vendor: genproto 8816d57aaa9a, google.golang.org/protobuf v1.26.0, github.com/golang/protobuf v1.5.2

- full diff: 3f1135a288...8816d57aaa
- google.golang.org/protobuf is the new name for this package, and to use both,
  we also need the old github.com/golang/protobuf updated to v1.4.0 or above.
- github.com/golang/protobuf v1.5.2: full diff: https://github.com/golang/protobuf/compare/v1.3.5...v1.5.2

Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
This commit is contained in:
Sebastiaan van Stijn 2021-08-12 17:02:16 +02:00
parent 64061cc84f
commit 2ef71e502c
No known key found for this signature in database
GPG Key ID: 76698F39D527CE8C
173 changed files with 41064 additions and 13127 deletions

View File

@ -26,7 +26,7 @@ github.com/gofrs/flock 6caa7350c26b838538005fae7dbe
github.com/gogo/googleapis 01e0f9cca9b92166042241267ee2a5cdf5cff46c # v1.3.2
github.com/gogo/protobuf b03c65ea87cdc3521ede29f62fe3ce239267c1bc # v1.3.2
github.com/golang/glog 23def4e6c14b4da8ac2ed8007337bc5eb5007998
github.com/golang/protobuf 84668698ea25b64748563aa20726db66a6b8d299 # v1.3.5
github.com/golang/protobuf ae97035608a719c7a1c1c41bed0ae0744bdb0c6f # v1.5.2
github.com/google/go-cmp 3af367b6b30c263d47e8895973edcca9a49cf029 # v0.2.0
github.com/google/gofuzz 24818f796faf91cd76ec7bddd72458fbced7a6c1
github.com/google/shlex e7afc7fbc51079733e9468cdfd1efcd7d196cd1d
@ -78,8 +78,9 @@ golang.org/x/sys d19ff857e887eacb631721f188c7
golang.org/x/term f5c789dd3221ff39d752ac54467d762de7cfbec6
golang.org/x/text 23ae387dee1f90d29a23c0e87ee0b46038fbed0e # v0.3.3
golang.org/x/time 3af7569d3a1e776fc2a3c1cec133b43105ea9c2e
google.golang.org/genproto 3f1135a288c9a07e340ae8ba4cc6c7065a3160e8
google.golang.org/genproto 8816d57aaa9ad8cba31b2a8ecb6199c494bdf8b4 # v0.0.0-20201110150050-8816d57aaa9a
google.golang.org/grpc f495f5b15ae7ccda3b38c53a1bfcde4c1a58a2bc # v1.27.1
google.golang.org/protobuf f2d1f6cbe10b90d22296ea09a7217081c2798009 # v1.26.0
gopkg.in/inf.v0 d2d2541c53f18d2a059457998ce2876cc8e67cbf # v0.9.1
gopkg.in/yaml.v2 53403b58ad1b561927d19068c655246f2db79d48 # v2.2.8
gotest.tools/v3 bb0d8a963040ea5048dcef1a14d8f8b58a33d4b3 # v3.0.2

