// be addressable. Create a new copy of the values if
// necessary to make them addressable.
addr = vx.CanAddr() || vy.CanAddr()
vax = makeAddressable(vx)
vay = makeAddressable(vy)
}
step.force = s.exporters[t]
if !mayForceInit {
for _, xf := range s.exporters {
mayForce = mayForce || xf(t)
}
mayForceInit = true
}
step.mayForce = mayForce
step.paddr = addr
step.pvx = vax
step.pvy = vay
step.field = t.Field(i)
}
s.compareAny(vvx, vvy)
s.compareAny(step)
}
}
// report records the result of a single comparison.
// It also calls Report if any reporter is registered.
func (s *state) report(eq bool, vx, vy reflect.Value) {
if eq {
s.result.NSame++
} else {
s.result.NDiff++
func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
isSlice := t.Kind() == reflect.Slice
if isSlice && (vx.IsNil() || vy.IsNil()) {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
if s.reporter != nil {
s.reporter.Report(vx, vy, eq, s.curPath)
// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
// since slices represents a list of pointers, rather than a single pointer.
// The pointer checking logic must be handled on a per-element basis
// in compareAny.
//
// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
// pointer P, a length N, and a capacity C. Supposing each slice element has
// a memory size of M, then the slice is equivalent to the list of pointers:
// [P+i*M for i in range(N)]
//
// For example, v[:0] and v[:1] are slices with the same starting pointer,
// but they are clearly different values. Using the slice pointer alone
// violates the assumption that equal pointers implies equal values.
step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
withIndexes := func(ix, iy int) SliceIndex {
if ix >= 0 {
step.vx, step.xkey = vx.Index(ix), ix
} else {
step.vx, step.xkey = reflect.Value{}, -1
}
if iy >= 0 {
step.vy, step.ykey = vy.Index(iy), iy
} else {
step.vy, step.ykey = reflect.Value{}, -1
}
return step
}
// Ignore options are able to ignore missing elements in a slice.
// However, detecting these reliably requires an optimal differencing
// algorithm, for which diff.Difference is not.
//
// Instead, we first iterate through both slices to detect which elements
// would be ignored if standing alone. The index of non-discarded elements
// are stored in a separate slice, which diffing is then performed on.
var indexesX, indexesY []int
var ignoredX, ignoredY []bool
for ix := 0; ix < vx.Len(); ix++ {
ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
if !ignored {
indexesX = append(indexesX, ix)
}
ignoredX = append(ignoredX, ignored)
}
for iy := 0; iy < vy.Len(); iy++ {
ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
if !ignored {
indexesY = append(indexesY, iy)
}
ignoredY = append(ignoredY, ignored)
}
// Compute an edit-script for slices vx and vy (excluding ignored elements).
edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
})
// Replay the ignore-scripts and the edit-script.
var ix, iy int
for ix < vx.Len() || iy < vy.Len() {
var e diff.EditType
switch {
case ix < len(ignoredX) && ignoredX[ix]:
e = diff.UniqueX
case iy < len(ignoredY) && ignoredY[iy]:
e = diff.UniqueY
default:
e, edits = edits[0], edits[1:]
}
switch e {
case diff.UniqueX:
s.compareAny(withIndexes(ix, -1))
ix++
case diff.UniqueY:
s.compareAny(withIndexes(-1, iy))
iy++
default:
s.compareAny(withIndexes(ix, iy))
ix++
iy++
}
}
}
func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// Cycle-detection for maps.
if eq, visited := s.curPtrs.Push(vx, vy); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(vx, vy)
// We combine and sort the two map keys so that we can perform the
// comparisons in a deterministic order.
step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
step.vx = vx.MapIndex(k)
step.vy = vy.MapIndex(k)
step.key = k
if !step.vx.IsValid() && !step.vy.IsValid() {
// It is possible for both vx and vy to be invalid if the
// key contained a NaN value in it.
//
// Even with the ability to retrieve NaN keys in Go 1.12,
// there still isn't a sensible way to compare the values since
// a NaN key may map to multiple unordered values.
// The most reasonable way to compare NaNs would be to compare the
// set of values. However, this is impossible to do efficiently
// since set equality is provably an O(n^2) operation given only
// an Equal function. If we had a Less function or Hash function,
// this could be done in O(n*log(n)) or O(n), respectively.
//
// Rather than adding complex logic to deal with NaNs, make it
// the user's responsibility to compare such obscure maps.
const help = "consider providing a Comparer to compare the map"
panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
}
s.compareAny(step)
}
}
func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
// Cycle-detection for pointers.
if eq, visited := s.curPtrs.Push(vx, vy); visited {
s.report(eq, reportByCycle)
return
}
defer s.curPtrs.Pop(vx, vy)
vx, vy = vx.Elem(), vy.Elem()
s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
}
func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
if vx.IsNil() || vy.IsNil() {
s.report(vx.IsNil() && vy.IsNil(), 0)
return
}
vx, vy = vx.Elem(), vy.Elem()
if vx.Type() != vy.Type() {
s.report(false, 0)
return
}
s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
}
func (s *state) report(eq bool, rf resultFlags) {
if rf&reportByIgnore == 0 {
if eq {
s.result.NumSame++
rf |= reportEqual
} else {
s.result.NumDiff++
rf |= reportUnequal
}
}
for _, r := range s.reporters {
r.Report(Result{flags: rf})
}
}
// recChecker tracks the state needed to periodically perform checks that
// user provided transformers are not stuck in an infinitely recursive cycle.
type recChecker struct{ next int }
// Check scans the Path for any recursive transformers and panics when any
// recursive transformers are detected. Note that the presence of a
// recursive Transformer does not necessarily imply an infinite cycle.
// As such, this check only activates after some minimal number of path steps.
func (rc *recChecker) Check(p Path) {
const minLen = 1 << 16
if rc.next == 0 {
rc.next = minLen
}
if len(p) < rc.next {
return
}
rc.next <<= 1
// Check whether the same transformer has appeared at least twice.
var ss []string
m := map[Option]int{}
for _, ps := range p {
if t, ok := ps.(Transform); ok {
t := t.Option()
if m[t] == 1 { // Transformer was used exactly once before
tf := t.(*transformer).fnc.Type()
ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
}
m[t]++
}
}
if len(ss) > 0 {
const warning = "recursive set of Transformers detected"
const help = "consider using cmpopts.AcyclicTransformer"
set := strings.Join(ss, "\n\t")
panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
}
}

15
vendor/github.com/google/go-cmp/cmp/export_panic.go generated vendored Normal file
View File

@ -0,0 +1,15 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build purego
package cmp
import "reflect"
const supportExporters = false
func retrieveUnexportedField(reflect.Value, reflect.StructField, bool) reflect.Value {
panic("no support for forcibly accessing unexported fields")
}

35
vendor/github.com/google/go-cmp/cmp/export_unsafe.go generated vendored Normal file
View File

@ -0,0 +1,35 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !purego
package cmp
import (
"reflect"
"unsafe"
)
const supportExporters = true
// retrieveUnexportedField uses unsafe to forcibly retrieve any field from
// a struct such that the value has read-write permissions.
//
// The parent struct, v, must be addressable, while f must be a StructField
// describing the field to retrieve. If addr is false,
// then the returned value will be shallowed copied to be non-addressable.
func retrieveUnexportedField(v reflect.Value, f reflect.StructField, addr bool) reflect.Value {
ve := reflect.NewAt(f.Type, unsafe.Pointer(uintptr(unsafe.Pointer(v.UnsafeAddr()))+f.Offset)).Elem()
if !addr {
// A field is addressable if and only if the struct is addressable.
// If the original parent value was not addressable, shallow copy the
// value to make it non-addressable to avoid leaking an implementation
// detail of how forcibly exporting a field works.
if ve.Kind() == reflect.Interface && ve.IsNil() {
return reflect.Zero(f.Type)
}
return reflect.ValueOf(ve.Interface()).Convert(f.Type)
}
return ve
}

View File

@ -1,8 +1,8 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
// +build !debug
// +build !cmp_debug
package diff

View File

@ -1,8 +1,8 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
// +build debug
// +build cmp_debug
package diff
@ -14,7 +14,7 @@ import (
)
// The algorithm can be seen running in real-time by enabling debugging:
// go test -tags=debug -v
// go test -tags=cmp_debug -v
//
// Example output:
// === RUN TestDifference/#34

View File

@ -1,6 +1,6 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
// Package diff implements an algorithm for producing edit-scripts.
// The edit-script is a sequence of operations needed to transform one list
@ -12,6 +12,13 @@
// is more important than obtaining a minimal Levenshtein distance.
package diff
import (
"math/rand"
"time"
"github.com/google/go-cmp/cmp/internal/flags"
)
// EditType represents a single operation within an edit-script.
type EditType uint8
@ -85,24 +92,35 @@ func (es EditScript) LenY() int { return len(es) - es.stats().NX }
type EqualFunc func(ix int, iy int) Result
// Result is the result of comparison.
// NSame is the number of sub-elements that are equal.
// NDiff is the number of sub-elements that are not equal.
type Result struct{ NSame, NDiff int }
// NumSame is the number of sub-elements that are equal.
// NumDiff is the number of sub-elements that are not equal.
type Result struct{ NumSame, NumDiff int }
// BoolResult returns a Result that is either Equal or not Equal.
func BoolResult(b bool) Result {
if b {
return Result{NumSame: 1} // Equal, Similar
} else {
return Result{NumDiff: 2} // Not Equal, not Similar
}
}
// Equal indicates whether the symbols are equal. Two symbols are equal
// if and only if NDiff == 0. If Equal, then they are also Similar.
func (r Result) Equal() bool { return r.NDiff == 0 }
// if and only if NumDiff == 0. If Equal, then they are also Similar.
func (r Result) Equal() bool { return r.NumDiff == 0 }
// Similar indicates whether two symbols are similar and may be represented
// by using the Modified type. As a special case, we consider binary comparisons
// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
//
// The exact ratio of NSame to NDiff to determine similarity may change.
// The exact ratio of NumSame to NumDiff to determine similarity may change.
func (r Result) Similar() bool {
// Use NSame+1 to offset NSame so that binary comparisons are similar.
return r.NSame+1 >= r.NDiff
// Use NumSame+1 to offset NumSame so that binary comparisons are similar.
return r.NumSame+1 >= r.NumDiff
}
var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
// Difference reports whether two lists of lengths nx and ny are equal
// given the definition of equality provided as f.
//
@ -168,6 +186,11 @@ func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// approximately the square-root of the search budget.
searchBudget := 4 * (nx + ny) // O(n)
// Running the tests with the "cmp_debug" build tag prints a visualization
// of the algorithm running in real-time. This is educational for
// understanding how the algorithm works. See debug_enable.go.
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
// The algorithm below is a greedy, meet-in-the-middle algorithm for
// computing sub-optimal edit-scripts between two lists.
//
@ -185,20 +208,26 @@ func Difference(nx, ny int, f EqualFunc) (es EditScript) {
// frontier towards the opposite corner.
// • This algorithm terminates when either the X coordinates or the
// Y coordinates of the forward and reverse frontier points ever intersect.
//
// This algorithm is correct even if searching only in the forward direction
// or in the reverse direction. We do both because it is commonly observed
// that two lists commonly differ because elements were added to the front
// or end of the other list.
//
// Running the tests with the "debug" build tag prints a visualization of
// the algorithm running in real-time. This is educational for understanding
// how the algorithm works. See debug_enable.go.
f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
for {
// Non-deterministically start with either the forward or reverse direction
// to introduce some deliberate instability so that we have the flexibility
// to change this algorithm in the future.
if flags.Deterministic || randBool {
goto forwardSearch
} else {
goto reverseSearch
}
forwardSearch:
{
// Forward search from the beginning.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
goto finishSearch
}
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
@ -233,10 +262,14 @@ func Difference(nx, ny int, f EqualFunc) (es EditScript) {
} else {
fwdFrontier.Y++
}
goto reverseSearch
}
reverseSearch:
{
// Reverse search from the end.
if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
break
goto finishSearch
}
for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
// Search in a diagonal pattern for a match.
@ -271,8 +304,10 @@ func Difference(nx, ny int, f EqualFunc) (es EditScript) {
} else {
revFrontier.Y--
}
goto forwardSearch
}
finishSearch:
// Join the forward and reverse paths and then append the reverse path.
fwdPath.connect(revPath.point, f)
for i := len(revPath.es) - 1; i >= 0; i-- {

View File

@ -0,0 +1,9 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flags
// Deterministic controls whether the output of Diff should be deterministic.
// This is only used for testing.
var Deterministic bool

View File

@ -0,0 +1,10 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = false

View File

@ -0,0 +1,10 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.10
package flags
// AtLeastGo110 reports whether the Go toolchain is at least Go 1.10.
const AtLeastGo110 = true

View File

@ -1,26 +1,35 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
// Package function identifies function types.
// Package function provides functionality for identifying function types.
package function
import "reflect"
import (
"reflect"
"regexp"
"runtime"
"strings"
)
type funcType int
const (
_ funcType = iota
tbFunc // func(T) bool
ttbFunc // func(T, T) bool
trbFunc // func(T, R) bool
tibFunc // func(T, I) bool
trFunc // func(T) R
Equal = ttbFunc // func(T, T) bool
EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool
Transformer = trFunc // func(T) R
ValueFilter = ttbFunc // func(T, T) bool
Less = ttbFunc // func(T, T) bool
Equal = ttbFunc // func(T, T) bool
EqualAssignable = tibFunc // func(T, I) bool; encapsulates func(T, T) bool
Transformer = trFunc // func(T) R
ValueFilter = ttbFunc // func(T, T) bool
Less = ttbFunc // func(T, T) bool
ValuePredicate = tbFunc // func(T) bool
KeyValuePredicate = trbFunc // func(T, R) bool
)
var boolType = reflect.TypeOf(true)
@ -32,10 +41,18 @@ func IsType(t reflect.Type, ft funcType) bool {
}
ni, no := t.NumIn(), t.NumOut()
switch ft {
case tbFunc: // func(T) bool
if ni == 1 && no == 1 && t.Out(0) == boolType {
return true
}
case ttbFunc: // func(T, T) bool
if ni == 2 && no == 1 && t.In(0) == t.In(1) && t.Out(0) == boolType {
return true
}
case trbFunc: // func(T, R) bool
if ni == 2 && no == 1 && t.Out(0) == boolType {
return true
}
case tibFunc: // func(T, I) bool
if ni == 2 && no == 1 && t.In(0).AssignableTo(t.In(1)) && t.Out(0) == boolType {
return true
@ -47,3 +64,36 @@ func IsType(t reflect.Type, ft funcType) bool {
}
return false
}
var lastIdentRx = regexp.MustCompile(`[_\p{L}][_\p{L}\p{N}]*$`)
// NameOf returns the name of the function value.
func NameOf(v reflect.Value) string {
fnc := runtime.FuncForPC(v.Pointer())
if fnc == nil {
return "<unknown>"
}
fullName := fnc.Name() // e.g., "long/path/name/mypkg.(*MyType).(long/path/name/mypkg.myMethod)-fm"
// Method closures have a "-fm" suffix.
fullName = strings.TrimSuffix(fullName, "-fm")
var name string
for len(fullName) > 0 {
inParen := strings.HasSuffix(fullName, ")")
fullName = strings.TrimSuffix(fullName, ")")
s := lastIdentRx.FindString(fullName)
if s == "" {
break
}
name = s + "." + name
fullName = strings.TrimSuffix(fullName, s)
if i := strings.LastIndexByte(fullName, '('); inParen && i >= 0 {
fullName = fullName[:i]
}
fullName = strings.TrimSuffix(fullName, ".")
}
return strings.TrimSuffix(name, ".")
}

View File

@ -1,277 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package value provides functionality for reflect.Value types.
package value
import (
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
)
var stringerIface = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
// Format formats the value v as a string.
//
// This is similar to fmt.Sprintf("%+v", v) except this:
// * Prints the type unless it can be elided
// * Avoids printing struct fields that are zero
// * Prints a nil-slice as being nil, not empty
// * Prints map entries in deterministic order
func Format(v reflect.Value, conf FormatConfig) string {
conf.printType = true
conf.followPointers = true
conf.realPointers = true
return formatAny(v, conf, nil)
}
type FormatConfig struct {
UseStringer bool // Should the String method be used if available?
printType bool // Should we print the type before the value?
PrintPrimitiveType bool // Should we print the type of primitives?
followPointers bool // Should we recursively follow pointers?
realPointers bool // Should we print the real address of pointers?
}
func formatAny(v reflect.Value, conf FormatConfig, visited map[uintptr]bool) string {
// TODO: Should this be a multi-line printout in certain situations?
if !v.IsValid() {
return "<non-existent>"
}
if conf.UseStringer && v.Type().Implements(stringerIface) && v.CanInterface() {
if (v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface) && v.IsNil() {
return "<nil>"
}
const stringerPrefix = "s" // Indicates that the String method was used
s := v.Interface().(fmt.Stringer).String()
return stringerPrefix + formatString(s)
}
switch v.Kind() {
case reflect.Bool:
return formatPrimitive(v.Type(), v.Bool(), conf)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return formatPrimitive(v.Type(), v.Int(), conf)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
if v.Type().PkgPath() == "" || v.Kind() == reflect.Uintptr {
// Unnamed uints are usually bytes or words, so use hexadecimal.
return formatPrimitive(v.Type(), formatHex(v.Uint()), conf)
}
return formatPrimitive(v.Type(), v.Uint(), conf)
case reflect.Float32, reflect.Float64:
return formatPrimitive(v.Type(), v.Float(), conf)
case reflect.Complex64, reflect.Complex128:
return formatPrimitive(v.Type(), v.Complex(), conf)
case reflect.String:
return formatPrimitive(v.Type(), formatString(v.String()), conf)
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return formatPointer(v, conf)
case reflect.Ptr:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("(%v)(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] || !conf.followPointers {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
return "&" + formatAny(v.Elem(), conf, visited)
case reflect.Interface:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
return formatAny(v.Elem(), conf, visited)
case reflect.Slice:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
fallthrough
case reflect.Array:
var ss []string
subConf := conf
subConf.printType = v.Type().Elem().Kind() == reflect.Interface
for i := 0; i < v.Len(); i++ {
s := formatAny(v.Index(i), subConf, visited)
ss = append(ss, s)
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Map:
if v.IsNil() {
if conf.printType {
return fmt.Sprintf("%v(nil)", v.Type())
}
return "<nil>"
}
if visited[v.Pointer()] {
return formatPointer(v, conf)
}
visited = insertPointer(visited, v.Pointer())
var ss []string
keyConf, valConf := conf, conf
keyConf.printType = v.Type().Key().Kind() == reflect.Interface
keyConf.followPointers = false
valConf.printType = v.Type().Elem().Kind() == reflect.Interface
for _, k := range SortKeys(v.MapKeys()) {
sk := formatAny(k, keyConf, visited)
sv := formatAny(v.MapIndex(k), valConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", sk, sv))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
case reflect.Struct:
var ss []string
subConf := conf
subConf.printType = true
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if isZero(vv) {
continue // Elide zero value fields
}
name := v.Type().Field(i).Name
subConf.UseStringer = conf.UseStringer
s := formatAny(vv, subConf, visited)
ss = append(ss, fmt.Sprintf("%s: %s", name, s))
}
s := fmt.Sprintf("{%s}", strings.Join(ss, ", "))
if conf.printType {
return v.Type().String() + s
}
return s
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Only allow printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || !unicode.IsPrint(r)
}
if strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
func formatPrimitive(t reflect.Type, v interface{}, conf FormatConfig) string {
if conf.printType && (conf.PrintPrimitiveType || t.PkgPath() != "") {
return fmt.Sprintf("%v(%v)", t, v)
}
return fmt.Sprintf("%v", v)
}
func formatPointer(v reflect.Value, conf FormatConfig) string {
p := v.Pointer()
if !conf.realPointers {
p = 0 // For deterministic printing purposes
}
s := formatHex(uint64(p))
if conf.printType {
return fmt.Sprintf("(%v)(%s)", v.Type(), s)
}
return s
}
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}
// insertPointer insert p into m, allocating m if necessary.
func insertPointer(m map[uintptr]bool, p uintptr) map[uintptr]bool {
if m == nil {
m = make(map[uintptr]bool)
}
m[p] = true
return m
}
// isZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func isZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.Complex64, reflect.Complex128:
return v.Complex() == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !isZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !isZero(v.Field(i)) {
return false
}
}
return true
}
return false
}