View File

@ -1,292 +1,122 @@
# Go support for Protocol Buffers - Google's data interchange format
# Go support for Protocol Buffers
[![GoDev](https://img.shields.io/static/v1?label=godev&message=reference&color=00add8)](https://pkg.go.dev/mod/github.com/golang/protobuf)
[![Build Status](https://travis-ci.org/golang/protobuf.svg?branch=master)](https://travis-ci.org/golang/protobuf)
[![GoDoc](https://godoc.org/github.com/golang/protobuf?status.svg)](https://godoc.org/github.com/golang/protobuf)
Google's data interchange format.
Copyright 2010 The Go Authors.
https://github.com/golang/protobuf
This module
([`github.com/golang/protobuf`](https://pkg.go.dev/mod/github.com/golang/protobuf))
contains Go bindings for protocol buffers.
This package and the code it generates requires at least Go 1.9.
It has been superseded by the
[`google.golang.org/protobuf`](https://pkg.go.dev/mod/google.golang.org/protobuf)
module, which contains an updated and simplified API,
support for protobuf reflection, and many other improvements.
We recommend that new code use the `google.golang.org/protobuf` module.
This software implements Go bindings for protocol buffers. For
information about protocol buffers themselves, see
https://developers.google.com/protocol-buffers/
Versions v1.4 and later of `github.com/golang/protobuf` are implemented
in terms of `google.golang.org/protobuf`.
Programs which use both modules must use at least version v1.4 of this one.
## Installation ##
See the
[developer guide for protocol buffers in Go](https://developers.google.com/protocol-buffers/docs/gotutorial)
for a general guide for how to get started using protobufs in Go.
To use this software, you must:
- Install the standard C++ implementation of protocol buffers from
https://developers.google.com/protocol-buffers/
- Of course, install the Go compiler and tools from
https://golang.org/
See
https://golang.org/doc/install
for details or, if you are using gccgo, follow the instructions at
https://golang.org/doc/install/gccgo
- Grab the code from the repository and install the `proto` package.
The simplest way is to run:
```
go get -u github.com/golang/protobuf/protoc-gen-go
```
The compiler plugin, `protoc-gen-go`, will be installed in `$GOPATH/bin`
unless `$GOBIN` is set. It must be in your `$PATH` for the protocol
compiler, `protoc`, to find it.
- If you need a particular version of `protoc-gen-go` (e.g., to match your
`proto` package version), one option is
```shell
GIT_TAG="v1.2.0" # change as needed
go get -d -u github.com/golang/protobuf/protoc-gen-go
git -C "$(go env GOPATH)"/src/github.com/golang/protobuf checkout $GIT_TAG
go install github.com/golang/protobuf/protoc-gen-go
```
See
[release note documentation](https://github.com/golang/protobuf/releases)
for more information about individual releases of this project.
This software has two parts: a 'protocol compiler plugin' that
generates Go source files that, once compiled, can access and manage
protocol buffers; and a library that implements run-time support for
encoding (marshaling), decoding (unmarshaling), and accessing protocol
buffers.
See
[documentation for the next major revision](https://pkg.go.dev/mod/google.golang.org/protobuf)
for more information about the purpose, usage, and history of this project.
There is support for gRPC in Go using protocol buffers.
See the note at the bottom of this file for details.
## Package index
There are no insertion points in the plugin.
Summary of the packages provided by this module:
* [`proto`](https://pkg.go.dev/github.com/golang/protobuf/proto): Package
`proto` provides functions operating on protobuf messages such as cloning,
merging, and checking equality, as well as binary serialization and text
serialization.
* [`jsonpb`](https://pkg.go.dev/github.com/golang/protobuf/jsonpb): Package
`jsonpb` serializes protobuf messages as JSON.
* [`ptypes`](https://pkg.go.dev/github.com/golang/protobuf/ptypes): Package
`ptypes` provides helper functionality for protobuf well-known types.
* [`ptypes/any`](https://pkg.go.dev/github.com/golang/protobuf/ptypes/any):
Package `any` is the generated package for `google/protobuf/any.proto`.
* [`ptypes/empty`](https://pkg.go.dev/github.com/golang/protobuf/ptypes/empty):
Package `empty` is the generated package for `google/protobuf/empty.proto`.
* [`ptypes/timestamp`](https://pkg.go.dev/github.com/golang/protobuf/ptypes/timestamp):
Package `timestamp` is the generated package for
`google/protobuf/timestamp.proto`.
* [`ptypes/duration`](https://pkg.go.dev/github.com/golang/protobuf/ptypes/duration):
Package `duration` is the generated package for
`google/protobuf/duration.proto`.
* [`ptypes/wrappers`](https://pkg.go.dev/github.com/golang/protobuf/ptypes/wrappers):
Package `wrappers` is the generated package for
`google/protobuf/wrappers.proto`.
* [`ptypes/struct`](https://pkg.go.dev/github.com/golang/protobuf/ptypes/struct):
Package `structpb` is the generated package for
`google/protobuf/struct.proto`.
* [`protoc-gen-go/descriptor`](https://pkg.go.dev/github.com/golang/protobuf/protoc-gen-go/descriptor):
Package `descriptor` is the generated package for
`google/protobuf/descriptor.proto`.
* [`protoc-gen-go/plugin`](https://pkg.go.dev/github.com/golang/protobuf/protoc-gen-go/plugin):
Package `plugin` is the generated package for
`google/protobuf/compiler/plugin.proto`.
* [`protoc-gen-go`](https://pkg.go.dev/github.com/golang/protobuf/protoc-gen-go):
The `protoc-gen-go` binary is a protoc plugin to generate a Go protocol
buffer package.
## Using protocol buffers with Go ##
## Reporting issues
Once the software is installed, there are two steps to using it.
First you must compile the protocol buffer definitions and then import
them, with the support library, into your program.
The issue tracker for this project
[is located here](https://github.com/golang/protobuf/issues).
To compile the protocol buffer definition, run protoc with the --go_out
parameter set to the directory you want to output the Go code to.
Please report any issues with a sufficient description of the bug or feature
request. Bug reports should ideally be accompanied by a minimal reproduction of
the issue. Irreproducible bugs are difficult to diagnose and fix (and likely to
be closed after some period of time). Bug reports must specify the version of
the
[Go protocol buffer module](https://github.com/protocolbuffers/protobuf-go/releases)
and also the version of the
[protocol buffer toolchain](https://github.com/protocolbuffers/protobuf/releases)
being used.
protoc --go_out=. *.proto
## Contributing
The generated files will be suffixed .pb.go. See the Test code below
for an example using such a file.
This project is open-source and accepts contributions. See the
[contribution guide](https://github.com/golang/protobuf/blob/master/CONTRIBUTING.md)
for more information.
## Packages and input paths ##
## Compatibility
The protocol buffer language has a concept of "packages" which does not
correspond well to the Go notion of packages. In generated Go code,
each source `.proto` file is associated with a single Go package. The
name and import path for this package is specified with the `go_package`
proto option:
This module and the generated code are expected to be stable over time. However,
we reserve the right to make breaking changes without notice for the following
reasons:
option go_package = "github.com/golang/protobuf/ptypes/any";
The protocol buffer compiler will attempt to derive a package name and
import path if a `go_package` option is not present, but it is
best to always specify one explicitly.
There is a one-to-one relationship between source `.proto` files and
generated `.pb.go` files, but any number of `.pb.go` files may be
contained in the same Go package.
The output name of a generated file is produced by replacing the
`.proto` suffix with `.pb.go` (e.g., `foo.proto` produces `foo.pb.go`).
However, the output directory is selected in one of two ways. Let
us say we have `inputs/x.proto` with a `go_package` option of
`github.com/golang/protobuf/p`. The corresponding output file may
be:
- Relative to the import path:
```shell
protoc --go_out=. inputs/x.proto
# writes ./github.com/golang/protobuf/p/x.pb.go
```
(This can work well with `--go_out=$GOPATH`.)
- Relative to the input file:
```shell
protoc --go_out=paths=source_relative:. inputs/x.proto
# generate ./inputs/x.pb.go
```
## Generated code ##
The package comment for the proto library contains text describing
the interface provided in Go for protocol buffers. Here is an edited
version.
The proto package converts data structures to and from the
wire format of protocol buffers. It works in concert with the