View File

@ -0,0 +1,157 @@
// Copyright 2020, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package value
import (
"reflect"
"strconv"
)
// TypeString is nearly identical to reflect.Type.String,
// but has an additional option to specify that full type names be used.
func TypeString(t reflect.Type, qualified bool) string {
return string(appendTypeName(nil, t, qualified, false))
}
func appendTypeName(b []byte, t reflect.Type, qualified, elideFunc bool) []byte {
// BUG: Go reflection provides no way to disambiguate two named types
// of the same name and within the same package,
// but declared within the namespace of different functions.
// Named type.
if t.Name() != "" {
if qualified && t.PkgPath() != "" {
b = append(b, '"')
b = append(b, t.PkgPath()...)
b = append(b, '"')
b = append(b, '.')
b = append(b, t.Name()...)
} else {
b = append(b, t.String()...)
}
return b
}
// Unnamed type.
switch k := t.Kind(); k {
case reflect.Bool, reflect.String, reflect.UnsafePointer,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
b = append(b, k.String()...)
case reflect.Chan:
if t.ChanDir() == reflect.RecvDir {
b = append(b, "<-"...)
}
b = append(b, "chan"...)
if t.ChanDir() == reflect.SendDir {
b = append(b, "<-"...)
}
b = append(b, ' ')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Func:
if !elideFunc {
b = append(b, "func"...)
}
b = append(b, '(')
for i := 0; i < t.NumIn(); i++ {
if i > 0 {
b = append(b, ", "...)
}
if i == t.NumIn()-1 && t.IsVariadic() {
b = append(b, "..."...)
b = appendTypeName(b, t.In(i).Elem(), qualified, false)
} else {
b = appendTypeName(b, t.In(i), qualified, false)
}
}
b = append(b, ')')
switch t.NumOut() {
case 0:
// Do nothing
case 1:
b = append(b, ' ')
b = appendTypeName(b, t.Out(0), qualified, false)
default:
b = append(b, " ("...)
for i := 0; i < t.NumOut(); i++ {
if i > 0 {
b = append(b, ", "...)
}
b = appendTypeName(b, t.Out(i), qualified, false)
}
b = append(b, ')')
}
case reflect.Struct:
b = append(b, "struct{ "...)
for i := 0; i < t.NumField(); i++ {
if i > 0 {
b = append(b, "; "...)
}
sf := t.Field(i)
if !sf.Anonymous {
if qualified && sf.PkgPath != "" {
b = append(b, '"')
b = append(b, sf.PkgPath...)
b = append(b, '"')
b = append(b, '.')
}
b = append(b, sf.Name...)
b = append(b, ' ')
}
b = appendTypeName(b, sf.Type, qualified, false)
if sf.Tag != "" {
b = append(b, ' ')
b = strconv.AppendQuote(b, string(sf.Tag))
}
}
if b[len(b)-1] == ' ' {
b = b[:len(b)-1]
} else {
b = append(b, ' ')
}
b = append(b, '}')
case reflect.Slice, reflect.Array:
b = append(b, '[')
if k == reflect.Array {
b = strconv.AppendUint(b, uint64(t.Len()), 10)
}
b = append(b, ']')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Map:
b = append(b, "map["...)
b = appendTypeName(b, t.Key(), qualified, false)
b = append(b, ']')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Ptr:
b = append(b, '*')
b = appendTypeName(b, t.Elem(), qualified, false)
case reflect.Interface:
b = append(b, "interface{ "...)
for i := 0; i < t.NumMethod(); i++ {
if i > 0 {
b = append(b, "; "...)
}
m := t.Method(i)
if qualified && m.PkgPath != "" {
b = append(b, '"')
b = append(b, m.PkgPath...)
b = append(b, '"')
b = append(b, '.')
}
b = append(b, m.Name...)
b = appendTypeName(b, m.Type, qualified, true)
}
if b[len(b)-1] == ' ' {
b = b[:len(b)-1]
} else {
b = append(b, ' ')
}
b = append(b, '}')
default:
panic("invalid kind: " + k.String())
}
return b
}

View File

@ -0,0 +1,33 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build purego
package value
import "reflect"
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p uintptr
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// NOTE: Storing a pointer as an uintptr is technically incorrect as it
// assumes that the GC implementation does not use a moving collector.
return Pointer{v.Pointer(), v.Type()}
}
// IsNil reports whether the pointer is nil.
func (p Pointer) IsNil() bool {
return p.p == 0
}
// Uintptr returns the pointer as a uintptr.
func (p Pointer) Uintptr() uintptr {
return p.p
}

View File

@ -0,0 +1,36 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !purego
package value
import (
"reflect"
"unsafe"
)
// Pointer is an opaque typed pointer and is guaranteed to be comparable.
type Pointer struct {
p unsafe.Pointer
t reflect.Type
}
// PointerOf returns a Pointer from v, which must be a
// reflect.Ptr, reflect.Slice, or reflect.Map.
func PointerOf(v reflect.Value) Pointer {
// The proper representation of a pointer is unsafe.Pointer,
// which is necessary if the GC ever uses a moving collector.
return Pointer{unsafe.Pointer(v.Pointer()), v.Type()}
}
// IsNil reports whether the pointer is nil.
func (p Pointer) IsNil() bool {
return p.p == nil
}
// Uintptr returns the pointer as a uintptr.
func (p Pointer) Uintptr() uintptr {
return uintptr(p.p)
}

View File

@ -1,6 +1,6 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
package value
@ -19,7 +19,7 @@ func SortKeys(vs []reflect.Value) []reflect.Value {
}
// Sort the map keys.
sort.Sort(valueSorter(vs))
sort.SliceStable(vs, func(i, j int) bool { return isLess(vs[i], vs[j]) })
// Deduplicate keys (fails for NaNs).
vs2 := vs[:1]
@ -31,13 +31,6 @@ func SortKeys(vs []reflect.Value) []reflect.Value {
return vs2
}
// TODO: Use sort.Slice once Google AppEngine is on Go1.8 or above.
type valueSorter []reflect.Value
func (vs valueSorter) Len() int { return len(vs) }
func (vs valueSorter) Less(i, j int) bool { return isLess(vs[i], vs[j]) }
func (vs valueSorter) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
// isLess is a generic function for sorting arbitrary map keys.
// The inputs must be of the same type and must be comparable.
func isLess(x, y reflect.Value) bool {
@ -49,6 +42,8 @@ func isLess(x, y reflect.Value) bool {
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return x.Uint() < y.Uint()
case reflect.Float32, reflect.Float64:
// NOTE: This does not sort -0 as less than +0
// since Go maps treat -0 and +0 as equal keys.
fx, fy := x.Float(), y.Float()
return fx < fy || math.IsNaN(fx) && !math.IsNaN(fy)
case reflect.Complex64, reflect.Complex128:

View File

@ -0,0 +1,48 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package value
import (
"math"
"reflect"
)
// IsZero reports whether v is the zero value.
// This does not rely on Interface and so can be used on unexported fields.
func IsZero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return v.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return math.Float64bits(v.Float()) == 0
case reflect.Complex64, reflect.Complex128:
return math.Float64bits(real(v.Complex())) == 0 && math.Float64bits(imag(v.Complex())) == 0
case reflect.String:
return v.String() == ""
case reflect.UnsafePointer:
return v.Pointer() == 0
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr, reflect.Map, reflect.Slice:
return v.IsNil()
case reflect.Array:
for i := 0; i < v.Len(); i++ {
if !IsZero(v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
if !IsZero(v.Field(i)) {
return false
}
}
return true
}
return false
}

View File

@ -1,13 +1,13 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
package cmp
import (
"fmt"
"reflect"
"runtime"
"regexp"
"strings"
"github.com/google/go-cmp/cmp/internal/function"
@ -29,11 +29,11 @@ type Option interface {
// An Options is returned only if multiple comparers or transformers
// can apply simultaneously and will only contain values of those types
// or sub-Options containing values of those types.
filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption
filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption
}
// applicableOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer
// Fundamental: ignore | validator | *comparer | *transformer
// Grouping: Options
type applicableOption interface {
Option
@ -43,7 +43,7 @@ type applicableOption interface {
}
// coreOption represents the following types:
// Fundamental: ignore | invalid | *comparer | *transformer
// Fundamental: ignore | validator | *comparer | *transformer
// Filters: *pathFilter | *valuesFilter
type coreOption interface {
Option
@ -63,19 +63,19 @@ func (core) isCore() {}
// on all individual options held within.
type Options []Option
func (opts Options) filter(s *state, vx, vy reflect.Value, t reflect.Type) (out applicableOption) {
func (opts Options) filter(s *state, t reflect.Type, vx, vy reflect.Value) (out applicableOption) {
for _, opt := range opts {
switch opt := opt.filter(s, vx, vy, t); opt.(type) {
switch opt := opt.filter(s, t, vx, vy); opt.(type) {
case ignore:
return ignore{} // Only ignore can short-circuit evaluation
case invalid:
out = invalid{} // Takes precedence over comparer or transformer
case validator:
out = validator{} // Takes precedence over comparer or transformer
case *comparer, *transformer, Options:
switch out.(type) {
case nil:
out = opt
case invalid:
// Keep invalid
case validator:
// Keep validator
case *comparer, *transformer, Options:
out = Options{out, opt} // Conflicting comparers or transformers
}
@ -106,6 +106,11 @@ func (opts Options) String() string {
// FilterPath returns a new Option where opt is only evaluated if filter f
// returns true for the current Path in the value tree.
//
// This filter is called even if a slice element or map entry is missing and
// provides an opportunity to ignore such cases. The filter function must be
// symmetric such that the filter result is identical regardless of whether the
// missing value is from x or y.
//
// The option passed in may be an Ignore, Transformer, Comparer, Options, or
// a previously filtered Option.
func FilterPath(f func(Path) bool, opt Option) Option {
@ -124,22 +129,22 @@ type pathFilter struct {
opt Option
}
func (f pathFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption {
func (f pathFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if f.fnc(s.curPath) {
return f.opt.filter(s, vx, vy, t)
return f.opt.filter(s, t, vx, vy)
}
return nil
}
func (f pathFilter) String() string {
fn := getFuncName(reflect.ValueOf(f.fnc).Pointer())
return fmt.Sprintf("FilterPath(%s, %v)", fn, f.opt)
return fmt.Sprintf("FilterPath(%s, %v)", function.NameOf(reflect.ValueOf(f.fnc)), f.opt)
}
// FilterValues returns a new Option where opt is only evaluated if filter f,
// which is a function of the form "func(T, T) bool", returns true for the
// current pair of values being compared. If the type of the values is not
// assignable to T, then this filter implicitly returns false.
// current pair of values being compared. If either value is invalid or
// the type of the values is not assignable to T, then this filter implicitly
// returns false.
//
// The filter function must be
// symmetric (i.e., agnostic to the order of the inputs) and
@ -171,19 +176,18 @@ type valuesFilter struct {
opt Option
}
func (f valuesFilter) filter(s *state, vx, vy reflect.Value, t reflect.Type) applicableOption {
if !vx.IsValid() || !vy.IsValid() {
return invalid{}
func (f valuesFilter) filter(s *state, t reflect.Type, vx, vy reflect.Value) applicableOption {
if !vx.IsValid() || !vx.CanInterface() || !vy.IsValid() || !vy.CanInterface() {
return nil
}
if (f.typ == nil || t.AssignableTo(f.typ)) && s.callTTBFunc(f.fnc, vx, vy) {
return f.opt.filter(s, vx, vy, t)
return f.opt.filter(s, t, vx, vy)
}
return nil
}
func (f valuesFilter) String() string {
fn := getFuncName(f.fnc.Pointer())
return fmt.Sprintf("FilterValues(%s, %v)", fn, f.opt)
return fmt.Sprintf("FilterValues(%s, %v)", function.NameOf(f.fnc), f.opt)
}
// Ignore is an Option that causes all comparisons to be ignored.
@ -194,19 +198,59 @@ func Ignore() Option { return ignore{} }
type ignore struct{ core }
func (ignore) isFiltered() bool { return false }
func (ignore) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return ignore{} }
func (ignore) apply(_ *state, _, _ reflect.Value) { return }
func (ignore) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption { return ignore{} }
func (ignore) apply(s *state, _, _ reflect.Value) { s.report(true, reportByIgnore) }
func (ignore) String() string { return "Ignore()" }
// invalid is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields.
type invalid struct{ core }
// validator is a sentinel Option type to indicate that some options could not
// be evaluated due to unexported fields, missing slice elements, or
// missing map entries. Both values are validator only for unexported fields.
type validator struct{ core }
func (invalid) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption { return invalid{} }
func (invalid) apply(s *state, _, _ reflect.Value) {
const help = "consider using AllowUnexported or cmpopts.IgnoreUnexported"
panic(fmt.Sprintf("cannot handle unexported field: %#v\n%s", s.curPath, help))
func (validator) filter(_ *state, _ reflect.Type, vx, vy reflect.Value) applicableOption {
if !vx.IsValid() || !vy.IsValid() {
return validator{}
}
if !vx.CanInterface() || !vy.CanInterface() {
return validator{}
}
return nil
}
func (validator) apply(s *state, vx, vy reflect.Value) {
// Implies missing slice element or map entry.
if !vx.IsValid() || !vy.IsValid() {
s.report(vx.IsValid() == vy.IsValid(), 0)
return
}
// Unable to Interface implies unexported field without visibility access.
if !vx.CanInterface() || !vy.CanInterface() {
help := "consider using a custom Comparer; if you control the implementation of type, you can also consider using an Exporter, AllowUnexported, or cmpopts.IgnoreUnexported"
var name string
if t := s.curPath.Index(-2).Type(); t.Name() != "" {
// Named type with unexported fields.
name = fmt.Sprintf("%q.%v", t.PkgPath(), t.Name()) // e.g., "path/to/package".MyType
if _, ok := reflect.New(t).Interface().(error); ok {
help = "consider using cmpopts.EquateErrors to compare error values"
}
} else {
// Unnamed type with unexported fields. Derive PkgPath from field.
var pkgPath string
for i := 0; i < t.NumField() && pkgPath == ""; i++ {
pkgPath = t.Field(i).PkgPath
}
name = fmt.Sprintf("%q.(%v)", pkgPath, t.String()) // e.g., "path/to/package".(struct { a int })
}
panic(fmt.Sprintf("cannot handle unexported field at %#v:\n\t%v\n%s", s.curPath, name, help))
}
panic("not reachable")
}
// identRx represents a valid identifier according to the Go specification.
const identRx = `[_\p{L}][_\p{L}\p{N}]*`
var identsRx = regexp.MustCompile(`^` + identRx + `(\.` + identRx + `)*$`)
// Transformer returns an Option that applies a transformation function that
// converts values of a certain type into that of another.
@ -220,18 +264,25 @@ func (invalid) apply(s *state, _, _ reflect.Value) {
// input and output types are the same), an implicit filter is added such that
// a transformer is applicable only if that exact transformer is not already
// in the tail of the Path since the last non-Transform step.
// For situations where the implicit filter is still insufficient,
// consider using cmpopts.AcyclicTransformer, which adds a filter
// to prevent the transformer from being recursively applied upon itself.
//
// The name is a user provided label that is used as the Transform.Name in the
// transformation PathStep. If empty, an arbitrary name is used.
// transformation PathStep (and eventually shown in the Diff output).
// The name must be a valid identifier or qualified identifier in Go syntax.
// If empty, an arbitrary name is used.
func Transformer(name string, f interface{}) Option {
v := reflect.ValueOf(f)
if !function.IsType(v.Type(), function.Transformer) || v.IsNil() {
panic(fmt.Sprintf("invalid transformer function: %T", f))
}
if name == "" {
name = "λ" // Lambda-symbol as place-holder for anonymous transformer
}
if !isValid(name) {
name = function.NameOf(v)
if !identsRx.MatchString(name) {
name = "λ" // Lambda-symbol as placeholder name
}
} else if !identsRx.MatchString(name) {
panic(fmt.Sprintf("invalid name: %q", name))
}
tr := &transformer{name: name, fnc: reflect.ValueOf(f)}
@ -250,9 +301,9 @@ type transformer struct {
func (tr *transformer) isFiltered() bool { return tr.typ != nil }
func (tr *transformer) filter(s *state, _, _ reflect.Value, t reflect.Type) applicableOption {
func (tr *transformer) filter(s *state, t reflect.Type, _, _ reflect.Value) applicableOption {
for i := len(s.curPath) - 1; i >= 0; i-- {
if t, ok := s.curPath[i].(*transform); !ok {
if t, ok := s.curPath[i].(Transform); !ok {
break // Hit most recent non-Transform step
} else if tr == t.trans {
return nil // Cannot directly use same Transform
@ -265,18 +316,15 @@ func (tr *transformer) filter(s *state, _, _ reflect.Value, t reflect.Type) appl
}
func (tr *transformer) apply(s *state, vx, vy reflect.Value) {
// Update path before calling the Transformer so that dynamic checks
// will use the updated path.
s.curPath.push(&transform{pathStep{tr.fnc.Type().Out(0)}, tr})
defer s.curPath.pop()
vx = s.callTRFunc(tr.fnc, vx)
vy = s.callTRFunc(tr.fnc, vy)
s.compareAny(vx, vy)
step := Transform{&transform{pathStep{typ: tr.fnc.Type().Out(0)}, tr}}
vvx := s.callTRFunc(tr.fnc, vx, step)
vvy := s.callTRFunc(tr.fnc, vy, step)
step.vx, step.vy = vvx, vvy
s.compareAny(step)
}
func (tr transformer) String() string {
return fmt.Sprintf("Transformer(%s, %s)", tr.name, getFuncName(tr.fnc.Pointer()))
return fmt.Sprintf("Transformer(%s, %s)", tr.name, function.NameOf(tr.fnc))
}
// Comparer returns an Option that determines whether two values are equal
@ -311,7 +359,7 @@ type comparer struct {
func (cm *comparer) isFiltered() bool { return cm.typ != nil }
func (cm *comparer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applicableOption {
func (cm *comparer) filter(_ *state, t reflect.Type, _, _ reflect.Value) applicableOption {
if cm.typ == nil || t.AssignableTo(cm.typ) {
return cm
}
@ -320,16 +368,15 @@ func (cm *comparer) filter(_ *state, _, _ reflect.Value, t reflect.Type) applica
func (cm *comparer) apply(s *state, vx, vy reflect.Value) {
eq := s.callTTBFunc(cm.fnc, vx, vy)
s.report(eq, vx, vy)
s.report(eq, reportByFunc)
}
func (cm comparer) String() string {
return fmt.Sprintf("Comparer(%s)", getFuncName(cm.fnc.Pointer()))
return fmt.Sprintf("Comparer(%s)", function.NameOf(cm.fnc))
}
// AllowUnexported returns an Option that forcibly allows operations on
// unexported fields in certain structs, which are specified by passing in a
// value of each struct type.
// Exporter returns an Option that specifies whether Equal is allowed to
// introspect into the unexported fields of certain struct types.
//
// Users of this option must understand that comparing on unexported fields
// from external packages is not safe since changes in the internal
@ -338,7 +385,7 @@ func (cm comparer) String() string {
// defined in an internal package where the semantic meaning of an unexported
// field is in the control of the user.
//
// For some cases, a custom Comparer should be used instead that defines
// In many cases, a custom Comparer should be used instead that defines
// equality as a function of the public API of a type rather than the underlying
// unexported implementation.
//
@ -353,10 +400,24 @@ func (cm comparer) String() string {
//
// In other cases, the cmpopts.IgnoreUnexported option can be used to ignore
// all unexported fields on specified struct types.
func AllowUnexported(types ...interface{}) Option {
if !supportAllowUnexported {
panic("AllowUnexported is not supported on purego builds, Google App Engine Standard, or GopherJS")
func Exporter(f func(reflect.Type) bool) Option {
if !supportExporters {
panic("Exporter is not supported on purego builds")
}
return exporter(f)
}
type exporter func(reflect.Type) bool
func (exporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented")
}
// AllowUnexported returns an Options that allows Equal to forcibly introspect
// unexported fields of the specified struct types.
//
// See Exporter for the proper use of this option.
func AllowUnexported(types ...interface{}) Option {
m := make(map[reflect.Type]bool)
for _, typ := range types {
t := reflect.TypeOf(typ)
@ -365,32 +426,97 @@ func AllowUnexported(types ...interface{}) Option {
}
m[t] = true
}
return visibleStructs(m)
return exporter(func(t reflect.Type) bool { return m[t] })
}
type visibleStructs map[reflect.Type]bool
func (visibleStructs) filter(_ *state, _, _ reflect.Value, _ reflect.Type) applicableOption {
panic("not implemented")
// Result represents the comparison result for a single node and
// is provided by cmp when calling Result (see Reporter).
type Result struct {
_ [0]func() // Make Result incomparable
flags resultFlags
}
// reporter is an Option that configures how differences are reported.
type reporter interface {
// TODO: Not exported yet.
// Equal reports whether the node was determined to be equal or not.
// As a special case, ignored nodes are considered equal.
func (r Result) Equal() bool {
return r.flags&(reportEqual|reportByIgnore) != 0
}
// ByIgnore reports whether the node is equal because it was ignored.
// This never reports true if Equal reports false.
func (r Result) ByIgnore() bool {
return r.flags&reportByIgnore != 0
}
// ByMethod reports whether the Equal method determined equality.
func (r Result) ByMethod() bool {
return r.flags&reportByMethod != 0
}
// ByFunc reports whether a Comparer function determined equality.
func (r Result) ByFunc() bool {
return r.flags&reportByFunc != 0
}
// ByCycle reports whether a reference cycle was detected.
func (r Result) ByCycle() bool {
return r.flags&reportByCycle != 0
}
type resultFlags uint
const (
_ resultFlags = (1 << iota) / 2
reportEqual
reportUnequal
reportByIgnore
reportByMethod
reportByFunc
reportByCycle
)
// Reporter is an Option that can be passed to Equal. When Equal traverses
// the value trees, it calls PushStep as it descends into each node in the
// tree and PopStep as it ascend out of the node. The leaves of the tree are
// either compared (determined to be equal or not equal) or ignored and reported
// as such by calling the Report method.
func Reporter(r interface {
// PushStep is called when a tree-traversal operation is performed.
// The PathStep itself is only valid until the step is popped.
// The PathStep.Values are valid for the duration of the entire traversal
// and must not be mutated.
//
// Perhaps add PushStep and PopStep and change Report to only accept
// a PathStep instead of the full-path? Adding a PushStep and PopStep makes
// it clear that we are traversing the value tree in a depth-first-search
// manner, which has an effect on how values are printed.
// Equal always calls PushStep at the start to provide an operation-less
// PathStep used to report the root values.
//
// Within a slice, the exact set of inserted, removed, or modified elements
// is unspecified and may change in future implementations.
// The entries of a map are iterated through in an unspecified order.
PushStep(PathStep)
Option
// Report is called exactly once on leaf nodes to report whether the
// comparison identified the node as equal, unequal, or ignored.
// A leaf node is one that is immediately preceded by and followed by
// a pair of PushStep and PopStep calls.
Report(Result)
// Report is called for every comparison made and will be provided with
// the two values being compared, the equality result, and the
// current path in the value tree. It is possible for x or y to be an
// invalid reflect.Value if one of the values is non-existent;
// which is possible with maps and slices.
Report(x, y reflect.Value, eq bool, p Path)
// PopStep ascends back up the value tree.
// There is always a matching pop call for every push call.
PopStep()
}) Option {
return reporter{r}
}
type reporter struct{ reporterIface }
type reporterIface interface {
PushStep(PathStep)
Report(Result)
PopStep()
}
func (reporter) filter(_ *state, _ reflect.Type, _, _ reflect.Value) applicableOption {
panic("not implemented")
}
// normalizeOption normalizes the input options such that all Options groups
@ -424,30 +550,3 @@ func flattenOptions(dst, src Options) Options {
}
return dst
}
// getFuncName returns a short function name from the pointer.
// The string parsing logic works up until Go1.9.
func getFuncName(p uintptr) string {
fnc := runtime.FuncForPC(p)
if fnc == nil {
return "<unknown>"
}
name := fnc.Name() // E.g., "long/path/name/mypkg.(mytype).(long/path/name/mypkg.myfunc)-fm"
if strings.HasSuffix(name, ")-fm") || strings.HasSuffix(name, ")·fm") {
// Strip the package name from method name.
name = strings.TrimSuffix(name, ")-fm")
name = strings.TrimSuffix(name, ")·fm")
if i := strings.LastIndexByte(name, '('); i >= 0 {
methodName := name[i+1:] // E.g., "long/path/name/mypkg.myfunc"
if j := strings.LastIndexByte(methodName, '.'); j >= 0 {
methodName = methodName[j+1:] // E.g., "myfunc"
}
name = name[:i] + methodName // E.g., "long/path/name/mypkg.(mytype)." + "myfunc"
}
}
if i := strings.LastIndexByte(name, '/'); i >= 0 {
// Strip the package name.
name = name[i+1:] // E.g., "mypkg.(mytype).myfunc"
}
return name
}

View File

@ -1,6 +1,6 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// license that can be found in the LICENSE file.
package cmp
@ -10,82 +10,56 @@ import (
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/value"
)
type (
// Path is a list of PathSteps describing the sequence of operations to get
// from some root type to the current position in the value tree.
// The first Path element is always an operation-less PathStep that exists
// simply to identify the initial type.
// Path is a list of PathSteps describing the sequence of operations to get
// from some root type to the current position in the value tree.
// The first Path element is always an operation-less PathStep that exists
// simply to identify the initial type.
//
// When traversing structs with embedded structs, the embedded struct will
// always be accessed as a field before traversing the fields of the
// embedded struct themselves. That is, an exported field from the
// embedded struct will never be accessed directly from the parent struct.
type Path []PathStep
// PathStep is a union-type for specific operations to traverse
// a value's tree structure. Users of this package never need to implement
// these types as values of this type will be returned by this package.
//
// Implementations of this interface are
// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
type PathStep interface {
String() string
// Type is the resulting type after performing the path step.
Type() reflect.Type
// Values is the resulting values after performing the path step.
// The type of each valid value is guaranteed to be identical to Type.
//
// When traversing structs with embedded structs, the embedded struct will
// always be accessed as a field before traversing the fields of the
// embedded struct themselves. That is, an exported field from the
// embedded struct will never be accessed directly from the parent struct.
Path []PathStep
// In some cases, one or both may be invalid or have restrictions:
// • For StructField, both are not interface-able if the current field
// is unexported and the struct type is not explicitly permitted by
// an Exporter to traverse unexported fields.
// • For SliceIndex, one may be invalid if an element is missing from
// either the x or y slice.
// • For MapIndex, one may be invalid if an entry is missing from
// either the x or y map.
//
// The provided values must not be mutated.
Values() (vx, vy reflect.Value)
}
// PathStep is a union-type for specific operations to traverse
// a value's tree structure. Users of this package never need to implement
// these types as values of this type will be returned by this package.
PathStep interface {
String() string
Type() reflect.Type // Resulting type after performing the path step
isPathStep()
}
// SliceIndex is an index operation on a slice or array at some index Key.
SliceIndex interface {
PathStep
Key() int // May return -1 if in a split state
// SplitKeys returns the indexes for indexing into slices in the
// x and y values, respectively. These indexes may differ due to the
// insertion or removal of an element in one of the slices, causing
// all of the indexes to be shifted. If an index is -1, then that
// indicates that the element does not exist in the associated slice.
//
// Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
SplitKeys() (x int, y int)
isSliceIndex()
}
// MapIndex is an index operation on a map at some index Key.
MapIndex interface {
PathStep
Key() reflect.Value
isMapIndex()
}
// TypeAssertion represents a type assertion on an interface.
TypeAssertion interface {
PathStep
isTypeAssertion()
}
// StructField represents a struct field access on a field called Name.
StructField interface {
PathStep
Name() string
Index() int
isStructField()
}
// Indirect represents pointer indirection on the parent type.
Indirect interface {
PathStep
isIndirect()
}
// Transform is a transformation from the parent type to the current type.
Transform interface {
PathStep
Name() string
Func() reflect.Value
// Option returns the originally constructed Transformer option.
// The == operator can be used to detect the exact option used.
Option() Option
isTransform()
}
var (
_ PathStep = StructField{}
_ PathStep = SliceIndex{}
_ PathStep = MapIndex{}
_ PathStep = Indirect{}
_ PathStep = TypeAssertion{}
_ PathStep = Transform{}
)
func (pa *Path) push(s PathStep) {
@ -124,7 +98,7 @@ func (pa Path) Index(i int) PathStep {
func (pa Path) String() string {
var ss []string
for _, s := range pa {
if _, ok := s.(*structField); ok {
if _, ok := s.(StructField); ok {
ss = append(ss, s.String())
}
}
@ -144,13 +118,13 @@ func (pa Path) GoString() string {
nextStep = pa[i+1]
}
switch s := s.(type) {
case *indirect:
case Indirect:
numIndirect++
pPre, pPost := "(", ")"
switch nextStep.(type) {
case *indirect:
case Indirect:
continue // Next step is indirection, so let them batch up
case *structField:
case StructField:
numIndirect-- // Automatic indirection on struct fields
case nil:
pPre, pPost = "", "" // Last step; no need for parenthesis
@ -161,19 +135,10 @@ func (pa Path) GoString() string {
}
numIndirect = 0
continue
case *transform:
case Transform:
ssPre = append(ssPre, s.trans.name+"(")
ssPost = append(ssPost, ")")
continue
case *typeAssertion:
// As a special-case, elide type assertions on anonymous types
// since they are typically generated dynamically and can be very
// verbose. For example, some transforms return interface{} because
// of Go's lack of generics, but typically take in and return the
// exact same concrete type.
if s.Type().PkgPath() == "" {
continue
}
}
ssPost = append(ssPost, s.String())
}
@ -183,44 +148,13 @@ func (pa Path) GoString() string {
return strings.Join(ssPre, "") + strings.Join(ssPost, "")
}
type (
pathStep struct {
typ reflect.Type
}
type pathStep struct {
typ reflect.Type
vx, vy reflect.Value
}
sliceIndex struct {
pathStep
xkey, ykey int
}
mapIndex struct {
pathStep
key reflect.Value
}
typeAssertion struct {
pathStep
}
structField struct {
pathStep
name string
idx int
// These fields are used for forcibly accessing an unexported field.
// pvx, pvy, and field are only valid if unexported is true.
unexported bool
force bool // Forcibly allow visibility
pvx, pvy reflect.Value // Parent values
field reflect.StructField // Field information
}
indirect struct {
pathStep
}
transform struct {
pathStep
trans *transformer
}
)
func (ps pathStep) Type() reflect.Type { return ps.typ }
func (ps pathStep) Type() reflect.Type { return ps.typ }
func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
func (ps pathStep) String() string {
if ps.typ == nil {
return "<nil>"
@ -232,7 +166,56 @@ func (ps pathStep) String() string {
return fmt.Sprintf("{%s}", s)
}
func (si sliceIndex) String() string {
// StructField represents a struct field access on a field called Name.
type StructField struct{ *structField }
type structField struct {
pathStep
name string
idx int
// These fields are used for forcibly accessing an unexported field.
// pvx, pvy, and field are only valid if unexported is true.
unexported bool
mayForce bool // Forcibly allow visibility
paddr bool // Was parent addressable?
pvx, pvy reflect.Value // Parent values (always addressible)
field reflect.StructField // Field information
}
func (sf StructField) Type() reflect.Type { return sf.typ }
func (sf StructField) Values() (vx, vy reflect.Value) {
if !sf.unexported {
return sf.vx, sf.vy // CanInterface reports true
}
// Forcibly obtain read-write access to an unexported struct field.
if sf.mayForce {
vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr)
vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr)
return vx, vy // CanInterface reports true
}
return sf.vx, sf.vy // CanInterface reports false
}
func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
// Name is the field name.
func (sf StructField) Name() string { return sf.name }
// Index is the index of the field in the parent struct type.
// See reflect.Type.Field.
func (sf StructField) Index() int { return sf.idx }
// SliceIndex is an index operation on a slice or array at some index Key.
type SliceIndex struct{ *sliceIndex }
type sliceIndex struct {
pathStep
xkey, ykey int
isSlice bool // False for reflect.Array
}
func (si SliceIndex) Type() reflect.Type { return si.typ }
func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
func (si SliceIndex) String() string {
switch {
case si.xkey == si.ykey:
return fmt.Sprintf("[%d]", si.xkey)
@ -247,63 +230,149 @@ func (si sliceIndex) String() string {
return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
}
}
func (mi mapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
func (ta typeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
func (sf structField) String() string { return fmt.Sprintf(".%s", sf.name) }
func (in indirect) String() string { return "*" }
func (tf transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
func (si sliceIndex) Key() int {
// Key is the index key; it may return -1 if in a split state
func (si SliceIndex) Key() int {
if si.xkey != si.ykey {
return -1
}
return si.xkey
}
func (si sliceIndex) SplitKeys() (x, y int) { return si.xkey, si.ykey }
func (mi mapIndex) Key() reflect.Value { return mi.key }
func (sf structField) Name() string { return sf.name }
func (sf structField) Index() int { return sf.idx }
func (tf transform) Name() string { return tf.trans.name }
func (tf transform) Func() reflect.Value { return tf.trans.fnc }
func (tf transform) Option() Option { return tf.trans }
func (pathStep) isPathStep() {}
func (sliceIndex) isSliceIndex() {}
func (mapIndex) isMapIndex() {}
func (typeAssertion) isTypeAssertion() {}
func (structField) isStructField() {}
func (indirect) isIndirect() {}
func (transform) isTransform() {}
// SplitKeys are the indexes for indexing into slices in the
// x and y values, respectively. These indexes may differ due to the
// insertion or removal of an element in one of the slices, causing
// all of the indexes to be shifted. If an index is -1, then that
// indicates that the element does not exist in the associated slice.
//
// Key is guaranteed to return -1 if and only if the indexes returned
// by SplitKeys are not the same. SplitKeys will never return -1 for
// both indexes.
func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
var (
_ SliceIndex = sliceIndex{}
_ MapIndex = mapIndex{}
_ TypeAssertion = typeAssertion{}
_ StructField = structField{}
_ Indirect = indirect{}
_ Transform = transform{}
// MapIndex is an index operation on a map at some index Key.
type MapIndex struct{ *mapIndex }
type mapIndex struct {
pathStep
key reflect.Value
}
_ PathStep = sliceIndex{}
_ PathStep = mapIndex{}
_ PathStep = typeAssertion{}
_ PathStep = structField{}
_ PathStep = indirect{}
_ PathStep = transform{}
)
func (mi MapIndex) Type() reflect.Type { return mi.typ }
func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
// Key is the value of the map key.
func (mi MapIndex) Key() reflect.Value { return mi.key }
// Indirect represents pointer indirection on the parent type.
type Indirect struct{ *indirect }
type indirect struct {
pathStep
}
func (in Indirect) Type() reflect.Type { return in.typ }
func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
func (in Indirect) String() string { return "*" }
// TypeAssertion represents a type assertion on an interface.
type TypeAssertion struct{ *typeAssertion }
type typeAssertion struct {
pathStep
}
func (ta TypeAssertion) Type() reflect.Type { return ta.typ }
func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", ta.typ) }
// Transform is a transformation from the parent type to the current type.
type Transform struct{ *transform }
type transform struct {
pathStep
trans *transformer
}
func (tf Transform) Type() reflect.Type { return tf.typ }
func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
// Name is the name of the Transformer.
func (tf Transform) Name() string { return tf.trans.name }
// Func is the function pointer to the transformer function.
func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
// Option returns the originally constructed Transformer option.
// The == operator can be used to detect the exact option used.
func (tf Transform) Option() Option { return tf.trans }
// pointerPath represents a dual-stack of pointers encountered when
// recursively traversing the x and y values. This data structure supports
// detection of cycles and determining whether the cycles are equal.
// In Go, cycles can occur via pointers, slices, and maps.
//
// The pointerPath uses a map to represent a stack; where descension into a
// pointer pushes the address onto the stack, and ascension from a pointer
// pops the address from the stack. Thus, when traversing into a pointer from
// reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
// by checking whether the pointer has already been visited. The cycle detection
// uses a seperate stack for the x and y values.
//
// If a cycle is detected we need to determine whether the two pointers
// should be considered equal. The definition of equality chosen by Equal
// requires two graphs to have the same structure. To determine this, both the
// x and y values must have a cycle where the previous pointers were also
// encountered together as a pair.
//
// Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
// MapIndex with pointer information for the x and y values.
// Suppose px and py are two pointers to compare, we then search the
// Path for whether px was ever encountered in the Path history of x, and
// similarly so with py. If either side has a cycle, the comparison is only
// equal if both px and py have a cycle resulting from the same PathStep.
//
// Using a map as a stack is more performant as we can perform cycle detection
// in O(1) instead of O(N) where N is len(Path).
type pointerPath struct {
// mx is keyed by x pointers, where the value is the associated y pointer.
mx map[value.Pointer]value.Pointer
// my is keyed by y pointers, where the value is the associated x pointer.
my map[value.Pointer]value.Pointer
}
func (p *pointerPath) Init() {
p.mx = make(map[value.Pointer]value.Pointer)
p.my = make(map[value.Pointer]value.Pointer)
}
// Push indicates intent to descend into pointers vx and vy where
// visited reports whether either has been seen before. If visited before,
// equal reports whether both pointers were encountered together.
// Pop must be called if and only if the pointers were never visited.
//
// The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
// and be non-nil.
func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
px := value.PointerOf(vx)
py := value.PointerOf(vy)
_, ok1 := p.mx[px]
_, ok2 := p.my[py]
if ok1 || ok2 {
equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
return equal, true
}
p.mx[px] = py
p.my[py] = px
return false, false
}
// Pop ascends from pointers vx and vy.
func (p pointerPath) Pop(vx, vy reflect.Value) {
delete(p.mx, value.PointerOf(vx))
delete(p.my, value.PointerOf(vy))
}
// isExported reports whether the identifier is exported.
func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}
// isValid reports whether the identifier is valid.
// Empty and underscore-only strings are not valid.
func isValid(id string) bool {
ok := id != "" && id != "_"
for j, c := range id {
ok = ok && (j > 0 || !unicode.IsDigit(c))
ok = ok && (c == '_' || unicode.IsLetter(c) || unicode.IsDigit(c))
}
return ok
}