Go source code generated for .proto files by the protocol compiler.
A summary of the properties of the protocol buffer interface
for a protocol buffer variable v:
- Names are turned from camel_case to CamelCase for export.
- There are no methods on v to set fields; just treat
them as structure fields.
- There are getters that return a field's value if set,
and return the field's default value if unset.
The getters work even if the receiver is a nil message.
- The zero value for a struct is its correct initialization state.
All desired fields must be set before marshaling.
- A Reset() method will restore a protobuf struct to its zero state.
- Non-repeated fields are pointers to the values; nil means unset.
That is, optional or required field int32 f becomes F *int32.
- Repeated fields are slices.
- Helper functions are available to aid the setting of fields.
Helpers for getting values are superseded by the
GetFoo methods and their use is deprecated.
msg.Foo = proto.String("hello") // set field
- Constants are defined to hold the default values of all fields that
have them. They have the form Default_StructName_FieldName.
Because the getter methods handle defaulted values,
direct use of these constants should be rare.
- Enums are given type names and maps from names to values.
Enum values are prefixed with the enum's type name. Enum types have
a String method, and a Enum method to assist in message construction.
- Nested groups and enums have type names prefixed with the name of
the surrounding message type.
- Extensions are given descriptor names that start with E_,
followed by an underscore-delimited list of the nested messages
that contain it (if any) followed by the CamelCased name of the
extension field itself. HasExtension, ClearExtension, GetExtension
and SetExtension are functions for manipulating extensions.
- Oneof field sets are given a single field in their message,
with distinguished wrapper types for each possible field value.
- Marshal and Unmarshal are functions to encode and decode the wire format.
When the .proto file specifies `syntax="proto3"`, there are some differences:
- Non-repeated fields of non-message type are values instead of pointers.
- Enum types do not get an Enum method.
Consider file test.proto, containing
```proto
syntax = "proto2";
package example;
enum FOO { X = 17; };
message Test {
required string label = 1;
optional int32 type = 2 [default=77];
repeated int64 reps = 3;
}
```
To create and play with a Test object from the example package,
```go
package main
import (
"log"
"github.com/golang/protobuf/proto"
"path/to/example"
)
func main() {
test := &example.Test{
Label: proto.String("hello"),
Type: proto.Int32(17),
Reps: []int64{1, 2, 3},
}
data, err := proto.Marshal(test)
if err != nil {
log.Fatal("marshaling error: ", err)
}
newTest := &example.Test{}
err = proto.Unmarshal(data, newTest)
if err != nil {
log.Fatal("unmarshaling error: ", err)
}
// Now test and newTest contain the same data.
if test.GetLabel() != newTest.GetLabel() {
log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
}
// etc.
}
```
## Parameters ##
To pass extra parameters to the plugin, use a comma-separated
parameter list separated from the output directory by a colon:
protoc --go_out=plugins=grpc,import_path=mypackage:. *.proto
- `paths=(import | source_relative)` - specifies how the paths of
generated files are structured. See the "Packages and imports paths"
section above. The default is `import`.
- `plugins=plugin1+plugin2` - specifies the list of sub-plugins to
load. The only plugin in this repo is `grpc`.
- `Mfoo/bar.proto=quux/shme` - declares that foo/bar.proto is
associated with Go package quux/shme. This is subject to the
import_prefix parameter.
The following parameters are deprecated and should not be used:
- `import_prefix=xxx` - a prefix that is added onto the beginning of
all imports.
- `import_path=foo/bar` - used as the package if no input files
declare `go_package`. If it contains slashes, everything up to the
rightmost slash is ignored.
## gRPC Support ##
If a proto file specifies RPC services, protoc-gen-go can be instructed to
generate code compatible with gRPC (http://www.grpc.io/). To do this, pass
the `plugins` parameter to protoc-gen-go; the usual way is to insert it into
the --go_out argument to protoc:
protoc --go_out=plugins=grpc:. *.proto
## Compatibility ##
The library and the generated code are expected to be stable over time.
However, we reserve the right to make breaking changes without notice for the
following reasons:
- Security. A security issue in the specification or implementation may come to
light whose resolution requires breaking compatibility. We reserve the right
to address such security issues.
- Unspecified behavior. There are some aspects of the Protocol Buffers
specification that are undefined. Programs that depend on such unspecified
behavior may break in future releases.
- Specification errors or changes. If it becomes necessary to address an
inconsistency, incompleteness, or change in the Protocol Buffers
specification, resolving the issue could affect the meaning or legality of
existing programs. We reserve the right to address such issues, including
updating the implementations.
- Bugs. If the library has a bug that violates the specification, a program
that depends on the buggy behavior may break if the bug is fixed. We reserve
the right to fix such bugs.
- Adding methods or fields to generated structs. These may conflict with field
names that already exist in a schema, causing applications to break. When the
code generator encounters a field in the schema that would collide with a
generated field or method name, the code generator will append an underscore
to the generated field or method name.
- Adding, removing, or changing methods or fields in generated structs that
start with `XXX`. These parts of the generated code are exported out of
necessity, but should not be considered part of the public API.
- Adding, removing, or changing unexported symbols in generated code.
* **Security:** A security issue in the specification or implementation may
come to light whose resolution requires breaking compatibility. We reserve
the right to address such issues.
* **Unspecified behavior:** There are some aspects of the protocol buffer
specification that are undefined. Programs that depend on unspecified
behavior may break in future releases.
* **Specification changes:** It may become necessary to address an
inconsistency, incompleteness, or change in the protocol buffer
specification, which may affect the behavior of existing programs. We
reserve the right to address such changes.
* **Bugs:** If a package has a bug that violates correctness, a program
depending on the buggy behavior may break if the bug is fixed. We reserve
the right to fix such bugs.
* **Generated additions**: We reserve the right to add new declarations to
generated Go packages of `.proto` files. This includes declared constants,
variables, functions, types, fields in structs, and methods on types. This
may break attempts at injecting additional code on top of what is generated
by `protoc-gen-go`. Such practice is not supported by this project.
* **Internal changes**: We reserve the right to add, modify, and remove
internal code, which includes all unexported declarations, the
[`generator`](https://pkg.go.dev/github.com/golang/protobuf/protoc-gen-go/generator)
package, and all packages under
[`internal`](https://pkg.go.dev/github.com/golang/protobuf/internal).
Any breaking changes outside of these will be announced 6 months in advance to
protobuf@googlegroups.com.
You should, whenever possible, use generated code created by the `protoc-gen-go`
tool built at the same commit as the `proto` package. The `proto` package
declares package-level constants in the form `ProtoPackageIsVersionX`.
Application code and generated code may depend on one of these constants to
ensure that compilation will fail if the available version of the proto library
is too old. Whenever we make a change to the generated code that requires newer
library support, in the same commit we will increment the version number of the
generated code and declare a new package-level constant whose name incorporates
the latest version number. Removing a compatibility constant is considered a
breaking change and would be subject to the announcement policy stated above.
The `protoc-gen-go/generator` package exposes a plugin interface,
which is used by the gRPC code generation. This interface is not
supported and is subject to incompatible changes without notice.
[protobuf@googlegroups.com](https://groups.google.com/forum/#!forum/protobuf).

View File

@ -1,3 +1,9 @@
// Deprecated: Use the "google.golang.org/protobuf" module instead.
module github.com/golang/protobuf
go 1.9
require (
github.com/google/go-cmp v0.5.5
google.golang.org/protobuf v1.26.0
)

324
vendor/github.com/golang/protobuf/proto/buffer.go generated vendored Normal file
View File

@ -0,0 +1,324 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import (
"errors"
"fmt"
"google.golang.org/protobuf/encoding/prototext"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/runtime/protoimpl"
)
const (
WireVarint = 0
WireFixed32 = 5
WireFixed64 = 1
WireBytes = 2
WireStartGroup = 3
WireEndGroup = 4
)
// EncodeVarint returns the varint encoded bytes of v.
func EncodeVarint(v uint64) []byte {
return protowire.AppendVarint(nil, v)
}
// SizeVarint returns the length of the varint encoded bytes of v.
// This is equal to len(EncodeVarint(v)).
func SizeVarint(v uint64) int {
return protowire.SizeVarint(v)
}
// DecodeVarint parses a varint encoded integer from b,
// returning the integer value and the length of the varint.
// It returns (0, 0) if there is a parse error.
func DecodeVarint(b []byte) (uint64, int) {
v, n := protowire.ConsumeVarint(b)
if n < 0 {
return 0, 0
}
return v, n
}
// Buffer is a buffer for encoding and decoding the protobuf wire format.
// It may be reused between invocations to reduce memory usage.
type Buffer struct {
buf []byte
idx int
deterministic bool
}
// NewBuffer allocates a new Buffer initialized with buf,
// where the contents of buf are considered the unread portion of the buffer.
func NewBuffer(buf []byte) *Buffer {
return &Buffer{buf: buf}
}
// SetDeterministic specifies whether to use deterministic serialization.
//
// Deterministic serialization guarantees that for a given binary, equal
// messages will always be serialized to the same bytes. This implies:
//
// - Repeated serialization of a message will return the same bytes.
// - Different processes of the same binary (which may be executing on
// different machines) will serialize equal messages to the same bytes.
//
// Note that the deterministic serialization is NOT canonical across
// languages. It is not guaranteed to remain stable over time. It is unstable
// across different builds with schema changes due to unknown fields.
// Users who need canonical serialization (e.g., persistent storage in a
// canonical form, fingerprinting, etc.) should define their own
// canonicalization specification and implement their own serializer rather
// than relying on this API.
//
// If deterministic serialization is requested, map entries will be sorted
// by keys in lexographical order. This is an implementation detail and
// subject to change.
func (b *Buffer) SetDeterministic(deterministic bool) {
b.deterministic = deterministic
}
// SetBuf sets buf as the internal buffer,
// where the contents of buf are considered the unread portion of the buffer.
func (b *Buffer) SetBuf(buf []byte) {
b.buf = buf
b.idx = 0
}
// Reset clears the internal buffer of all written and unread data.
func (b *Buffer) Reset() {
b.buf = b.buf[:0]
b.idx = 0
}
// Bytes returns the internal buffer.
func (b *Buffer) Bytes() []byte {
return b.buf
}
// Unread returns the unread portion of the buffer.
func (b *Buffer) Unread() []byte {
return b.buf[b.idx:]
}
// Marshal appends the wire-format encoding of m to the buffer.
func (b *Buffer) Marshal(m Message) error {
var err error
b.buf, err = marshalAppend(b.buf, m, b.deterministic)
return err
}
// Unmarshal parses the wire-format message in the buffer and
// places the decoded results in m.
// It does not reset m before unmarshaling.
func (b *Buffer) Unmarshal(m Message) error {
err := UnmarshalMerge(b.Unread(), m)
b.idx = len(b.buf)
return err
}
type unknownFields struct{ XXX_unrecognized protoimpl.UnknownFields }
func (m *unknownFields) String() string { panic("not implemented") }
func (m *unknownFields) Reset() { panic("not implemented") }
func (m *unknownFields) ProtoMessage() { panic("not implemented") }
// DebugPrint dumps the encoded bytes of b with a header and footer including s
// to stdout. This is only intended for debugging.
func (*Buffer) DebugPrint(s string, b []byte) {
m := MessageReflect(new(unknownFields))
m.SetUnknown(b)
b, _ = prototext.MarshalOptions{AllowPartial: true, Indent: "\t"}.Marshal(m.Interface())
fmt.Printf("==== %s ====\n%s==== %s ====\n", s, b, s)
}
// EncodeVarint appends an unsigned varint encoding to the buffer.
func (b *Buffer) EncodeVarint(v uint64) error {
b.buf = protowire.AppendVarint(b.buf, v)
return nil
}
// EncodeZigzag32 appends a 32-bit zig-zag varint encoding to the buffer.
func (b *Buffer) EncodeZigzag32(v uint64) error {
return b.EncodeVarint(uint64((uint32(v) << 1) ^ uint32((int32(v) >> 31))))
}
// EncodeZigzag64 appends a 64-bit zig-zag varint encoding to the buffer.
func (b *Buffer) EncodeZigzag64(v uint64) error {
return b.EncodeVarint(uint64((uint64(v) << 1) ^ uint64((int64(v) >> 63))))
}
// EncodeFixed32 appends a 32-bit little-endian integer to the buffer.
func (b *Buffer) EncodeFixed32(v uint64) error {
b.buf = protowire.AppendFixed32(b.buf, uint32(v))
return nil
}
// EncodeFixed64 appends a 64-bit little-endian integer to the buffer.
func (b *Buffer) EncodeFixed64(v uint64) error {
b.buf = protowire.AppendFixed64(b.buf, uint64(v))
return nil
}
// EncodeRawBytes appends a length-prefixed raw bytes to the buffer.
func (b *Buffer) EncodeRawBytes(v []byte) error {
b.buf = protowire.AppendBytes(b.buf, v)
return nil
}
// EncodeStringBytes appends a length-prefixed raw bytes to the buffer.
// It does not validate whether v contains valid UTF-8.
func (b *Buffer) EncodeStringBytes(v string) error {
b.buf = protowire.AppendString(b.buf, v)
return nil
}
// EncodeMessage appends a length-prefixed encoded message to the buffer.
func (b *Buffer) EncodeMessage(m Message) error {
var err error
b.buf = protowire.AppendVarint(b.buf, uint64(Size(m)))
b.buf, err = marshalAppend(b.buf, m, b.deterministic)
return err
}
// DecodeVarint consumes an encoded unsigned varint from the buffer.
func (b *Buffer) DecodeVarint() (uint64, error) {
v, n := protowire.ConsumeVarint(b.buf[b.idx:])
if n < 0 {
return 0, protowire.ParseError(n)
}
b.idx += n
return uint64(v), nil
}
// DecodeZigzag32 consumes an encoded 32-bit zig-zag varint from the buffer.
func (b *Buffer) DecodeZigzag32() (uint64, error) {
v, err := b.DecodeVarint()
if err != nil {
return 0, err
}
return uint64((uint32(v) >> 1) ^ uint32((int32(v&1)<<31)>>31)), nil
}
// DecodeZigzag64 consumes an encoded 64-bit zig-zag varint from the buffer.
func (b *Buffer) DecodeZigzag64() (uint64, error) {
v, err := b.DecodeVarint()
if err != nil {
return 0, err
}
return uint64((uint64(v) >> 1) ^ uint64((int64(v&1)<<63)>>63)), nil
}
// DecodeFixed32 consumes a 32-bit little-endian integer from the buffer.
func (b *Buffer) DecodeFixed32() (uint64, error) {
v, n := protowire.ConsumeFixed32(b.buf[b.idx:])
if n < 0 {
return 0, protowire.ParseError(n)
}
b.idx += n
return uint64(v), nil
}
// DecodeFixed64 consumes a 64-bit little-endian integer from the buffer.
func (b *Buffer) DecodeFixed64() (uint64, error) {
v, n := protowire.ConsumeFixed64(b.buf[b.idx:])
if n < 0 {
return 0, protowire.ParseError(n)
}
b.idx += n
return uint64(v), nil
}
// DecodeRawBytes consumes a length-prefixed raw bytes from the buffer.
// If alloc is specified, it returns a copy the raw bytes
// rather than a sub-slice of the buffer.
func (b *Buffer) DecodeRawBytes(alloc bool) ([]byte, error) {
v, n := protowire.ConsumeBytes(b.buf[b.idx:])
if n < 0 {
return nil, protowire.ParseError(n)
}
b.idx += n
if alloc {
v = append([]byte(nil), v...)
}
return v, nil
}
// DecodeStringBytes consumes a length-prefixed raw bytes from the buffer.
// It does not validate whether the raw bytes contain valid UTF-8.
func (b *Buffer) DecodeStringBytes() (string, error) {
v, n := protowire.ConsumeString(b.buf[b.idx:])
if n < 0 {
return "", protowire.ParseError(n)
}
b.idx += n
return v, nil
}
// DecodeMessage consumes a length-prefixed message from the buffer.
// It does not reset m before unmarshaling.
func (b *Buffer) DecodeMessage(m Message) error {
v, err := b.DecodeRawBytes(false)
if err != nil {
return err
}
return UnmarshalMerge(v, m)
}
// DecodeGroup consumes a message group from the buffer.
// It assumes that the start group marker has already been consumed and
// consumes all bytes until (and including the end group marker).
// It does not reset m before unmarshaling.
func (b *Buffer) DecodeGroup(m Message) error {
v, n, err := consumeGroup(b.buf[b.idx:])
if err != nil {
return err
}
b.idx += n
return UnmarshalMerge(v, m)
}
// consumeGroup parses b until it finds an end group marker, returning
// the raw bytes of the message (excluding the end group marker) and the
// the total length of the message (including the end group marker).
func consumeGroup(b []byte) ([]byte, int, error) {
b0 := b
depth := 1 // assume this follows a start group marker
for {
_, wtyp, tagLen := protowire.ConsumeTag(b)
if tagLen < 0 {
return nil, 0, protowire.ParseError(tagLen)
}
b = b[tagLen:]
var valLen int
switch wtyp {
case protowire.VarintType:
_, valLen = protowire.ConsumeVarint(b)
case protowire.Fixed32Type:
_, valLen = protowire.ConsumeFixed32(b)
case protowire.Fixed64Type:
_, valLen = protowire.ConsumeFixed64(b)
case protowire.BytesType:
_, valLen = protowire.ConsumeBytes(b)
case protowire.StartGroupType:
depth++
case protowire.EndGroupType:
depth--
default:
return nil, 0, errors.New("proto: cannot parse reserved wire type")
}
if valLen < 0 {
return nil, 0, protowire.ParseError(valLen)
}
b = b[valLen:]
if depth == 0 {
return b0[:len(b0)-len(b)-tagLen], len(b0) - len(b), nil
}
}
}