54
vendor/github.com/google/go-cmp/cmp/report.go generated vendored Normal file
View File

@ -0,0 +1,54 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp
// defaultReporter implements the reporter interface.
//
// As Equal serially calls the PushStep, Report, and PopStep methods, the
// defaultReporter constructs a tree-based representation of the compared value
// and the result of each comparison (see valueNode).
//
// When the String method is called, the FormatDiff method transforms the
// valueNode tree into a textNode tree, which is a tree-based representation
// of the textual output (see textNode).
//
// Lastly, the textNode.String method produces the final report as a string.
type defaultReporter struct {
root *valueNode
curr *valueNode
}
func (r *defaultReporter) PushStep(ps PathStep) {
r.curr = r.curr.PushStep(ps)
if r.root == nil {
r.root = r.curr
}
}
func (r *defaultReporter) Report(rs Result) {
r.curr.Report(rs)
}
func (r *defaultReporter) PopStep() {
r.curr = r.curr.PopStep()
}
// String provides a full report of the differences detected as a structured
// literal in pseudo-Go syntax. String may only be called after the entire tree
// has been traversed.
func (r *defaultReporter) String() string {
assert(r.root != nil && r.curr == nil)
if r.root.NumDiff == 0 {
return ""
}
ptrs := new(pointerReferences)
text := formatOptions{}.FormatDiff(r.root, ptrs)
resolveReferences(text)
return text.String()
}
func assert(ok bool) {
if !ok {
panic("assertion failure")
}
}

432
vendor/github.com/google/go-cmp/cmp/report_compare.go generated vendored Normal file
View File

@ -0,0 +1,432 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp
import (
"fmt"
"reflect"
"github.com/google/go-cmp/cmp/internal/value"
)
// numContextRecords is the number of surrounding equal records to print.
const numContextRecords = 2
type diffMode byte
const (
diffUnknown diffMode = 0
diffIdentical diffMode = ' '
diffRemoved diffMode = '-'
diffInserted diffMode = '+'
)
type typeMode int
const (
// emitType always prints the type.
emitType typeMode = iota
// elideType never prints the type.
elideType
// autoType prints the type only for composite kinds
// (i.e., structs, slices, arrays, and maps).
autoType
)
type formatOptions struct {
// DiffMode controls the output mode of FormatDiff.
//
// If diffUnknown, then produce a diff of the x and y values.
// If diffIdentical, then emit values as if they were equal.
// If diffRemoved, then only emit x values (ignoring y values).
// If diffInserted, then only emit y values (ignoring x values).
DiffMode diffMode
// TypeMode controls whether to print the type for the current node.
//
// As a general rule of thumb, we always print the type of the next node
// after an interface, and always elide the type of the next node after
// a slice or map node.
TypeMode typeMode
// formatValueOptions are options specific to printing reflect.Values.
formatValueOptions
}
func (opts formatOptions) WithDiffMode(d diffMode) formatOptions {
opts.DiffMode = d
return opts
}
func (opts formatOptions) WithTypeMode(t typeMode) formatOptions {
opts.TypeMode = t
return opts
}
func (opts formatOptions) WithVerbosity(level int) formatOptions {
opts.VerbosityLevel = level
opts.LimitVerbosity = true
return opts
}
func (opts formatOptions) verbosity() uint {
switch {
case opts.VerbosityLevel < 0:
return 0
case opts.VerbosityLevel > 16:
return 16 // some reasonable maximum to avoid shift overflow
default:
return uint(opts.VerbosityLevel)
}
}
const maxVerbosityPreset = 6
// verbosityPreset modifies the verbosity settings given an index
// between 0 and maxVerbosityPreset, inclusive.
func verbosityPreset(opts formatOptions, i int) formatOptions {
opts.VerbosityLevel = int(opts.verbosity()) + 2*i
if i > 0 {
opts.AvoidStringer = true
}
if i >= maxVerbosityPreset {
opts.PrintAddresses = true
opts.QualifiedNames = true
}
return opts
}
// FormatDiff converts a valueNode tree into a textNode tree, where the later
// is a textual representation of the differences detected in the former.
func (opts formatOptions) FormatDiff(v *valueNode, ptrs *pointerReferences) (out textNode) {
if opts.DiffMode == diffIdentical {
opts = opts.WithVerbosity(1)
} else if opts.verbosity() < 3 {
opts = opts.WithVerbosity(3)
}
// Check whether we have specialized formatting for this node.
// This is not necessary, but helpful for producing more readable outputs.
if opts.CanFormatDiffSlice(v) {
return opts.FormatDiffSlice(v)
}
var parentKind reflect.Kind
if v.parent != nil && v.parent.TransformerName == "" {
parentKind = v.parent.Type.Kind()
}
// For leaf nodes, format the value based on the reflect.Values alone.
if v.MaxDepth == 0 {
switch opts.DiffMode {
case diffUnknown, diffIdentical:
// Format Equal.
if v.NumDiff == 0 {
outx := opts.FormatValue(v.ValueX, parentKind, ptrs)
outy := opts.FormatValue(v.ValueY, parentKind, ptrs)
if v.NumIgnored > 0 && v.NumSame == 0 {
return textEllipsis
} else if outx.Len() < outy.Len() {
return outx
} else {
return outy
}
}
// Format unequal.
assert(opts.DiffMode == diffUnknown)
var list textList
outx := opts.WithTypeMode(elideType).FormatValue(v.ValueX, parentKind, ptrs)
outy := opts.WithTypeMode(elideType).FormatValue(v.ValueY, parentKind, ptrs)
for i := 0; i <= maxVerbosityPreset && outx != nil && outy != nil && outx.Equal(outy); i++ {
opts2 := verbosityPreset(opts, i).WithTypeMode(elideType)
outx = opts2.FormatValue(v.ValueX, parentKind, ptrs)
outy = opts2.FormatValue(v.ValueY, parentKind, ptrs)
}
if outx != nil {
list = append(list, textRecord{Diff: '-', Value: outx})
}
if outy != nil {
list = append(list, textRecord{Diff: '+', Value: outy})
}
return opts.WithTypeMode(emitType).FormatType(v.Type, list)
case diffRemoved:
return opts.FormatValue(v.ValueX, parentKind, ptrs)
case diffInserted:
return opts.FormatValue(v.ValueY, parentKind, ptrs)
default:
panic("invalid diff mode")
}
}
// Register slice element to support cycle detection.
if parentKind == reflect.Slice {
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, true)
defer ptrs.Pop()
defer func() { out = wrapTrunkReferences(ptrRefs, out) }()
}
// Descend into the child value node.
if v.TransformerName != "" {
out := opts.WithTypeMode(emitType).FormatDiff(v.Value, ptrs)
out = &textWrap{Prefix: "Inverse(" + v.TransformerName + ", ", Value: out, Suffix: ")"}
return opts.FormatType(v.Type, out)
} else {
switch k := v.Type.Kind(); k {
case reflect.Struct, reflect.Array, reflect.Slice:
out = opts.formatDiffList(v.Records, k, ptrs)
out = opts.FormatType(v.Type, out)
case reflect.Map:
// Register map to support cycle detection.
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, false)
defer ptrs.Pop()
out = opts.formatDiffList(v.Records, k, ptrs)
out = wrapTrunkReferences(ptrRefs, out)
out = opts.FormatType(v.Type, out)
case reflect.Ptr:
// Register pointer to support cycle detection.
ptrRefs := ptrs.PushPair(v.ValueX, v.ValueY, opts.DiffMode, false)
defer ptrs.Pop()
out = opts.FormatDiff(v.Value, ptrs)
out = wrapTrunkReferences(ptrRefs, out)
out = &textWrap{Prefix: "&", Value: out}
case reflect.Interface:
out = opts.WithTypeMode(emitType).FormatDiff(v.Value, ptrs)
default:
panic(fmt.Sprintf("%v cannot have children", k))
}
return out
}
}
func (opts formatOptions) formatDiffList(recs []reportRecord, k reflect.Kind, ptrs *pointerReferences) textNode {
// Derive record name based on the data structure kind.
var name string
var formatKey func(reflect.Value) string
switch k {
case reflect.Struct:
name = "field"
opts = opts.WithTypeMode(autoType)
formatKey = func(v reflect.Value) string { return v.String() }
case reflect.Slice, reflect.Array:
name = "element"
opts = opts.WithTypeMode(elideType)
formatKey = func(reflect.Value) string { return "" }
case reflect.Map:
name = "entry"
opts = opts.WithTypeMode(elideType)
formatKey = func(v reflect.Value) string { return formatMapKey(v, false, ptrs) }
}
maxLen := -1
if opts.LimitVerbosity {
if opts.DiffMode == diffIdentical {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
} else {
maxLen = (1 << opts.verbosity()) << 1 // 2, 4, 8, 16, 32, 64, etc...
}
opts.VerbosityLevel--
}
// Handle unification.
switch opts.DiffMode {
case diffIdentical, diffRemoved, diffInserted:
var list textList
var deferredEllipsis bool // Add final "..." to indicate records were dropped
for _, r := range recs {
if len(list) == maxLen {
deferredEllipsis = true
break
}
// Elide struct fields that are zero value.
if k == reflect.Struct {
var isZero bool
switch opts.DiffMode {
case diffIdentical:
isZero = value.IsZero(r.Value.ValueX) || value.IsZero(r.Value.ValueY)
case diffRemoved:
isZero = value.IsZero(r.Value.ValueX)
case diffInserted:
isZero = value.IsZero(r.Value.ValueY)
}
if isZero {
continue
}
}
// Elide ignored nodes.
if r.Value.NumIgnored > 0 && r.Value.NumSame+r.Value.NumDiff == 0 {
deferredEllipsis = !(k == reflect.Slice || k == reflect.Array)
if !deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
continue
}
if out := opts.FormatDiff(r.Value, ptrs); out != nil {
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
}
}
if deferredEllipsis {
list.AppendEllipsis(diffStats{})
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
case diffUnknown:
default:
panic("invalid diff mode")
}
// Handle differencing.
var numDiffs int
var list textList
var keys []reflect.Value // invariant: len(list) == len(keys)
groups := coalesceAdjacentRecords(name, recs)
maxGroup := diffStats{Name: name}
for i, ds := range groups {
if maxLen >= 0 && numDiffs >= maxLen {
maxGroup = maxGroup.Append(ds)
continue
}
// Handle equal records.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing records to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < numContextRecords && numLo+numHi < numEqual && i != 0 {
if r := recs[numLo].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numLo++
}
for numHi < numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
if r := recs[numEqual-numHi-1].Value; r.NumIgnored > 0 && r.NumSame+r.NumDiff == 0 {
break
}
numHi++
}
if numEqual-(numLo+numHi) == 1 && ds.NumIgnored == 0 {
numHi++ // Avoid pointless coalescing of a single equal record
}
// Format the equal values.
for _, r := range recs[:numLo] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
for len(keys) < len(list) {
keys = append(keys, reflect.Value{})
}
}
for _, r := range recs[numEqual-numHi : numEqual] {
out := opts.WithDiffMode(diffIdentical).FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
recs = recs[numEqual:]
continue
}
// Handle unequal records.
for _, r := range recs[:ds.NumDiff()] {
switch {
case opts.CanFormatDiffSlice(r.Value):
out := opts.FormatDiffSlice(r.Value)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
case r.Value.NumChildren == r.Value.MaxDepth:
outx := opts.WithDiffMode(diffRemoved).FormatDiff(r.Value, ptrs)
outy := opts.WithDiffMode(diffInserted).FormatDiff(r.Value, ptrs)
for i := 0; i <= maxVerbosityPreset && outx != nil && outy != nil && outx.Equal(outy); i++ {
opts2 := verbosityPreset(opts, i)
outx = opts2.WithDiffMode(diffRemoved).FormatDiff(r.Value, ptrs)
outy = opts2.WithDiffMode(diffInserted).FormatDiff(r.Value, ptrs)
}
if outx != nil {
list = append(list, textRecord{Diff: diffRemoved, Key: formatKey(r.Key), Value: outx})
keys = append(keys, r.Key)
}
if outy != nil {
list = append(list, textRecord{Diff: diffInserted, Key: formatKey(r.Key), Value: outy})
keys = append(keys, r.Key)
}
default:
out := opts.FormatDiff(r.Value, ptrs)
list = append(list, textRecord{Key: formatKey(r.Key), Value: out})
keys = append(keys, r.Key)
}
}
recs = recs[ds.NumDiff():]
numDiffs += ds.NumDiff()
}
if maxGroup.IsZero() {
assert(len(recs) == 0)
} else {
list.AppendEllipsis(maxGroup)
for len(keys) < len(list) {
keys = append(keys, reflect.Value{})
}
}
assert(len(list) == len(keys))
// For maps, the default formatting logic uses fmt.Stringer which may
// produce ambiguous output. Avoid calling String to disambiguate.
if k == reflect.Map {
var ambiguous bool
seenKeys := map[string]reflect.Value{}
for i, currKey := range keys {
if currKey.IsValid() {
strKey := list[i].Key
prevKey, seen := seenKeys[strKey]
if seen && prevKey.CanInterface() && currKey.CanInterface() {
ambiguous = prevKey.Interface() != currKey.Interface()
if ambiguous {
break
}
}
seenKeys[strKey] = currKey
}
}
if ambiguous {
for i, k := range keys {
if k.IsValid() {
list[i].Key = formatMapKey(k, true, ptrs)
}
}
}
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
}
// coalesceAdjacentRecords coalesces the list of records into groups of
// adjacent equal, or unequal counts.
func coalesceAdjacentRecords(name string, recs []reportRecord) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, r := range recs {
switch rv := r.Value; {
case rv.NumIgnored > 0 && rv.NumSame+rv.NumDiff == 0:
lastStats(1).NumIgnored++
case rv.NumDiff == 0:
lastStats(1).NumIdentical++
case rv.NumDiff > 0 && !rv.ValueY.IsValid():
lastStats(2).NumRemoved++
case rv.NumDiff > 0 && !rv.ValueX.IsValid():
lastStats(2).NumInserted++
default:
lastStats(2).NumModified++
}
}
return groups
}

View File

@ -0,0 +1,264 @@
// Copyright 2020, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/flags"
"github.com/google/go-cmp/cmp/internal/value"
)
const (
pointerDelimPrefix = "⟪"
pointerDelimSuffix = "⟫"
)
// formatPointer prints the address of the pointer.
func formatPointer(p value.Pointer, withDelims bool) string {
v := p.Uintptr()
if flags.Deterministic {
v = 0xdeadf00f // Only used for stable testing purposes
}
if withDelims {
return pointerDelimPrefix + formatHex(uint64(v)) + pointerDelimSuffix
}
return formatHex(uint64(v))
}
// pointerReferences is a stack of pointers visited so far.
type pointerReferences [][2]value.Pointer
func (ps *pointerReferences) PushPair(vx, vy reflect.Value, d diffMode, deref bool) (pp [2]value.Pointer) {
if deref && vx.IsValid() {
vx = vx.Addr()
}
if deref && vy.IsValid() {
vy = vy.Addr()
}
switch d {
case diffUnknown, diffIdentical:
pp = [2]value.Pointer{value.PointerOf(vx), value.PointerOf(vy)}
case diffRemoved:
pp = [2]value.Pointer{value.PointerOf(vx), value.Pointer{}}
case diffInserted:
pp = [2]value.Pointer{value.Pointer{}, value.PointerOf(vy)}
}
*ps = append(*ps, pp)
return pp
}
func (ps *pointerReferences) Push(v reflect.Value) (p value.Pointer, seen bool) {
p = value.PointerOf(v)
for _, pp := range *ps {
if p == pp[0] || p == pp[1] {
return p, true
}
}
*ps = append(*ps, [2]value.Pointer{p, p})
return p, false
}
func (ps *pointerReferences) Pop() {
*ps = (*ps)[:len(*ps)-1]
}
// trunkReferences is metadata for a textNode indicating that the sub-tree
// represents the value for either pointer in a pair of references.
type trunkReferences struct{ pp [2]value.Pointer }
// trunkReference is metadata for a textNode indicating that the sub-tree
// represents the value for the given pointer reference.
type trunkReference struct{ p value.Pointer }
// leafReference is metadata for a textNode indicating that the value is
// truncated as it refers to another part of the tree (i.e., a trunk).
type leafReference struct{ p value.Pointer }
func wrapTrunkReferences(pp [2]value.Pointer, s textNode) textNode {
switch {
case pp[0].IsNil():
return &textWrap{Value: s, Metadata: trunkReference{pp[1]}}
case pp[1].IsNil():
return &textWrap{Value: s, Metadata: trunkReference{pp[0]}}
case pp[0] == pp[1]:
return &textWrap{Value: s, Metadata: trunkReference{pp[0]}}
default:
return &textWrap{Value: s, Metadata: trunkReferences{pp}}
}
}
func wrapTrunkReference(p value.Pointer, printAddress bool, s textNode) textNode {
var prefix string
if printAddress {
prefix = formatPointer(p, true)
}
return &textWrap{Prefix: prefix, Value: s, Metadata: trunkReference{p}}
}
func makeLeafReference(p value.Pointer, printAddress bool) textNode {
out := &textWrap{Prefix: "(", Value: textEllipsis, Suffix: ")"}
var prefix string
if printAddress {
prefix = formatPointer(p, true)
}
return &textWrap{Prefix: prefix, Value: out, Metadata: leafReference{p}}
}
// resolveReferences walks the textNode tree searching for any leaf reference
// metadata and resolves each against the corresponding trunk references.
// Since pointer addresses in memory are not particularly readable to the user,
// it replaces each pointer value with an arbitrary and unique reference ID.
func resolveReferences(s textNode) {
var walkNodes func(textNode, func(textNode))
walkNodes = func(s textNode, f func(textNode)) {
f(s)
switch s := s.(type) {
case *textWrap:
walkNodes(s.Value, f)
case textList:
for _, r := range s {
walkNodes(r.Value, f)
}
}
}
// Collect all trunks and leaves with reference metadata.
var trunks, leaves []*textWrap
walkNodes(s, func(s textNode) {
if s, ok := s.(*textWrap); ok {
switch s.Metadata.(type) {
case leafReference:
leaves = append(leaves, s)
case trunkReference, trunkReferences:
trunks = append(trunks, s)
}
}
})
// No leaf references to resolve.
if len(leaves) == 0 {
return
}
// Collect the set of all leaf references to resolve.
leafPtrs := make(map[value.Pointer]bool)
for _, leaf := range leaves {
leafPtrs[leaf.Metadata.(leafReference).p] = true
}
// Collect the set of trunk pointers that are always paired together.
// This allows us to assign a single ID to both pointers for brevity.
// If a pointer in a pair ever occurs by itself or as a different pair,
// then the pair is broken.
pairedTrunkPtrs := make(map[value.Pointer]value.Pointer)
unpair := func(p value.Pointer) {
if !pairedTrunkPtrs[p].IsNil() {
pairedTrunkPtrs[pairedTrunkPtrs[p]] = value.Pointer{} // invalidate other half
}
pairedTrunkPtrs[p] = value.Pointer{} // invalidate this half
}
for _, trunk := range trunks {
switch p := trunk.Metadata.(type) {
case trunkReference:
unpair(p.p) // standalone pointer cannot be part of a pair
case trunkReferences:
p0, ok0 := pairedTrunkPtrs[p.pp[0]]
p1, ok1 := pairedTrunkPtrs[p.pp[1]]
switch {
case !ok0 && !ok1:
// Register the newly seen pair.
pairedTrunkPtrs[p.pp[0]] = p.pp[1]
pairedTrunkPtrs[p.pp[1]] = p.pp[0]
case ok0 && ok1 && p0 == p.pp[1] && p1 == p.pp[0]:
// Exact pair already seen; do nothing.
default:
// Pair conflicts with some other pair; break all pairs.
unpair(p.pp[0])
unpair(p.pp[1])
}
}
}
// Correlate each pointer referenced by leaves to a unique identifier,
// and print the IDs for each trunk that matches those pointers.
var nextID uint
ptrIDs := make(map[value.Pointer]uint)
newID := func() uint {
id := nextID
nextID++
return id
}
for _, trunk := range trunks {
switch p := trunk.Metadata.(type) {
case trunkReference:
if print := leafPtrs[p.p]; print {
id, ok := ptrIDs[p.p]
if !ok {
id = newID()
ptrIDs[p.p] = id
}
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id))
}
case trunkReferences:
print0 := leafPtrs[p.pp[0]]
print1 := leafPtrs[p.pp[1]]
if print0 || print1 {
id0, ok0 := ptrIDs[p.pp[0]]
id1, ok1 := ptrIDs[p.pp[1]]
isPair := pairedTrunkPtrs[p.pp[0]] == p.pp[1] && pairedTrunkPtrs[p.pp[1]] == p.pp[0]
if isPair {
var id uint
assert(ok0 == ok1) // must be seen together or not at all
if ok0 {
assert(id0 == id1) // must have the same ID
id = id0
} else {
id = newID()
ptrIDs[p.pp[0]] = id
ptrIDs[p.pp[1]] = id
}
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id))
} else {
if print0 && !ok0 {
id0 = newID()
ptrIDs[p.pp[0]] = id0
}
if print1 && !ok1 {
id1 = newID()
ptrIDs[p.pp[1]] = id1
}
switch {
case print0 && print1:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id0)+","+formatReference(id1))
case print0:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id0))
case print1:
trunk.Prefix = updateReferencePrefix(trunk.Prefix, formatReference(id1))
}
}
}
}
}
// Update all leaf references with the unique identifier.
for _, leaf := range leaves {
if id, ok := ptrIDs[leaf.Metadata.(leafReference).p]; ok {
leaf.Prefix = updateReferencePrefix(leaf.Prefix, formatReference(id))
}
}
}
func formatReference(id uint) string {
return fmt.Sprintf("ref#%d", id)
}
func updateReferencePrefix(prefix, ref string) string {
if prefix == "" {
return pointerDelimPrefix + ref + pointerDelimSuffix
}
suffix := strings.TrimPrefix(prefix, pointerDelimPrefix)
return pointerDelimPrefix + ref + ": " + suffix
}

402
vendor/github.com/google/go-cmp/cmp/report_reflect.go generated vendored Normal file
View File

@ -0,0 +1,402 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/value"
)
type formatValueOptions struct {
// AvoidStringer controls whether to avoid calling custom stringer
// methods like error.Error or fmt.Stringer.String.
AvoidStringer bool
// PrintAddresses controls whether to print the address of all pointers,
// slice elements, and maps.
PrintAddresses bool
// QualifiedNames controls whether FormatType uses the fully qualified name
// (including the full package path as opposed to just the package name).
QualifiedNames bool
// VerbosityLevel controls the amount of output to produce.
// A higher value produces more output. A value of zero or lower produces
// no output (represented using an ellipsis).
// If LimitVerbosity is false, then the level is treated as infinite.
VerbosityLevel int
// LimitVerbosity specifies that formatting should respect VerbosityLevel.
LimitVerbosity bool
}
// FormatType prints the type as if it were wrapping s.
// This may return s as-is depending on the current type and TypeMode mode.
func (opts formatOptions) FormatType(t reflect.Type, s textNode) textNode {
// Check whether to emit the type or not.
switch opts.TypeMode {
case autoType:
switch t.Kind() {
case reflect.Struct, reflect.Slice, reflect.Array, reflect.Map:
if s.Equal(textNil) {
return s
}
default:
return s
}
if opts.DiffMode == diffIdentical {
return s // elide type for identical nodes
}
case elideType:
return s
}
// Determine the type label, applying special handling for unnamed types.
typeName := value.TypeString(t, opts.QualifiedNames)
if t.Name() == "" {
// According to Go grammar, certain type literals contain symbols that
// do not strongly bind to the next lexicographical token (e.g., *T).
switch t.Kind() {
case reflect.Chan, reflect.Func, reflect.Ptr:
typeName = "(" + typeName + ")"
}
}
return &textWrap{Prefix: typeName, Value: wrapParens(s)}
}
// wrapParens wraps s with a set of parenthesis, but avoids it if the
// wrapped node itself is already surrounded by a pair of parenthesis or braces.
// It handles unwrapping one level of pointer-reference nodes.
func wrapParens(s textNode) textNode {
var refNode *textWrap
if s2, ok := s.(*textWrap); ok {
// Unwrap a single pointer reference node.
switch s2.Metadata.(type) {
case leafReference, trunkReference, trunkReferences:
refNode = s2
if s3, ok := refNode.Value.(*textWrap); ok {
s2 = s3
}
}
// Already has delimiters that make parenthesis unnecessary.
hasParens := strings.HasPrefix(s2.Prefix, "(") && strings.HasSuffix(s2.Suffix, ")")
hasBraces := strings.HasPrefix(s2.Prefix, "{") && strings.HasSuffix(s2.Suffix, "}")
if hasParens || hasBraces {
return s
}
}
if refNode != nil {
refNode.Value = &textWrap{Prefix: "(", Value: refNode.Value, Suffix: ")"}
return s
}
return &textWrap{Prefix: "(", Value: s, Suffix: ")"}
}
// FormatValue prints the reflect.Value, taking extra care to avoid descending
// into pointers already in ptrs. As pointers are visited, ptrs is also updated.
func (opts formatOptions) FormatValue(v reflect.Value, parentKind reflect.Kind, ptrs *pointerReferences) (out textNode) {
if !v.IsValid() {
return nil
}
t := v.Type()
// Check slice element for cycles.
if parentKind == reflect.Slice {
ptrRef, visited := ptrs.Push(v.Addr())
if visited {
return makeLeafReference(ptrRef, false)
}
defer ptrs.Pop()
defer func() { out = wrapTrunkReference(ptrRef, false, out) }()
}
// Check whether there is an Error or String method to call.
if !opts.AvoidStringer && v.CanInterface() {
// Avoid calling Error or String methods on nil receivers since many
// implementations crash when doing so.
if (t.Kind() != reflect.Ptr && t.Kind() != reflect.Interface) || !v.IsNil() {
var prefix, strVal string
func() {
// Swallow and ignore any panics from String or Error.
defer func() { recover() }()
switch v := v.Interface().(type) {
case error:
strVal = v.Error()
prefix = "e"
case fmt.Stringer:
strVal = v.String()
prefix = "s"
}
}()
if prefix != "" {
return opts.formatString(prefix, strVal)
}
}
}
// Check whether to explicitly wrap the result with the type.
var skipType bool
defer func() {
if !skipType {
out = opts.FormatType(t, out)
}
}()
switch t.Kind() {
case reflect.Bool:
return textLine(fmt.Sprint(v.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return textLine(fmt.Sprint(v.Int()))
case reflect.Uint, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return textLine(fmt.Sprint(v.Uint()))
case reflect.Uint8:
if parentKind == reflect.Slice || parentKind == reflect.Array {
return textLine(formatHex(v.Uint()))
}
return textLine(fmt.Sprint(v.Uint()))
case reflect.Uintptr:
return textLine(formatHex(v.Uint()))
case reflect.Float32, reflect.Float64:
return textLine(fmt.Sprint(v.Float()))
case reflect.Complex64, reflect.Complex128:
return textLine(fmt.Sprint(v.Complex()))
case reflect.String:
return opts.formatString("", v.String())
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
return textLine(formatPointer(value.PointerOf(v), true))
case reflect.Struct:
var list textList
v := makeAddressable(v) // needed for retrieveUnexportedField
maxLen := v.NumField()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
for i := 0; i < v.NumField(); i++ {
vv := v.Field(i)
if value.IsZero(vv) {
continue // Elide fields with zero values
}
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
sf := t.Field(i)
if supportExporters && !isExported(sf.Name) {
vv = retrieveUnexportedField(v, sf, true)
}
s := opts.WithTypeMode(autoType).FormatValue(vv, t.Kind(), ptrs)
list = append(list, textRecord{Key: sf.Name, Value: s})
}
return &textWrap{Prefix: "{", Value: list, Suffix: "}"}
case reflect.Slice:
if v.IsNil() {
return textNil
}
// Check whether this is a []byte of text data.
if t.Elem() == reflect.TypeOf(byte(0)) {
b := v.Bytes()
isPrintSpace := func(r rune) bool { return unicode.IsPrint(r) && unicode.IsSpace(r) }
if len(b) > 0 && utf8.Valid(b) && len(bytes.TrimFunc(b, isPrintSpace)) == 0 {
out = opts.formatString("", string(b))
return opts.WithTypeMode(emitType).FormatType(t, out)
}
}
fallthrough
case reflect.Array:
maxLen := v.Len()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
var list textList
for i := 0; i < v.Len(); i++ {
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
s := opts.WithTypeMode(elideType).FormatValue(v.Index(i), t.Kind(), ptrs)
list = append(list, textRecord{Value: s})
}
out = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
if t.Kind() == reflect.Slice && opts.PrintAddresses {
header := fmt.Sprintf("ptr:%v, len:%d, cap:%d", formatPointer(value.PointerOf(v), false), v.Len(), v.Cap())
out = &textWrap{Prefix: pointerDelimPrefix + header + pointerDelimSuffix, Value: out}
}
return out
case reflect.Map:
if v.IsNil() {
return textNil
}
// Check pointer for cycles.
ptrRef, visited := ptrs.Push(v)
if visited {
return makeLeafReference(ptrRef, opts.PrintAddresses)
}
defer ptrs.Pop()
maxLen := v.Len()
if opts.LimitVerbosity {
maxLen = ((1 << opts.verbosity()) >> 1) << 2 // 0, 4, 8, 16, 32, etc...
opts.VerbosityLevel--
}
var list textList
for _, k := range value.SortKeys(v.MapKeys()) {
if len(list) == maxLen {
list.AppendEllipsis(diffStats{})
break
}
sk := formatMapKey(k, false, ptrs)
sv := opts.WithTypeMode(elideType).FormatValue(v.MapIndex(k), t.Kind(), ptrs)
list = append(list, textRecord{Key: sk, Value: sv})
}
out = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
out = wrapTrunkReference(ptrRef, opts.PrintAddresses, out)
return out
case reflect.Ptr:
if v.IsNil() {
return textNil
}
// Check pointer for cycles.
ptrRef, visited := ptrs.Push(v)
if visited {
out = makeLeafReference(ptrRef, opts.PrintAddresses)
return &textWrap{Prefix: "&", Value: out}
}
defer ptrs.Pop()
skipType = true // Let the underlying value print the type instead
out = opts.FormatValue(v.Elem(), t.Kind(), ptrs)
out = wrapTrunkReference(ptrRef, opts.PrintAddresses, out)
out = &textWrap{Prefix: "&", Value: out}
return out
case reflect.Interface:
if v.IsNil() {
return textNil
}
// Interfaces accept different concrete types,
// so configure the underlying value to explicitly print the type.
skipType = true // Print the concrete type instead
return opts.WithTypeMode(emitType).FormatValue(v.Elem(), t.Kind(), ptrs)
default:
panic(fmt.Sprintf("%v kind not handled", v.Kind()))
}
}
func (opts formatOptions) formatString(prefix, s string) textNode {
maxLen := len(s)
maxLines := strings.Count(s, "\n") + 1
if opts.LimitVerbosity {
maxLen = (1 << opts.verbosity()) << 5 // 32, 64, 128, 256, etc...
maxLines = (1 << opts.verbosity()) << 2 // 4, 8, 16, 32, 64, etc...
}
// For multiline strings, use the triple-quote syntax,
// but only use it when printing removed or inserted nodes since
// we only want the extra verbosity for those cases.
lines := strings.Split(strings.TrimSuffix(s, "\n"), "\n")
isTripleQuoted := len(lines) >= 4 && (opts.DiffMode == '-' || opts.DiffMode == '+')
for i := 0; i < len(lines) && isTripleQuoted; i++ {
lines[i] = strings.TrimPrefix(strings.TrimSuffix(lines[i], "\r"), "\r") // trim leading/trailing carriage returns for legacy Windows endline support
isPrintable := func(r rune) bool {
return unicode.IsPrint(r) || r == '\t' // specially treat tab as printable
}
line := lines[i]
isTripleQuoted = !strings.HasPrefix(strings.TrimPrefix(line, prefix), `"""`) && !strings.HasPrefix(line, "...") && strings.TrimFunc(line, isPrintable) == "" && len(line) <= maxLen
}
if isTripleQuoted {
var list textList
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(prefix + `"""`), ElideComma: true})
for i, line := range lines {
if numElided := len(lines) - i; i == maxLines-1 && numElided > 1 {
comment := commentString(fmt.Sprintf("%d elided lines", numElided))
list = append(list, textRecord{Diff: opts.DiffMode, Value: textEllipsis, ElideComma: true, Comment: comment})
break
}
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(line), ElideComma: true})
}
list = append(list, textRecord{Diff: opts.DiffMode, Value: textLine(prefix + `"""`), ElideComma: true})
return &textWrap{Prefix: "(", Value: list, Suffix: ")"}
}
// Format the string as a single-line quoted string.
if len(s) > maxLen+len(textEllipsis) {
return textLine(prefix + formatString(s[:maxLen]) + string(textEllipsis))
}
return textLine(prefix + formatString(s))
}
// formatMapKey formats v as if it were a map key.
// The result is guaranteed to be a single line.
func formatMapKey(v reflect.Value, disambiguate bool, ptrs *pointerReferences) string {
var opts formatOptions
opts.DiffMode = diffIdentical
opts.TypeMode = elideType
opts.PrintAddresses = disambiguate
opts.AvoidStringer = disambiguate
opts.QualifiedNames = disambiguate
opts.VerbosityLevel = maxVerbosityPreset
opts.LimitVerbosity = true
s := opts.FormatValue(v, reflect.Map, ptrs).String()
return strings.TrimSpace(s)
}
// formatString prints s as a double-quoted or backtick-quoted string.
func formatString(s string) string {
// Use quoted string if it the same length as a raw string literal.
// Otherwise, attempt to use the raw string form.
qs := strconv.Quote(s)
if len(qs) == 1+len(s)+1 {
return qs
}
// Disallow newlines to ensure output is a single line.
// Only allow printable runes for readability purposes.
rawInvalid := func(r rune) bool {
return r == '`' || r == '\n' || !(unicode.IsPrint(r) || r == '\t')
}
if utf8.ValidString(s) && strings.IndexFunc(s, rawInvalid) < 0 {
return "`" + s + "`"
}
return qs
}
// formatHex prints u as a hexadecimal integer in Go notation.
func formatHex(u uint64) string {
var f string
switch {
case u <= 0xff:
f = "0x%02x"
case u <= 0xffff:
f = "0x%04x"
case u <= 0xffffff:
f = "0x%06x"
case u <= 0xffffffff:
f = "0x%08x"
case u <= 0xffffffffff:
f = "0x%010x"
case u <= 0xffffffffffff:
f = "0x%012x"
case u <= 0xffffffffffffff:
f = "0x%014x"
case u <= 0xffffffffffffffff:
f = "0x%016x"
}
return fmt.Sprintf(f, u)
}