View File

@ -1,253 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2011 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Protocol buffer deep copy and merge.
// TODO: RawMessage.
package proto
import (
"fmt"
"log"
"reflect"
"strings"
)
// Clone returns a deep copy of a protocol buffer.
func Clone(src Message) Message {
in := reflect.ValueOf(src)
if in.IsNil() {
return src
}
out := reflect.New(in.Type().Elem())
dst := out.Interface().(Message)
Merge(dst, src)
return dst
}
// Merger is the interface representing objects that can merge messages of the same type.
type Merger interface {
// Merge merges src into this message.
// Required and optional fields that are set in src will be set to that value in dst.
// Elements of repeated fields will be appended.
//
// Merge may panic if called with a different argument type than the receiver.
Merge(src Message)
}
// generatedMerger is the custom merge method that generated protos will have.
// We must add this method since a generate Merge method will conflict with
// many existing protos that have a Merge data field already defined.
type generatedMerger interface {
XXX_Merge(src Message)
}
// Merge merges src into dst.
// Required and optional fields that are set in src will be set to that value in dst.
// Elements of repeated fields will be appended.
// Merge panics if src and dst are not the same type, or if dst is nil.
func Merge(dst, src Message) {
if m, ok := dst.(Merger); ok {
m.Merge(src)
return
}
in := reflect.ValueOf(src)
out := reflect.ValueOf(dst)
if out.IsNil() {
panic("proto: nil destination")
}
if in.Type() != out.Type() {
panic(fmt.Sprintf("proto.Merge(%T, %T) type mismatch", dst, src))
}
if in.IsNil() {
return // Merge from nil src is a noop
}
if m, ok := dst.(generatedMerger); ok {
m.XXX_Merge(src)
return
}
mergeStruct(out.Elem(), in.Elem())
}
func mergeStruct(out, in reflect.Value) {
sprop := GetProperties(in.Type())
for i := 0; i < in.NumField(); i++ {
f := in.Type().Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
mergeAny(out.Field(i), in.Field(i), false, sprop.Prop[i])
}
if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead()
if mIn != nil {
mOut := emOut.extensionsWrite()
muIn.Lock()
mergeExtension(mOut, mIn)
muIn.Unlock()
}
}
uf := in.FieldByName("XXX_unrecognized")
if !uf.IsValid() {
return
}
uin := uf.Bytes()
if len(uin) > 0 {
out.FieldByName("XXX_unrecognized").SetBytes(append([]byte(nil), uin...))
}
}
// mergeAny performs a merge between two values of the same type.
// viaPtr indicates whether the values were indirected through a pointer (implying proto2).
// prop is set if this is a struct field (it may be nil).
func mergeAny(out, in reflect.Value, viaPtr bool, prop *Properties) {
if in.Type() == protoMessageType {
if !in.IsNil() {
if out.IsNil() {
out.Set(reflect.ValueOf(Clone(in.Interface().(Message))))
} else {
Merge(out.Interface().(Message), in.Interface().(Message))
}
}
return
}
switch in.Kind() {
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Int32, reflect.Int64,
reflect.String, reflect.Uint32, reflect.Uint64:
if !viaPtr && isProto3Zero(in) {
return
}
out.Set(in)
case reflect.Interface:
// Probably a oneof field; copy non-nil values.
if in.IsNil() {
return
}
// Allocate destination if it is not set, or set to a different type.
// Otherwise we will merge as normal.
if out.IsNil() || out.Elem().Type() != in.Elem().Type() {
out.Set(reflect.New(in.Elem().Elem().Type())) // interface -> *T -> T -> new(T)
}
mergeAny(out.Elem(), in.Elem(), false, nil)
case reflect.Map:
if in.Len() == 0 {
return
}
if out.IsNil() {
out.Set(reflect.MakeMap(in.Type()))
}
// For maps with value types of *T or []byte we need to deep copy each value.
elemKind := in.Type().Elem().Kind()
for _, key := range in.MapKeys() {
var val reflect.Value
switch elemKind {
case reflect.Ptr:
val = reflect.New(in.Type().Elem().Elem())
mergeAny(val, in.MapIndex(key), false, nil)
case reflect.Slice:
val = in.MapIndex(key)
val = reflect.ValueOf(append([]byte{}, val.Bytes()...))
default:
val = in.MapIndex(key)
}
out.SetMapIndex(key, val)
}
case reflect.Ptr:
if in.IsNil() {
return
}
if out.IsNil() {
out.Set(reflect.New(in.Elem().Type()))
}
mergeAny(out.Elem(), in.Elem(), true, nil)
case reflect.Slice:
if in.IsNil() {
return
}
if in.Type().Elem().Kind() == reflect.Uint8 {
// []byte is a scalar bytes field, not a repeated field.
// Edge case: if this is in a proto3 message, a zero length
// bytes field is considered the zero value, and should not
// be merged.
if prop != nil && prop.proto3 && in.Len() == 0 {
return
}
// Make a deep copy.
// Append to []byte{} instead of []byte(nil) so that we never end up
// with a nil result.
out.SetBytes(append([]byte{}, in.Bytes()...))
return
}
n := in.Len()
if out.IsNil() {
out.Set(reflect.MakeSlice(in.Type(), 0, n))
}
switch in.Type().Elem().Kind() {
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Int32, reflect.Int64,
reflect.String, reflect.Uint32, reflect.Uint64:
out.Set(reflect.AppendSlice(out, in))
default:
for i := 0; i < n; i++ {
x := reflect.Indirect(reflect.New(in.Type().Elem()))
mergeAny(x, in.Index(i), false, nil)
out.Set(reflect.Append(out, x))
}
}
case reflect.Struct:
mergeStruct(out, in)
default:
// unknown type, so not a protocol buffer
log.Printf("proto: don't know how to copy %v", in)
}
}
func mergeExtension(out, in map[int32]Extension) {
for extNum, eIn := range in {
eOut := Extension{desc: eIn.desc}
if eIn.value != nil {
v := reflect.New(reflect.TypeOf(eIn.value)).Elem()
mergeAny(v, reflect.ValueOf(eIn.value), false, nil)
eOut.value = v.Interface()
}
if eIn.enc != nil {
eOut.enc = make([]byte, len(eIn.enc))
copy(eOut.enc, eIn.enc)
}
out[extNum] = eOut
}
}