465
vendor/github.com/google/go-cmp/cmp/report_slices.go generated vendored Normal file
View File

@ -0,0 +1,465 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/diff"
)
// CanFormatDiffSlice reports whether we support custom formatting for nodes
// that are slices of primitive kinds or strings.
func (opts formatOptions) CanFormatDiffSlice(v *valueNode) bool {
switch {
case opts.DiffMode != diffUnknown:
return false // Must be formatting in diff mode
case v.NumDiff == 0:
return false // No differences detected
case !v.ValueX.IsValid() || !v.ValueY.IsValid():
return false // Both values must be valid
case v.NumIgnored > 0:
return false // Some ignore option was used
case v.NumTransformed > 0:
return false // Some transform option was used
case v.NumCompared > 1:
return false // More than one comparison was used
case v.NumCompared == 1 && v.Type.Name() != "":
// The need for cmp to check applicability of options on every element
// in a slice is a significant performance detriment for large []byte.
// The workaround is to specify Comparer(bytes.Equal),
// which enables cmp to compare []byte more efficiently.
// If they differ, we still want to provide batched diffing.
// The logic disallows named types since they tend to have their own
// String method, with nicer formatting than what this provides.
return false
}
// Check whether this is an interface with the same concrete types.
t := v.Type
vx, vy := v.ValueX, v.ValueY
if t.Kind() == reflect.Interface && !vx.IsNil() && !vy.IsNil() && vx.Elem().Type() == vy.Elem().Type() {
vx, vy = vx.Elem(), vy.Elem()
t = vx.Type()
}
// Check whether we provide specialized diffing for this type.
switch t.Kind() {
case reflect.String:
case reflect.Array, reflect.Slice:
// Only slices of primitive types have specialized handling.
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
default:
return false
}
// Both slice values have to be non-empty.
if t.Kind() == reflect.Slice && (vx.Len() == 0 || vy.Len() == 0) {
return false
}
// If a sufficient number of elements already differ,
// use specialized formatting even if length requirement is not met.
if v.NumDiff > v.NumSame {
return true
}
default:
return false
}
// Use specialized string diffing for longer slices or strings.
const minLength = 64
return vx.Len() >= minLength && vy.Len() >= minLength
}
// FormatDiffSlice prints a diff for the slices (or strings) represented by v.
// This provides custom-tailored logic to make printing of differences in
// textual strings and slices of primitive kinds more readable.
func (opts formatOptions) FormatDiffSlice(v *valueNode) textNode {
assert(opts.DiffMode == diffUnknown)
t, vx, vy := v.Type, v.ValueX, v.ValueY
if t.Kind() == reflect.Interface {
vx, vy = vx.Elem(), vy.Elem()
t = vx.Type()
opts = opts.WithTypeMode(emitType)
}
// Auto-detect the type of the data.
var isLinedText, isText, isBinary bool
var sx, sy string
switch {
case t.Kind() == reflect.String:
sx, sy = vx.String(), vy.String()
isText = true // Initial estimate, verify later
case t.Kind() == reflect.Slice && t.Elem() == reflect.TypeOf(byte(0)):
sx, sy = string(vx.Bytes()), string(vy.Bytes())
isBinary = true // Initial estimate, verify later
case t.Kind() == reflect.Array:
// Arrays need to be addressable for slice operations to work.
vx2, vy2 := reflect.New(t).Elem(), reflect.New(t).Elem()
vx2.Set(vx)
vy2.Set(vy)
vx, vy = vx2, vy2
}
if isText || isBinary {
var numLines, lastLineIdx, maxLineLen int
isBinary = !utf8.ValidString(sx) || !utf8.ValidString(sy)
for i, r := range sx + sy {
if !(unicode.IsPrint(r) || unicode.IsSpace(r)) || r == utf8.RuneError {
isBinary = true
break
}
if r == '\n' {
if maxLineLen < i-lastLineIdx {
maxLineLen = i - lastLineIdx
}
lastLineIdx = i + 1
numLines++
}
}
isText = !isBinary
isLinedText = isText && numLines >= 4 && maxLineLen <= 1024
}
// Format the string into printable records.
var list textList
var delim string
switch {
// If the text appears to be multi-lined text,
// then perform differencing across individual lines.
case isLinedText:
ssx := strings.Split(sx, "\n")
ssy := strings.Split(sy, "\n")
list = opts.formatDiffSlice(
reflect.ValueOf(ssx), reflect.ValueOf(ssy), 1, "line",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.Index(0).String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = "\n"
// If possible, use a custom triple-quote (""") syntax for printing
// differences in a string literal. This format is more readable,
// but has edge-cases where differences are visually indistinguishable.
// This format is avoided under the following conditions:
// • A line starts with `"""`
// • A line starts with "..."
// • A line contains non-printable characters
// • Adjacent different lines differ only by whitespace
//
// For example:
// """
// ... // 3 identical lines
// foo
// bar
// - baz
// + BAZ
// """
isTripleQuoted := true
prevRemoveLines := map[string]bool{}
prevInsertLines := map[string]bool{}
var list2 textList
list2 = append(list2, textRecord{Value: textLine(`"""`), ElideComma: true})
for _, r := range list {
if !r.Value.Equal(textEllipsis) {
line, _ := strconv.Unquote(string(r.Value.(textLine)))
line = strings.TrimPrefix(strings.TrimSuffix(line, "\r"), "\r") // trim leading/trailing carriage returns for legacy Windows endline support
normLine := strings.Map(func(r rune) rune {
if unicode.IsSpace(r) {
return -1 // drop whitespace to avoid visually indistinguishable output
}
return r
}, line)
isPrintable := func(r rune) bool {
return unicode.IsPrint(r) || r == '\t' // specially treat tab as printable
}
isTripleQuoted = !strings.HasPrefix(line, `"""`) && !strings.HasPrefix(line, "...") && strings.TrimFunc(line, isPrintable) == ""
switch r.Diff {
case diffRemoved:
isTripleQuoted = isTripleQuoted && !prevInsertLines[normLine]
prevRemoveLines[normLine] = true
case diffInserted:
isTripleQuoted = isTripleQuoted && !prevRemoveLines[normLine]
prevInsertLines[normLine] = true
}
if !isTripleQuoted {
break
}
r.Value = textLine(line)
r.ElideComma = true
}
if !(r.Diff == diffRemoved || r.Diff == diffInserted) { // start a new non-adjacent difference group
prevRemoveLines = map[string]bool{}
prevInsertLines = map[string]bool{}
}
list2 = append(list2, r)
}
if r := list2[len(list2)-1]; r.Diff == diffIdentical && len(r.Value.(textLine)) == 0 {
list2 = list2[:len(list2)-1] // elide single empty line at the end
}
list2 = append(list2, textRecord{Value: textLine(`"""`), ElideComma: true})
if isTripleQuoted {
var out textNode = &textWrap{Prefix: "(", Value: list2, Suffix: ")"}
switch t.Kind() {
case reflect.String:
if t != reflect.TypeOf(string("")) {
out = opts.FormatType(t, out)
}
case reflect.Slice:
// Always emit type for slices since the triple-quote syntax
// looks like a string (not a slice).
opts = opts.WithTypeMode(emitType)
out = opts.FormatType(t, out)
}
return out
}
// If the text appears to be single-lined text,
// then perform differencing in approximately fixed-sized chunks.
// The output is printed as quoted strings.
case isText:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 64, "byte",
func(v reflect.Value, d diffMode) textRecord {
s := formatString(v.String())
return textRecord{Diff: d, Value: textLine(s)}
},
)
delim = ""
// If the text appears to be binary data,
// then perform differencing in approximately fixed-sized chunks.
// The output is inspired by hexdump.
case isBinary:
list = opts.formatDiffSlice(
reflect.ValueOf(sx), reflect.ValueOf(sy), 16, "byte",
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
ss = append(ss, formatHex(v.Index(i).Uint()))
}
s := strings.Join(ss, ", ")
comment := commentString(fmt.Sprintf("%c|%v|", d, formatASCII(v.String())))
return textRecord{Diff: d, Value: textLine(s), Comment: comment}
},
)
// For all other slices of primitive types,
// then perform differencing in approximately fixed-sized chunks.
// The size of each chunk depends on the width of the element kind.
default:
var chunkSize int
if t.Elem().Kind() == reflect.Bool {
chunkSize = 16
} else {
switch t.Elem().Bits() {
case 8:
chunkSize = 16
case 16:
chunkSize = 12
case 32:
chunkSize = 8
default:
chunkSize = 8
}
}
list = opts.formatDiffSlice(
vx, vy, chunkSize, t.Elem().Kind().String(),
func(v reflect.Value, d diffMode) textRecord {
var ss []string
for i := 0; i < v.Len(); i++ {
switch t.Elem().Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
ss = append(ss, fmt.Sprint(v.Index(i).Int()))
case reflect.Uint, reflect.Uint16, reflect.Uint32, reflect.Uint64:
ss = append(ss, fmt.Sprint(v.Index(i).Uint()))
case reflect.Uint8, reflect.Uintptr:
ss = append(ss, formatHex(v.Index(i).Uint()))
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128:
ss = append(ss, fmt.Sprint(v.Index(i).Interface()))
}
}
s := strings.Join(ss, ", ")
return textRecord{Diff: d, Value: textLine(s)}
},
)
}
// Wrap the output with appropriate type information.
var out textNode = &textWrap{Prefix: "{", Value: list, Suffix: "}"}
if !isText {
// The "{...}" byte-sequence literal is not valid Go syntax for strings.
// Emit the type for extra clarity (e.g. "string{...}").
if t.Kind() == reflect.String {
opts = opts.WithTypeMode(emitType)
}
return opts.FormatType(t, out)
}
switch t.Kind() {
case reflect.String:
out = &textWrap{Prefix: "strings.Join(", Value: out, Suffix: fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf(string("")) {
out = opts.FormatType(t, out)
}
case reflect.Slice:
out = &textWrap{Prefix: "bytes.Join(", Value: out, Suffix: fmt.Sprintf(", %q)", delim)}
if t != reflect.TypeOf([]byte(nil)) {
out = opts.FormatType(t, out)
}
}
return out
}
// formatASCII formats s as an ASCII string.
// This is useful for printing binary strings in a semi-legible way.
func formatASCII(s string) string {
b := bytes.Repeat([]byte{'.'}, len(s))
for i := 0; i < len(s); i++ {
if ' ' <= s[i] && s[i] <= '~' {
b[i] = s[i]
}
}
return string(b)
}
func (opts formatOptions) formatDiffSlice(
vx, vy reflect.Value, chunkSize int, name string,
makeRec func(reflect.Value, diffMode) textRecord,
) (list textList) {
es := diff.Difference(vx.Len(), vy.Len(), func(ix int, iy int) diff.Result {
return diff.BoolResult(vx.Index(ix).Interface() == vy.Index(iy).Interface())
})
appendChunks := func(v reflect.Value, d diffMode) int {
n0 := v.Len()
for v.Len() > 0 {
n := chunkSize
if n > v.Len() {
n = v.Len()
}
list = append(list, makeRec(v.Slice(0, n), d))
v = v.Slice(n, v.Len())
}
return n0 - v.Len()
}
var numDiffs int
maxLen := -1
if opts.LimitVerbosity {
maxLen = (1 << opts.verbosity()) << 2 // 4, 8, 16, 32, 64, etc...
opts.VerbosityLevel--
}
groups := coalesceAdjacentEdits(name, es)
groups = coalesceInterveningIdentical(groups, chunkSize/4)
maxGroup := diffStats{Name: name}
for i, ds := range groups {
if maxLen >= 0 && numDiffs >= maxLen {
maxGroup = maxGroup.Append(ds)
continue
}
// Print equal.
if ds.NumDiff() == 0 {
// Compute the number of leading and trailing equal bytes to print.
var numLo, numHi int
numEqual := ds.NumIgnored + ds.NumIdentical
for numLo < chunkSize*numContextRecords && numLo+numHi < numEqual && i != 0 {
numLo++
}
for numHi < chunkSize*numContextRecords && numLo+numHi < numEqual && i != len(groups)-1 {
numHi++
}
if numEqual-(numLo+numHi) <= chunkSize && ds.NumIgnored == 0 {
numHi = numEqual - numLo // Avoid pointless coalescing of single equal row
}
// Print the equal bytes.
appendChunks(vx.Slice(0, numLo), diffIdentical)
if numEqual > numLo+numHi {
ds.NumIdentical -= numLo + numHi
list.AppendEllipsis(ds)
}
appendChunks(vx.Slice(numEqual-numHi, numEqual), diffIdentical)
vx = vx.Slice(numEqual, vx.Len())
vy = vy.Slice(numEqual, vy.Len())
continue
}
// Print unequal.
len0 := len(list)
nx := appendChunks(vx.Slice(0, ds.NumIdentical+ds.NumRemoved+ds.NumModified), diffRemoved)
vx = vx.Slice(nx, vx.Len())
ny := appendChunks(vy.Slice(0, ds.NumIdentical+ds.NumInserted+ds.NumModified), diffInserted)
vy = vy.Slice(ny, vy.Len())
numDiffs += len(list) - len0
}
if maxGroup.IsZero() {
assert(vx.Len() == 0 && vy.Len() == 0)
} else {
list.AppendEllipsis(maxGroup)
}
return list
}
// coalesceAdjacentEdits coalesces the list of edits into groups of adjacent
// equal or unequal counts.
func coalesceAdjacentEdits(name string, es diff.EditScript) (groups []diffStats) {
var prevCase int // Arbitrary index into which case last occurred
lastStats := func(i int) *diffStats {
if prevCase != i {
groups = append(groups, diffStats{Name: name})
prevCase = i
}
return &groups[len(groups)-1]
}
for _, e := range es {
switch e {
case diff.Identity:
lastStats(1).NumIdentical++
case diff.UniqueX:
lastStats(2).NumRemoved++
case diff.UniqueY:
lastStats(2).NumInserted++
case diff.Modified:
lastStats(2).NumModified++
}
}
return groups
}
// coalesceInterveningIdentical coalesces sufficiently short (<= windowSize)
// equal groups into adjacent unequal groups that currently result in a
// dual inserted/removed printout. This acts as a high-pass filter to smooth
// out high-frequency changes within the windowSize.
func coalesceInterveningIdentical(groups []diffStats, windowSize int) []diffStats {
groups, groupsOrig := groups[:0], groups
for i, ds := range groupsOrig {
if len(groups) >= 2 && ds.NumDiff() > 0 {
prev := &groups[len(groups)-2] // Unequal group
curr := &groups[len(groups)-1] // Equal group
next := &groupsOrig[i] // Unequal group
hadX, hadY := prev.NumRemoved > 0, prev.NumInserted > 0
hasX, hasY := next.NumRemoved > 0, next.NumInserted > 0
if ((hadX || hasX) && (hadY || hasY)) && curr.NumIdentical <= windowSize {
*prev = prev.Append(*curr).Append(*next)
groups = groups[:len(groups)-1] // Truncate off equal group
continue
}
}
groups = append(groups, ds)
}
return groups
}