View File

@ -1,427 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
/*
* Routines for decoding protocol buffer data to construct in-memory representations.
*/
import (
"errors"
"fmt"
"io"
)
// errOverflow is returned when an integer is too large to be represented.
var errOverflow = errors.New("proto: integer overflow")
// ErrInternalBadWireType is returned by generated code when an incorrect
// wire type is encountered. It does not get returned to user code.
var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
// DecodeVarint reads a varint-encoded integer from the slice.
// It returns the integer and the number of bytes consumed, or
// zero if there is not enough.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func DecodeVarint(buf []byte) (x uint64, n int) {
for shift := uint(0); shift < 64; shift += 7 {
if n >= len(buf) {
return 0, 0
}
b := uint64(buf[n])
n++
x |= (b & 0x7F) << shift
if (b & 0x80) == 0 {
return x, n
}
}
// The number is too large to represent in a 64-bit value.
return 0, 0
}
func (p *Buffer) decodeVarintSlow() (x uint64, err error) {
i := p.index
l := len(p.buf)
for shift := uint(0); shift < 64; shift += 7 {
if i >= l {
err = io.ErrUnexpectedEOF
return
}
b := p.buf[i]
i++
x |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
p.index = i
return
}
}
// The number is too large to represent in a 64-bit value.
err = errOverflow
return
}
// DecodeVarint reads a varint-encoded integer from the Buffer.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func (p *Buffer) DecodeVarint() (x uint64, err error) {
i := p.index
buf := p.buf
if i >= len(buf) {
return 0, io.ErrUnexpectedEOF
} else if buf[i] < 0x80 {
p.index++
return uint64(buf[i]), nil
} else if len(buf)-i < 10 {
return p.decodeVarintSlow()
}
var b uint64
// we already checked the first byte
x = uint64(buf[i]) - 0x80
i++
b = uint64(buf[i])
i++
x += b << 7
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 7
b = uint64(buf[i])
i++
x += b << 14
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 14
b = uint64(buf[i])
i++
x += b << 21
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 21
b = uint64(buf[i])
i++
x += b << 28
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 28
b = uint64(buf[i])
i++
x += b << 35
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 35
b = uint64(buf[i])
i++
x += b << 42
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 42
b = uint64(buf[i])
i++
x += b << 49
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 49
b = uint64(buf[i])
i++
x += b << 56
if b&0x80 == 0 {
goto done
}
x -= 0x80 << 56
b = uint64(buf[i])
i++
x += b << 63
if b&0x80 == 0 {
goto done
}
return 0, errOverflow
done:
p.index = i
return x, nil
}
// DecodeFixed64 reads a 64-bit integer from the Buffer.
// This is the format for the
// fixed64, sfixed64, and double protocol buffer types.
func (p *Buffer) DecodeFixed64() (x uint64, err error) {
// x, err already 0
i := p.index + 8
if i < 0 || i > len(p.buf) {
err = io.ErrUnexpectedEOF
return
}
p.index = i
x = uint64(p.buf[i-8])
x |= uint64(p.buf[i-7]) << 8
x |= uint64(p.buf[i-6]) << 16
x |= uint64(p.buf[i-5]) << 24
x |= uint64(p.buf[i-4]) << 32
x |= uint64(p.buf[i-3]) << 40
x |= uint64(p.buf[i-2]) << 48
x |= uint64(p.buf[i-1]) << 56
return
}
// DecodeFixed32 reads a 32-bit integer from the Buffer.
// This is the format for the
// fixed32, sfixed32, and float protocol buffer types.
func (p *Buffer) DecodeFixed32() (x uint64, err error) {
// x, err already 0
i := p.index + 4
if i < 0 || i > len(p.buf) {
err = io.ErrUnexpectedEOF
return
}
p.index = i
x = uint64(p.buf[i-4])
x |= uint64(p.buf[i-3]) << 8
x |= uint64(p.buf[i-2]) << 16
x |= uint64(p.buf[i-1]) << 24
return
}
// DecodeZigzag64 reads a zigzag-encoded 64-bit integer
// from the Buffer.
// This is the format used for the sint64 protocol buffer type.
func (p *Buffer) DecodeZigzag64() (x uint64, err error) {
x, err = p.DecodeVarint()
if err != nil {
return
}
x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63)
return
}
// DecodeZigzag32 reads a zigzag-encoded 32-bit integer
// from the Buffer.
// This is the format used for the sint32 protocol buffer type.
func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
x, err = p.DecodeVarint()
if err != nil {
return
}
x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31))
return
}
// DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
// This is the format used for the bytes protocol buffer
// type and for embedded messages.
func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) {
n, err := p.DecodeVarint()
if err != nil {
return nil, err
}
nb := int(n)
if nb < 0 {
return nil, fmt.Errorf("proto: bad byte length %d", nb)
}
end := p.index + nb
if end < p.index || end > len(p.buf) {
return nil, io.ErrUnexpectedEOF
}
if !alloc {
// todo: check if can get more uses of alloc=false
buf = p.buf[p.index:end]
p.index += nb
return
}
buf = make([]byte, nb)
copy(buf, p.buf[p.index:])
p.index += nb
return
}
// DecodeStringBytes reads an encoded string from the Buffer.
// This is the format used for the proto2 string type.
func (p *Buffer) DecodeStringBytes() (s string, err error) {
buf, err := p.DecodeRawBytes(false)
if err != nil {
return
}
return string(buf), nil
}
// Unmarshaler is the interface representing objects that can
// unmarshal themselves. The argument points to data that may be
// overwritten, so implementations should not keep references to the
// buffer.
// Unmarshal implementations should not clear the receiver.
// Any unmarshaled data should be merged into the receiver.
// Callers of Unmarshal that do not want to retain existing data
// should Reset the receiver before calling Unmarshal.
type Unmarshaler interface {
Unmarshal([]byte) error
}
// newUnmarshaler is the interface representing objects that can
// unmarshal themselves. The semantics are identical to Unmarshaler.
//
// This exists to support protoc-gen-go generated messages.
// The proto package will stop type-asserting to this interface in the future.
//
// DO NOT DEPEND ON THIS.
type newUnmarshaler interface {
XXX_Unmarshal([]byte) error
}
// Unmarshal parses the protocol buffer representation in buf and places the
// decoded result in pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable.
//
// Unmarshal resets pb before starting to unmarshal, so any
// existing data in pb is always removed. Use UnmarshalMerge
// to preserve and append to existing data.
func Unmarshal(buf []byte, pb Message) error {
pb.Reset()
if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok {
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
}
// UnmarshalMerge parses the protocol buffer representation in buf and
// writes the decoded result to pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable.
//
// UnmarshalMerge merges into existing data in pb.
// Most code should use Unmarshal instead.
func UnmarshalMerge(buf []byte, pb Message) error {
if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
}
// DecodeMessage reads a count-delimited message from the Buffer.
func (p *Buffer) DecodeMessage(pb Message) error {
enc, err := p.DecodeRawBytes(false)
if err != nil {
return err
}
return NewBuffer(enc).Unmarshal(pb)
}
// DecodeGroup reads a tag-delimited group from the Buffer.
// StartGroup tag is already consumed. This function consumes
// EndGroup tag.
func (p *Buffer) DecodeGroup(pb Message) error {
b := p.buf[p.index:]
x, y := findEndGroup(b)
if x < 0 {
return io.ErrUnexpectedEOF
}
err := Unmarshal(b[:x], pb)
p.index += y
return err
}
// Unmarshal parses the protocol buffer representation in the
// Buffer and places the decoded result in pb. If the struct
// underlying pb does not match the data in the buffer, the results can be
// unpredictable.
//
// Unlike proto.Unmarshal, this does not reset pb before starting to unmarshal.
func (p *Buffer) Unmarshal(pb Message) error {
// If the object can unmarshal itself, let it.
if u, ok := pb.(newUnmarshaler); ok {
err := u.XXX_Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
err := u.Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
// Slow workaround for messages that aren't Unmarshalers.
// This includes some hand-coded .pb.go files and
// bootstrap protos.
// TODO: fix all of those and then add Unmarshal to
// the Message interface. Then:
// The cast above and code below can be deleted.
// The old unmarshaler can be deleted.
// Clients can call Unmarshal directly (can already do that, actually).
var info InternalMessageInfo
err := info.Unmarshal(pb, p.buf[p.index:])
p.index = len(p.buf)
return err
}

63
vendor/github.com/golang/protobuf/proto/defaults.go generated vendored Normal file
View File

@ -0,0 +1,63 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import (
"google.golang.org/protobuf/reflect/protoreflect"
)
// SetDefaults sets unpopulated scalar fields to their default values.
// Fields within a oneof are not set even if they have a default value.
// SetDefaults is recursively called upon any populated message fields.
func SetDefaults(m Message) {
if m != nil {
setDefaults(MessageReflect(m))
}
}
func setDefaults(m protoreflect.Message) {
fds := m.Descriptor().Fields()
for i := 0; i < fds.Len(); i++ {
fd := fds.Get(i)
if !m.Has(fd) {
if fd.HasDefault() && fd.ContainingOneof() == nil {
v := fd.Default()
if fd.Kind() == protoreflect.BytesKind {
v = protoreflect.ValueOf(append([]byte(nil), v.Bytes()...)) // copy the default bytes
}
m.Set(fd, v)
}
continue
}
}
m.Range(func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
switch {
// Handle singular message.
case fd.Cardinality() != protoreflect.Repeated:
if fd.Message() != nil {
setDefaults(m.Get(fd).Message())
}
// Handle list of messages.
case fd.IsList():
if fd.Message() != nil {
ls := m.Get(fd).List()
for i := 0; i < ls.Len(); i++ {
setDefaults(ls.Get(i).Message())
}
}
// Handle map of messages.
case fd.IsMap():
if fd.MapValue().Message() != nil {
ms := m.Get(fd).Map()
ms.Range(func(_ protoreflect.MapKey, v protoreflect.Value) bool {
setDefaults(v.Message())
return true
})
}
}
return true
})
}

View File

@ -1,63 +1,113 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2018 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import "errors"
import (
"encoding/json"
"errors"
"fmt"
"strconv"
// Deprecated: do not use.
protoV2 "google.golang.org/protobuf/proto"
)
var (
// Deprecated: No longer returned.
ErrNil = errors.New("proto: Marshal called with nil")
// Deprecated: No longer returned.
ErrTooLarge = errors.New("proto: message encodes to over 2 GB")
// Deprecated: No longer returned.
ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
)
// Deprecated: Do not use.
type Stats struct{ Emalloc, Dmalloc, Encode, Decode, Chit, Cmiss, Size uint64 }
// Deprecated: do not use.
// Deprecated: Do not use.
func GetStats() Stats { return Stats{} }
// Deprecated: do not use.
// Deprecated: Do not use.
func MarshalMessageSet(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
// Deprecated: Do not use.
func UnmarshalMessageSet([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
// Deprecated: Do not use.
func MarshalMessageSetJSON(interface{}) ([]byte, error) {
return nil, errors.New("proto: not implemented")
}
// Deprecated: do not use.
// Deprecated: Do not use.
func UnmarshalMessageSetJSON([]byte, interface{}) error {
return errors.New("proto: not implemented")
}
// Deprecated: do not use.
// Deprecated: Do not use.
func RegisterMessageSetType(Message, int32, string) {}
// Deprecated: Do not use.
func EnumName(m map[int32]string, v int32) string {
s, ok := m[v]
if ok {
return s
}
return strconv.Itoa(int(v))
}
// Deprecated: Do not use.
func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
if data[0] == '"' {
// New style: enums are strings.
var repr string
if err := json.Unmarshal(data, &repr); err != nil {
return -1, err
}
val, ok := m[repr]
if !ok {
return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
}
return val, nil
}
// Old style: enums are ints.
var val int32
if err := json.Unmarshal(data, &val); err != nil {
return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
}
return val, nil
}
// Deprecated: Do not use; this type existed for intenal-use only.
type InternalMessageInfo struct{}
// Deprecated: Do not use; this method existed for intenal-use only.
func (*InternalMessageInfo) DiscardUnknown(m Message) {
DiscardUnknown(m)
}
// Deprecated: Do not use; this method existed for intenal-use only.
func (*InternalMessageInfo) Marshal(b []byte, m Message, deterministic bool) ([]byte, error) {
return protoV2.MarshalOptions{Deterministic: deterministic}.MarshalAppend(b, MessageV2(m))
}
// Deprecated: Do not use; this method existed for intenal-use only.
func (*InternalMessageInfo) Merge(dst, src Message) {
protoV2.Merge(MessageV2(dst), MessageV2(src))
}
// Deprecated: Do not use; this method existed for intenal-use only.
func (*InternalMessageInfo) Size(m Message) int {
return protoV2.Size(MessageV2(m))
}
// Deprecated: Do not use; this method existed for intenal-use only.
func (*InternalMessageInfo) Unmarshal(m Message, b []byte) error {
return protoV2.UnmarshalOptions{Merge: true}.Unmarshal(b, MessageV2(m))
}