431
vendor/github.com/google/go-cmp/cmp/report_text.go generated vendored Normal file
View File

@ -0,0 +1,431 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp
import (
"bytes"
"fmt"
"math/rand"
"strings"
"time"
"unicode/utf8"
"github.com/google/go-cmp/cmp/internal/flags"
)
var randBool = rand.New(rand.NewSource(time.Now().Unix())).Intn(2) == 0
const maxColumnLength = 80
type indentMode int
func (n indentMode) appendIndent(b []byte, d diffMode) []byte {
// The output of Diff is documented as being unstable to provide future
// flexibility in changing the output for more humanly readable reports.
// This logic intentionally introduces instability to the exact output
// so that users can detect accidental reliance on stability early on,
// rather than much later when an actual change to the format occurs.
if flags.Deterministic || randBool {
// Use regular spaces (U+0020).
switch d {
case diffUnknown, diffIdentical:
b = append(b, " "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
} else {
// Use non-breaking spaces (U+00a0).
switch d {
case diffUnknown, diffIdentical:
b = append(b, "  "...)
case diffRemoved:
b = append(b, "- "...)
case diffInserted:
b = append(b, "+ "...)
}
}
return repeatCount(n).appendChar(b, '\t')
}
type repeatCount int
func (n repeatCount) appendChar(b []byte, c byte) []byte {
for ; n > 0; n-- {
b = append(b, c)
}
return b
}
// textNode is a simplified tree-based representation of structured text.
// Possible node types are textWrap, textList, or textLine.
type textNode interface {
// Len reports the length in bytes of a single-line version of the tree.
// Nested textRecord.Diff and textRecord.Comment fields are ignored.
Len() int
// Equal reports whether the two trees are structurally identical.
// Nested textRecord.Diff and textRecord.Comment fields are compared.
Equal(textNode) bool
// String returns the string representation of the text tree.
// It is not guaranteed that len(x.String()) == x.Len(),
// nor that x.String() == y.String() implies that x.Equal(y).
String() string
// formatCompactTo formats the contents of the tree as a single-line string
// to the provided buffer. Any nested textRecord.Diff and textRecord.Comment
// fields are ignored.
//
// However, not all nodes in the tree should be collapsed as a single-line.
// If a node can be collapsed as a single-line, it is replaced by a textLine
// node. Since the top-level node cannot replace itself, this also returns
// the current node itself.
//
// This does not mutate the receiver.
formatCompactTo([]byte, diffMode) ([]byte, textNode)
// formatExpandedTo formats the contents of the tree as a multi-line string
// to the provided buffer. In order for column alignment to operate well,
// formatCompactTo must be called before calling formatExpandedTo.
formatExpandedTo([]byte, diffMode, indentMode) []byte
}
// textWrap is a wrapper that concatenates a prefix and/or a suffix
// to the underlying node.
type textWrap struct {
Prefix string // e.g., "bytes.Buffer{"
Value textNode // textWrap | textList | textLine
Suffix string // e.g., "}"
Metadata interface{} // arbitrary metadata; has no effect on formatting
}
func (s *textWrap) Len() int {
return len(s.Prefix) + s.Value.Len() + len(s.Suffix)
}
func (s1 *textWrap) Equal(s2 textNode) bool {
if s2, ok := s2.(*textWrap); ok {
return s1.Prefix == s2.Prefix && s1.Value.Equal(s2.Value) && s1.Suffix == s2.Suffix
}
return false
}
func (s *textWrap) String() string {
var d diffMode
var n indentMode
_, s2 := s.formatCompactTo(nil, d)
b := n.appendIndent(nil, d) // Leading indent
b = s2.formatExpandedTo(b, d, n) // Main body
b = append(b, '\n') // Trailing newline
return string(b)
}
func (s *textWrap) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
n0 := len(b) // Original buffer length
b = append(b, s.Prefix...)
b, s.Value = s.Value.formatCompactTo(b, d)
b = append(b, s.Suffix...)
if _, ok := s.Value.(textLine); ok {
return b, textLine(b[n0:])
}
return b, s
}
func (s *textWrap) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
b = append(b, s.Prefix...)
b = s.Value.formatExpandedTo(b, d, n)
b = append(b, s.Suffix...)
return b
}
// textList is a comma-separated list of textWrap or textLine nodes.
// The list may be formatted as multi-lines or single-line at the discretion
// of the textList.formatCompactTo method.
type textList []textRecord
type textRecord struct {
Diff diffMode // e.g., 0 or '-' or '+'
Key string // e.g., "MyField"
Value textNode // textWrap | textLine
ElideComma bool // avoid trailing comma
Comment fmt.Stringer // e.g., "6 identical fields"
}
// AppendEllipsis appends a new ellipsis node to the list if none already
// exists at the end. If cs is non-zero it coalesces the statistics with the
// previous diffStats.
func (s *textList) AppendEllipsis(ds diffStats) {
hasStats := !ds.IsZero()
if len(*s) == 0 || !(*s)[len(*s)-1].Value.Equal(textEllipsis) {
if hasStats {
*s = append(*s, textRecord{Value: textEllipsis, ElideComma: true, Comment: ds})
} else {
*s = append(*s, textRecord{Value: textEllipsis, ElideComma: true})
}
return
}
if hasStats {
(*s)[len(*s)-1].Comment = (*s)[len(*s)-1].Comment.(diffStats).Append(ds)
}
}
func (s textList) Len() (n int) {
for i, r := range s {
n += len(r.Key)
if r.Key != "" {
n += len(": ")
}
n += r.Value.Len()
if i < len(s)-1 {
n += len(", ")
}
}
return n
}
func (s1 textList) Equal(s2 textNode) bool {
if s2, ok := s2.(textList); ok {
if len(s1) != len(s2) {
return false
}
for i := range s1 {
r1, r2 := s1[i], s2[i]
if !(r1.Diff == r2.Diff && r1.Key == r2.Key && r1.Value.Equal(r2.Value) && r1.Comment == r2.Comment) {
return false
}
}
return true
}
return false
}
func (s textList) String() string {
return (&textWrap{Prefix: "{", Value: s, Suffix: "}"}).String()
}
func (s textList) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
s = append(textList(nil), s...) // Avoid mutating original
// Determine whether we can collapse this list as a single line.
n0 := len(b) // Original buffer length
var multiLine bool
for i, r := range s {
if r.Diff == diffInserted || r.Diff == diffRemoved {
multiLine = true
}
b = append(b, r.Key...)
if r.Key != "" {
b = append(b, ": "...)
}
b, s[i].Value = r.Value.formatCompactTo(b, d|r.Diff)
if _, ok := s[i].Value.(textLine); !ok {
multiLine = true
}
if r.Comment != nil {
multiLine = true
}
if i < len(s)-1 {
b = append(b, ", "...)
}
}
// Force multi-lined output when printing a removed/inserted node that
// is sufficiently long.
if (d == diffInserted || d == diffRemoved) && len(b[n0:]) > maxColumnLength {
multiLine = true
}
if !multiLine {
return b, textLine(b[n0:])
}
return b, s
}
func (s textList) formatExpandedTo(b []byte, d diffMode, n indentMode) []byte {
alignKeyLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return r.Key == "" || !isLine
},
func(r textRecord) int { return utf8.RuneCountInString(r.Key) },
)
alignValueLens := s.alignLens(
func(r textRecord) bool {
_, isLine := r.Value.(textLine)
return !isLine || r.Value.Equal(textEllipsis) || r.Comment == nil
},
func(r textRecord) int { return utf8.RuneCount(r.Value.(textLine)) },
)
// Format lists of simple lists in a batched form.
// If the list is sequence of only textLine values,
// then batch multiple values on a single line.
var isSimple bool
for _, r := range s {
_, isLine := r.Value.(textLine)
isSimple = r.Diff == 0 && r.Key == "" && isLine && r.Comment == nil
if !isSimple {
break
}
}
if isSimple {
n++
var batch []byte
emitBatch := func() {
if len(batch) > 0 {
b = n.appendIndent(append(b, '\n'), d)
b = append(b, bytes.TrimRight(batch, " ")...)
batch = batch[:0]
}
}
for _, r := range s {
line := r.Value.(textLine)
if len(batch)+len(line)+len(", ") > maxColumnLength {
emitBatch()
}
batch = append(batch, line...)
batch = append(batch, ", "...)
}
emitBatch()
n--
return n.appendIndent(append(b, '\n'), d)
}
// Format the list as a multi-lined output.
n++
for i, r := range s {
b = n.appendIndent(append(b, '\n'), d|r.Diff)
if r.Key != "" {
b = append(b, r.Key+": "...)
}
b = alignKeyLens[i].appendChar(b, ' ')
b = r.Value.formatExpandedTo(b, d|r.Diff, n)
if !r.ElideComma {
b = append(b, ',')
}
b = alignValueLens[i].appendChar(b, ' ')
if r.Comment != nil {
b = append(b, " // "+r.Comment.String()...)
}
}
n--
return n.appendIndent(append(b, '\n'), d)
}
func (s textList) alignLens(
skipFunc func(textRecord) bool,
lenFunc func(textRecord) int,
) []repeatCount {
var startIdx, endIdx, maxLen int
lens := make([]repeatCount, len(s))
for i, r := range s {
if skipFunc(r) {
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
startIdx, endIdx, maxLen = i+1, i+1, 0
} else {
if maxLen < lenFunc(r) {
maxLen = lenFunc(r)
}
endIdx = i + 1
}
}
for j := startIdx; j < endIdx && j < len(s); j++ {
lens[j] = repeatCount(maxLen - lenFunc(s[j]))
}
return lens
}
// textLine is a single-line segment of text and is always a leaf node
// in the textNode tree.
type textLine []byte
var (
textNil = textLine("nil")
textEllipsis = textLine("...")
)
func (s textLine) Len() int {
return len(s)
}
func (s1 textLine) Equal(s2 textNode) bool {
if s2, ok := s2.(textLine); ok {
return bytes.Equal([]byte(s1), []byte(s2))
}
return false
}
func (s textLine) String() string {
return string(s)
}
func (s textLine) formatCompactTo(b []byte, d diffMode) ([]byte, textNode) {
return append(b, s...), s
}
func (s textLine) formatExpandedTo(b []byte, _ diffMode, _ indentMode) []byte {
return append(b, s...)
}
type diffStats struct {
Name string
NumIgnored int
NumIdentical int
NumRemoved int
NumInserted int
NumModified int
}
func (s diffStats) IsZero() bool {
s.Name = ""
return s == diffStats{}
}
func (s diffStats) NumDiff() int {
return s.NumRemoved + s.NumInserted + s.NumModified
}
func (s diffStats) Append(ds diffStats) diffStats {
assert(s.Name == ds.Name)
s.NumIgnored += ds.NumIgnored
s.NumIdentical += ds.NumIdentical
s.NumRemoved += ds.NumRemoved
s.NumInserted += ds.NumInserted
s.NumModified += ds.NumModified
return s
}
// String prints a humanly-readable summary of coalesced records.
//
// Example:
// diffStats{Name: "Field", NumIgnored: 5}.String() => "5 ignored fields"
func (s diffStats) String() string {
var ss []string
var sum int
labels := [...]string{"ignored", "identical", "removed", "inserted", "modified"}
counts := [...]int{s.NumIgnored, s.NumIdentical, s.NumRemoved, s.NumInserted, s.NumModified}
for i, n := range counts {
if n > 0 {
ss = append(ss, fmt.Sprintf("%d %v", n, labels[i]))
}
sum += n
}
// Pluralize the name (adjusting for some obscure English grammar rules).
name := s.Name
if sum > 1 {
name += "s"
if strings.HasSuffix(name, "ys") {
name = name[:len(name)-2] + "ies" // e.g., "entrys" => "entries"
}
}
// Format the list according to English grammar (with Oxford comma).
switch n := len(ss); n {
case 0:
return ""
case 1, 2:
return strings.Join(ss, " and ") + " " + name
default:
return strings.Join(ss[:n-1], ", ") + ", and " + ss[n-1] + " " + name
}
}
type commentString string
func (s commentString) String() string { return string(s) }

121
vendor/github.com/google/go-cmp/cmp/report_value.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
// Copyright 2019, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp
import "reflect"
// valueNode represents a single node within a report, which is a
// structured representation of the value tree, containing information
// regarding which nodes are equal or not.
type valueNode struct {
parent *valueNode
Type reflect.Type
ValueX reflect.Value
ValueY reflect.Value
// NumSame is the number of leaf nodes that are equal.
// All descendants are equal only if NumDiff is 0.
NumSame int
// NumDiff is the number of leaf nodes that are not equal.
NumDiff int
// NumIgnored is the number of leaf nodes that are ignored.
NumIgnored int
// NumCompared is the number of leaf nodes that were compared
// using an Equal method or Comparer function.
NumCompared int
// NumTransformed is the number of non-leaf nodes that were transformed.
NumTransformed int
// NumChildren is the number of transitive descendants of this node.
// This counts from zero; thus, leaf nodes have no descendants.
NumChildren int
// MaxDepth is the maximum depth of the tree. This counts from zero;
// thus, leaf nodes have a depth of zero.
MaxDepth int
// Records is a list of struct fields, slice elements, or map entries.
Records []reportRecord // If populated, implies Value is not populated
// Value is the result of a transformation, pointer indirect, of
// type assertion.
Value *valueNode // If populated, implies Records is not populated
// TransformerName is the name of the transformer.
TransformerName string // If non-empty, implies Value is populated
}
type reportRecord struct {
Key reflect.Value // Invalid for slice element
Value *valueNode
}
func (parent *valueNode) PushStep(ps PathStep) (child *valueNode) {
vx, vy := ps.Values()
child = &valueNode{parent: parent, Type: ps.Type(), ValueX: vx, ValueY: vy}
switch s := ps.(type) {
case StructField:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: reflect.ValueOf(s.Name()), Value: child})
case SliceIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Value: child})
case MapIndex:
assert(parent.Value == nil)
parent.Records = append(parent.Records, reportRecord{Key: s.Key(), Value: child})
case Indirect:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case TypeAssertion:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
case Transform:
assert(parent.Value == nil && parent.Records == nil)
parent.Value = child
parent.TransformerName = s.Name()
parent.NumTransformed++
default:
assert(parent == nil) // Must be the root step
}
return child
}
func (r *valueNode) Report(rs Result) {
assert(r.MaxDepth == 0) // May only be called on leaf nodes
if rs.ByIgnore() {
r.NumIgnored++
} else {
if rs.Equal() {
r.NumSame++
} else {
r.NumDiff++
}
}
assert(r.NumSame+r.NumDiff+r.NumIgnored == 1)
if rs.ByMethod() {
r.NumCompared++
}
if rs.ByFunc() {
r.NumCompared++
}
assert(r.NumCompared <= 1)
}
func (child *valueNode) PopStep() (parent *valueNode) {
if child.parent == nil {
return nil
}
parent = child.parent
parent.NumSame += child.NumSame
parent.NumDiff += child.NumDiff
parent.NumIgnored += child.NumIgnored
parent.NumCompared += child.NumCompared
parent.NumTransformed += child.NumTransformed
parent.NumChildren += child.NumChildren + 1
if parent.MaxDepth < child.MaxDepth+1 {
parent.MaxDepth = child.MaxDepth + 1
}
return parent
}

View File

@ -1,53 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmp
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp/internal/value"
)
type defaultReporter struct {
Option
diffs []string // List of differences, possibly truncated
ndiffs int // Total number of differences
nbytes int // Number of bytes in diffs
nlines int // Number of lines in diffs
}
var _ reporter = (*defaultReporter)(nil)
func (r *defaultReporter) Report(x, y reflect.Value, eq bool, p Path) {
if eq {
return // Ignore equal results
}
const maxBytes = 4096
const maxLines = 256
r.ndiffs++
if r.nbytes < maxBytes && r.nlines < maxLines {
sx := value.Format(x, value.FormatConfig{UseStringer: true})
sy := value.Format(y, value.FormatConfig{UseStringer: true})
if sx == sy {
// Unhelpful output, so use more exact formatting.
sx = value.Format(x, value.FormatConfig{PrintPrimitiveType: true})
sy = value.Format(y, value.FormatConfig{PrintPrimitiveType: true})
}
s := fmt.Sprintf("%#v:\n\t-: %s\n\t+: %s\n", p, sx, sy)
r.diffs = append(r.diffs, s)
r.nbytes += len(s)
r.nlines += strings.Count(s, "\n")
}
}
func (r *defaultReporter) String() string {
s := strings.Join(r.diffs, "")
if r.ndiffs == len(r.diffs) {
return s
}
return fmt.Sprintf("%s... %d more differences ...", s, r.ndiffs-len(r.diffs))
}

View File

@ -1,15 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build purego appengine js
package cmp
import "reflect"
const supportAllowUnexported = false
func unsafeRetrieveField(reflect.Value, reflect.StructField) reflect.Value {
panic("unsafeRetrieveField is not implemented")
}

View File

@ -1,23 +0,0 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// +build !purego,!appengine,!js
package cmp
import (
"reflect"
"unsafe"
)
const supportAllowUnexported = true
// unsafeRetrieveField uses unsafe to forcibly retrieve any field from a struct
// such that the value has read-write permissions.
//
// The parent struct, v, must be addressable, while f must be a StructField
// describing the field to retrieve.
func unsafeRetrieveField(v reflect.Value, f reflect.StructField) reflect.Value {
return reflect.NewAt(f.Type, unsafe.Pointer(v.UnsafeAddr()+f.Offset)).Elem()
}

27
vendor/golang.org/x/xerrors/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Copyright (c) 2019 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/xerrors/PATENTS generated vendored Normal file
View File

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

2
vendor/golang.org/x/xerrors/README generated vendored Normal file
View File

@ -0,0 +1,2 @@
This repository holds the transition packages for the new Go 1.13 error values.
See golang.org/design/29934-error-values.

193
vendor/golang.org/x/xerrors/adaptor.go generated vendored Normal file
View File

@ -0,0 +1,193 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"bytes"
"fmt"
"io"
"reflect"
"strconv"
)
// FormatError calls the FormatError method of f with an errors.Printer
// configured according to s and verb, and writes the result to s.
func FormatError(f Formatter, s fmt.State, verb rune) {
// Assuming this function is only called from the Format method, and given
// that FormatError takes precedence over Format, it cannot be called from
// any package that supports errors.Formatter. It is therefore safe to
// disregard that State may be a specific printer implementation and use one
// of our choice instead.
// limitations: does not support printing error as Go struct.
var (
sep = " " // separator before next error
p = &state{State: s}
direct = true
)
var err error = f
switch verb {
// Note that this switch must match the preference order
// for ordinary string printing (%#v before %+v, and so on).
case 'v':
if s.Flag('#') {
if stringer, ok := err.(fmt.GoStringer); ok {
io.WriteString(&p.buf, stringer.GoString())
goto exit
}
// proceed as if it were %v
} else if s.Flag('+') {
p.printDetail = true
sep = "\n - "
}
case 's':
case 'q', 'x', 'X':
// Use an intermediate buffer in the rare cases that precision,
// truncation, or one of the alternative verbs (q, x, and X) are
// specified.
direct = false
default:
p.buf.WriteString("%!")
p.buf.WriteRune(verb)
p.buf.WriteByte('(')
switch {
case err != nil:
p.buf.WriteString(reflect.TypeOf(f).String())
default:
p.buf.WriteString("<nil>")
}
p.buf.WriteByte(')')
io.Copy(s, &p.buf)
return
}
loop:
for {
switch v := err.(type) {
case Formatter:
err = v.FormatError((*printer)(p))
case fmt.Formatter:
v.Format(p, 'v')
break loop
default:
io.WriteString(&p.buf, v.Error())
break loop
}
if err == nil {
break
}
if p.needColon || !p.printDetail {
p.buf.WriteByte(':')
p.needColon = false
}
p.buf.WriteString(sep)
p.inDetail = false
p.needNewline = false
}
exit:
width, okW := s.Width()
prec, okP := s.Precision()
if !direct || (okW && width > 0) || okP {
// Construct format string from State s.
format := []byte{'%'}
if s.Flag('-') {
format = append(format, '-')
}
if s.Flag('+') {
format = append(format, '+')
}
if s.Flag(' ') {
format = append(format, ' ')
}
if okW {
format = strconv.AppendInt(format, int64(width), 10)
}
if okP {
format = append(format, '.')
format = strconv.AppendInt(format, int64(prec), 10)
}
format = append(format, string(verb)...)
fmt.Fprintf(s, string(format), p.buf.String())
} else {
io.Copy(s, &p.buf)
}
}
var detailSep = []byte("\n ")
// state tracks error printing state. It implements fmt.State.
type state struct {
fmt.State
buf bytes.Buffer
printDetail bool
inDetail bool
needColon bool
needNewline bool
}
func (s *state) Write(b []byte) (n int, err error) {
if s.printDetail {
if len(b) == 0 {
return 0, nil
}
if s.inDetail && s.needColon {
s.needNewline = true
if b[0] == '\n' {
b = b[1:]
}
}
k := 0
for i, c := range b {
if s.needNewline {
if s.inDetail && s.needColon {
s.buf.WriteByte(':')
s.needColon = false
}
s.buf.Write(detailSep)
s.needNewline = false
}
if c == '\n' {
s.buf.Write(b[k:i])
k = i + 1
s.needNewline = true
}
}
s.buf.Write(b[k:])
if !s.inDetail {
s.needColon = true
}
} else if !s.inDetail {
s.buf.Write(b)
}
return len(b), nil
}
// printer wraps a state to implement an xerrors.Printer.
type printer state
func (s *printer) Print(args ...interface{}) {
if !s.inDetail || s.printDetail {
fmt.Fprint((*state)(s), args...)
}
}
func (s *printer) Printf(format string, args ...interface{}) {
if !s.inDetail || s.printDetail {
fmt.Fprintf((*state)(s), format, args...)
}
}
func (s *printer) Detail() bool {
s.inDetail = true
return s.printDetail
}

1
vendor/golang.org/x/xerrors/codereview.cfg generated vendored Normal file
View File

@ -0,0 +1 @@
issuerepo: golang/go

22
vendor/golang.org/x/xerrors/doc.go generated vendored Normal file
View File

@ -0,0 +1,22 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package xerrors implements functions to manipulate errors.
//
// This package is based on the Go 2 proposal for error values:
// https://golang.org/design/29934-error-values
//
// These functions were incorporated into the standard library's errors package
// in Go 1.13:
// - Is
// - As
// - Unwrap
//
// Also, Errorf's %w verb was incorporated into fmt.Errorf.
//
// Use this package to get equivalent behavior in all supported Go versions.
//
// No other features of this package were included in Go 1.13, and at present
// there are no plans to include any of them.
package xerrors // import "golang.org/x/xerrors"

33
vendor/golang.org/x/xerrors/errors.go generated vendored Normal file
View File

@ -0,0 +1,33 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import "fmt"
// errorString is a trivial implementation of error.
type errorString struct {
s string
frame Frame
}
// New returns an error that formats as the given text.
//
// The returned error contains a Frame set to the caller's location and
// implements Formatter to show this information when printed with details.
func New(text string) error {
return &errorString{text, Caller(1)}
}
func (e *errorString) Error() string {
return e.s
}
func (e *errorString) Format(s fmt.State, v rune) { FormatError(e, s, v) }
func (e *errorString) FormatError(p Printer) (next error) {
p.Print(e.s)
e.frame.Format(p)
return nil
}

187
vendor/golang.org/x/xerrors/fmt.go generated vendored Normal file
View File

@ -0,0 +1,187 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"fmt"
"strings"
"unicode"
"unicode/utf8"
"golang.org/x/xerrors/internal"
)
const percentBangString = "%!"
// Errorf formats according to a format specifier and returns the string as a
// value that satisfies error.
//
// The returned error includes the file and line number of the caller when
// formatted with additional detail enabled. If the last argument is an error
// the returned error's Format method will return it if the format string ends
// with ": %s", ": %v", or ": %w". If the last argument is an error and the
// format string ends with ": %w", the returned error implements an Unwrap
// method returning it.
//
// If the format specifier includes a %w verb with an error operand in a
// position other than at the end, the returned error will still implement an
// Unwrap method returning the operand, but the error's Format method will not
// return the wrapped error.
//
// It is invalid to include more than one %w verb or to supply it with an
// operand that does not implement the error interface. The %w verb is otherwise
// a synonym for %v.
func Errorf(format string, a ...interface{}) error {
format = formatPlusW(format)
// Support a ": %[wsv]" suffix, which works well with xerrors.Formatter.
wrap := strings.HasSuffix(format, ": %w")
idx, format2, ok := parsePercentW(format)
percentWElsewhere := !wrap && idx >= 0
if !percentWElsewhere && (wrap || strings.HasSuffix(format, ": %s") || strings.HasSuffix(format, ": %v")) {
err := errorAt(a, len(a)-1)
if err == nil {
return &noWrapError{fmt.Sprintf(format, a...), nil, Caller(1)}
}
// TODO: this is not entirely correct. The error value could be
// printed elsewhere in format if it mixes numbered with unnumbered
// substitutions. With relatively small changes to doPrintf we can
// have it optionally ignore extra arguments and pass the argument
// list in its entirety.
msg := fmt.Sprintf(format[:len(format)-len(": %s")], a[:len(a)-1]...)
frame := Frame{}
if internal.EnableTrace {
frame = Caller(1)
}
if wrap {
return &wrapError{msg, err, frame}
}
return &noWrapError{msg, err, frame}
}
// Support %w anywhere.
// TODO: don't repeat the wrapped error's message when %w occurs in the middle.
msg := fmt.Sprintf(format2, a...)
if idx < 0 {
return &noWrapError{msg, nil, Caller(1)}
}
err := errorAt(a, idx)
if !ok || err == nil {
// Too many %ws or argument of %w is not an error. Approximate the Go
// 1.13 fmt.Errorf message.
return &noWrapError{fmt.Sprintf("%sw(%s)", percentBangString, msg), nil, Caller(1)}
}
frame := Frame{}
if internal.EnableTrace {
frame = Caller(1)
}
return &wrapError{msg, err, frame}
}
func errorAt(args []interface{}, i int) error {
if i < 0 || i >= len(args) {
return nil
}
err, ok := args[i].(error)
if !ok {
return nil
}
return err
}
// formatPlusW is used to avoid the vet check that will barf at %w.
func formatPlusW(s string) string {
return s
}
// Return the index of the only %w in format, or -1 if none.
// Also return a rewritten format string with %w replaced by %v, and
// false if there is more than one %w.
// TODO: handle "%[N]w".
func parsePercentW(format string) (idx int, newFormat string, ok bool) {
// Loosely copied from golang.org/x/tools/go/analysis/passes/printf/printf.go.
idx = -1
ok = true
n := 0
sz := 0
var isW bool
for i := 0; i < len(format); i += sz {
if format[i] != '%' {
sz = 1
continue
}
// "%%" is not a format directive.
if i+1 < len(format) && format[i+1] == '%' {
sz = 2
continue
}
sz, isW = parsePrintfVerb(format[i:])
if isW {
if idx >= 0 {
ok = false
} else {
idx = n
}
// "Replace" the last character, the 'w', with a 'v'.
p := i + sz - 1
format = format[:p] + "v" + format[p+1:]
}
n++
}
return idx, format, ok
}
// Parse the printf verb starting with a % at s[0].
// Return how many bytes it occupies and whether the verb is 'w'.
func parsePrintfVerb(s string) (int, bool) {
// Assume only that the directive is a sequence of non-letters followed by a single letter.
sz := 0
var r rune
for i := 1; i < len(s); i += sz {
r, sz = utf8.DecodeRuneInString(s[i:])
if unicode.IsLetter(r) {
return i + sz, r == 'w'
}
}
return len(s), false
}
type noWrapError struct {
msg string
err error
frame Frame
}
func (e *noWrapError) Error() string {
return fmt.Sprint(e)
}
func (e *noWrapError) Format(s fmt.State, v rune) { FormatError(e, s, v) }
func (e *noWrapError) FormatError(p Printer) (next error) {
p.Print(e.msg)
e.frame.Format(p)
return e.err
}
type wrapError struct {
msg string
err error
frame Frame
}
func (e *wrapError) Error() string {
return fmt.Sprint(e)
}
func (e *wrapError) Format(s fmt.State, v rune) { FormatError(e, s, v) }
func (e *wrapError) FormatError(p Printer) (next error) {
p.Print(e.msg)
e.frame.Format(p)
return e.err
}
func (e *wrapError) Unwrap() error {
return e.err
}

34
vendor/golang.org/x/xerrors/format.go generated vendored Normal file
View File

@ -0,0 +1,34 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
// A Formatter formats error messages.
type Formatter interface {
error
// FormatError prints the receiver's first error and returns the next error in
// the error chain, if any.
FormatError(p Printer) (next error)
}
// A Printer formats error messages.
//
// The most common implementation of Printer is the one provided by package fmt
// during Printf (as of Go 1.13). Localization packages such as golang.org/x/text/message
// typically provide their own implementations.
type Printer interface {
// Print appends args to the message output.
Print(args ...interface{})
// Printf writes a formatted string.
Printf(format string, args ...interface{})
// Detail reports whether error detail is requested.
// After the first call to Detail, all text written to the Printer
// is formatted as additional detail, or ignored when
// detail has not been requested.
// If Detail returns false, the caller can avoid printing the detail at all.
Detail() bool
}

56
vendor/golang.org/x/xerrors/frame.go generated vendored Normal file
View File

@ -0,0 +1,56 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"runtime"
)
// A Frame contains part of a call stack.
type Frame struct {
// Make room for three PCs: the one we were asked for, what it called,
// and possibly a PC for skipPleaseUseCallersFrames. See:
// https://go.googlesource.com/go/+/032678e0fb/src/runtime/extern.go#169
frames [3]uintptr
}
// Caller returns a Frame that describes a frame on the caller's stack.
// The argument skip is the number of frames to skip over.
// Caller(0) returns the frame for the caller of Caller.
func Caller(skip int) Frame {
var s Frame
runtime.Callers(skip+1, s.frames[:])
return s
}
// location reports the file, line, and function of a frame.
//
// The returned function may be "" even if file and line are not.
func (f Frame) location() (function, file string, line int) {
frames := runtime.CallersFrames(f.frames[:])
if _, ok := frames.Next(); !ok {
return "", "", 0
}
fr, ok := frames.Next()
if !ok {
return "", "", 0
}
return fr.Function, fr.File, fr.Line
}
// Format prints the stack as error detail.
// It should be called from an error's Format implementation
// after printing any other error detail.
func (f Frame) Format(p Printer) {
if p.Detail() {
function, file, line := f.location()
if function != "" {
p.Printf("%s\n ", function)
}
if file != "" {
p.Printf("%s:%d\n", file, line)
}
}
}

3
vendor/golang.org/x/xerrors/go.mod generated vendored Normal file
View File

@ -0,0 +1,3 @@
module golang.org/x/xerrors
go 1.11

8
vendor/golang.org/x/xerrors/internal/internal.go generated vendored Normal file
View File

@ -0,0 +1,8 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package internal
// EnableTrace indicates whether stack information should be recorded in errors.
var EnableTrace = true

106
vendor/golang.org/x/xerrors/wrap.go generated vendored Normal file
View File

@ -0,0 +1,106 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package xerrors
import (
"reflect"
)
// A Wrapper provides context around another error.
type Wrapper interface {
// Unwrap returns the next error in the error chain.
// If there is no next error, Unwrap returns nil.
Unwrap() error
}
// Opaque returns an error with the same error formatting as err
// but that does not match err and cannot be unwrapped.
func Opaque(err error) error {
return noWrapper{err}
}
type noWrapper struct {
error
}
func (e noWrapper) FormatError(p Printer) (next error) {
if f, ok := e.error.(Formatter); ok {
return f.FormatError(p)
}
p.Print(e.error)
return nil
}
// Unwrap returns the result of calling the Unwrap method on err, if err implements
// Unwrap. Otherwise, Unwrap returns nil.
func Unwrap(err error) error {
u, ok := err.(Wrapper)
if !ok {
return nil
}
return u.Unwrap()
}
// Is reports whether any error in err's chain matches target.
//
// An error is considered to match a target if it is equal to that target or if
// it implements a method Is(error) bool such that Is(target) returns true.
func Is(err, target error) bool {
if target == nil {
return err == target
}
isComparable := reflect.TypeOf(target).Comparable()
for {
if isComparable && err == target {
return true
}
if x, ok := err.(interface{ Is(error) bool }); ok && x.Is(target) {
return true
}
// TODO: consider supporing target.Is(err). This would allow
// user-definable predicates, but also may allow for coping with sloppy
// APIs, thereby making it easier to get away with them.
if err = Unwrap(err); err == nil {
return false
}
}
}
// As finds the first error in err's chain that matches the type to which target
// points, and if so, sets the target to its value and returns true. An error
// matches a type if it is assignable to the target type, or if it has a method
// As(interface{}) bool such that As(target) returns true. As will panic if target
// is not a non-nil pointer to a type which implements error or is of interface type.
//
// The As method should set the target to its value and return true if err
// matches the type to which target points.
func As(err error, target interface{}) bool {
if target == nil {
panic("errors: target cannot be nil")
}
val := reflect.ValueOf(target)
typ := val.Type()
if typ.Kind() != reflect.Ptr || val.IsNil() {
panic("errors: target must be a non-nil pointer")
}
if e := typ.Elem(); e.Kind() != reflect.Interface && !e.Implements(errorType) {
panic("errors: *target must be interface or implement error")
}
targetType := typ.Elem()
for err != nil {
if reflect.TypeOf(err).AssignableTo(targetType) {
val.Elem().Set(reflect.ValueOf(err))
return true
}
if x, ok := err.(interface{ As(interface{}) bool }); ok && x.As(target) {
return true
}
err = Unwrap(err)
}
return false
}
var errorType = reflect.TypeOf((*error)(nil)).Elem()

7
vendor/modules.txt vendored
View File

@ -119,11 +119,12 @@ github.com/golang/protobuf/ptypes
github.com/golang/protobuf/ptypes/any
github.com/golang/protobuf/ptypes/duration
github.com/golang/protobuf/ptypes/timestamp
# github.com/google/go-cmp v0.5.5 => github.com/google/go-cmp v0.2.0
# github.com/google/go-cmp v0.5.5
## explicit
github.com/google/go-cmp/cmp
github.com/google/go-cmp/cmp/cmpopts
github.com/google/go-cmp/cmp/internal/diff
github.com/google/go-cmp/cmp/internal/flags
github.com/google/go-cmp/cmp/internal/function
github.com/google/go-cmp/cmp/internal/value
# github.com/google/shlex v0.0.0-20191202100458-e7afc7fbc510
@ -259,6 +260,9 @@ golang.org/x/text/unicode/norm
golang.org/x/text/width
# golang.org/x/time v0.0.0-20200630173020-3af7569d3a1e
golang.org/x/time/rate
# golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1
golang.org/x/xerrors
golang.org/x/xerrors/internal
# google.golang.org/genproto v0.0.0-20201110150050-8816d57aaa9a
google.golang.org/genproto/googleapis/rpc/status
# google.golang.org/grpc v1.38.0
@ -359,7 +363,6 @@ gotest.tools/v3/skip
# github.com/docker/distribution => github.com/docker/distribution v2.7.1-0.20190205005809-0d3efadf0154+incompatible
# github.com/docker/docker => github.com/docker/docker v20.10.3-0.20210811141259-343665850e3a+incompatible
# github.com/gogo/googleapis => github.com/gogo/googleapis v1.3.2
# github.com/google/go-cmp => github.com/google/go-cmp v0.2.0
# github.com/prometheus/client_golang => github.com/prometheus/client_golang v1.6.0
# github.com/prometheus/common => github.com/prometheus/common v0.9.1
# github.com/prometheus/procfs => github.com/prometheus/procfs v0.0.11