View File

@ -1,48 +1,13 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2017 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
"google.golang.org/protobuf/reflect/protoreflect"
)
type generatedDiscarder interface {
XXX_DiscardUnknown()
}
// DiscardUnknown recursively discards all unknown fields from this message
// and all embedded messages.
//
@ -51,300 +16,43 @@ type generatedDiscarder interface {
// marshal to be able to produce a message that continues to have those
// unrecognized fields. To avoid this, DiscardUnknown is used to
// explicitly clear the unknown fields after unmarshaling.
//
// For proto2 messages, the unknown fields of message extensions are only
// discarded from messages that have been accessed via GetExtension.
func DiscardUnknown(m Message) {
if m, ok := m.(generatedDiscarder); ok {
m.XXX_DiscardUnknown()
return
if m != nil {
discardUnknown(MessageReflect(m))
}
// TODO: Dynamically populate a InternalMessageInfo for legacy messages,
// but the master branch has no implementation for InternalMessageInfo,
// so it would be more work to replicate that approach.
discardLegacy(m)
}
// DiscardUnknown recursively discards all unknown fields.
func (a *InternalMessageInfo) DiscardUnknown(m Message) {
di := atomicLoadDiscardInfo(&a.discard)
if di == nil {
di = getDiscardInfo(reflect.TypeOf(m).Elem())
atomicStoreDiscardInfo(&a.discard, di)
}
di.discard(toPointer(&m))
}
type discardInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []discardFieldInfo
unrecognized field
}
type discardFieldInfo struct {
field field // Offset of field, guaranteed to be valid
discard func(src pointer)
}
var (
discardInfoMap = map[reflect.Type]*discardInfo{}
discardInfoLock sync.Mutex
)
func getDiscardInfo(t reflect.Type) *discardInfo {
discardInfoLock.Lock()
defer discardInfoLock.Unlock()
di := discardInfoMap[t]
if di == nil {
di = &discardInfo{typ: t}
discardInfoMap[t] = di
}
return di
}
func (di *discardInfo) discard(src pointer) {
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&di.initialized) == 0 {
di.computeDiscardInfo()
}
for _, fi := range di.fields {
sfp := src.offset(fi.field)
fi.discard(sfp)
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(src.asPointerTo(di.typ).Interface()); err == nil {
// Ignore lock since DiscardUnknown is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
DiscardUnknown(m)
func discardUnknown(m protoreflect.Message) {
m.Range(func(fd protoreflect.FieldDescriptor, val protoreflect.Value) bool {
switch {
// Handle singular message.
case fd.Cardinality() != protoreflect.Repeated:
if fd.Message() != nil {
discardUnknown(m.Get(fd).Message())
}
}
}
if di.unrecognized.IsValid() {
*src.offset(di.unrecognized).toBytes() = nil
}
}
func (di *discardInfo) computeDiscardInfo() {
di.lock.Lock()
defer di.lock.Unlock()
if di.initialized != 0 {
return
}
t := di.typ
n := t.NumField()
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
dfi := discardFieldInfo{field: toField(&f)}
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%v.%s cannot be a slice of pointers to primitive types", t, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%v.%s cannot be a direct struct value", t, f.Name))
case isSlice: // E.g., []*pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sps := src.getPointerSlice()
for _, sp := range sps {
if !sp.isNil() {
di.discard(sp)
}
}
}
default: // E.g., *pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sp := src.getPointer()
if !sp.isNil() {
di.discard(sp)
}
// Handle list of messages.
case fd.IsList():
if fd.Message() != nil {
ls := m.Get(fd).List()
for i := 0; i < ls.Len(); i++ {
discardUnknown(ls.Get(i).Message())
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a map or a slice of map values", t, f.Name))
default: // E.g., map[K]V
if tf.Elem().Kind() == reflect.Ptr { // Proto struct (e.g., *T)
dfi.discard = func(src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
DiscardUnknown(val.Interface().(Message))
}
}
} else {
dfi.discard = func(pointer) {} // Noop
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a interface or a slice of interface values", t, f.Name))
default: // E.g., interface{}
// TODO: Make this faster?
dfi.discard = func(src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
DiscardUnknown(sv.Interface().(Message))
}
}
}
}
default:
continue
}
di.fields = append(di.fields, dfi)
}
di.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
di.unrecognized = toField(&f)
}
atomic.StoreInt32(&di.initialized, 1)
}
func discardLegacy(m Message) {
v := reflect.ValueOf(m)
if v.Kind() != reflect.Ptr || v.IsNil() {
return
}
v = v.Elem()
if v.Kind() != reflect.Struct {
return
}
t := v.Type()
for i := 0; i < v.NumField(); i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
vf := v.Field(i)
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T.%s cannot be a slice of pointers to primitive types", m, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%T.%s cannot be a direct struct value", m, f.Name))
case isSlice: // E.g., []*pb.T
for j := 0; j < vf.Len(); j++ {
discardLegacy(vf.Index(j).Interface().(Message))
}
default: // E.g., *pb.T
discardLegacy(vf.Interface().(Message))
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a map or a slice of map values", m, f.Name))
default: // E.g., map[K]V
tv := vf.Type().Elem()
if tv.Kind() == reflect.Ptr && tv.Implements(protoMessageType) { // Proto struct (e.g., *T)
for _, key := range vf.MapKeys() {
val := vf.MapIndex(key)
discardLegacy(val.Interface().(Message))
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a interface or a slice of interface values", m, f.Name))
default: // E.g., test_proto.isCommunique_Union interface
if !vf.IsNil() && f.Tag.Get("protobuf_oneof") != "" {
vf = vf.Elem() // E.g., *test_proto.Communique_Msg
if !vf.IsNil() {
vf = vf.Elem() // E.g., test_proto.Communique_Msg
vf = vf.Field(0) // E.g., Proto struct (e.g., *T) or primitive value
if vf.Kind() == reflect.Ptr {
discardLegacy(vf.Interface().(Message))
}
}
}
// Handle map of messages.
case fd.IsMap():
if fd.MapValue().Message() != nil {
ms := m.Get(fd).Map()
ms.Range(func(_ protoreflect.MapKey, v protoreflect.Value) bool {
discardUnknown(v.Message())
return true
})
}
}
}
return true
})
if vf := v.FieldByName("XXX_unrecognized"); vf.IsValid() {
if vf.Type() != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
vf.Set(reflect.ValueOf([]byte(nil)))
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(m); err == nil {
// Ignore lock since discardLegacy is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
discardLegacy(m)
}
}
// Discard unknown fields.
if len(m.GetUnknown()) > 0 {
m.SetUnknown(nil)
}
}

View File

@ -1,203 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
/*
* Routines for encoding data into the wire format for protocol buffers.
*/
import (
"errors"
"reflect"
)
var (
// errRepeatedHasNil is the error returned if Marshal is called with
// a struct with a repeated field containing a nil element.
errRepeatedHasNil = errors.New("proto: repeated field has nil element")
// errOneofHasNil is the error returned if Marshal is called with
// a struct with a oneof field containing a nil element.
errOneofHasNil = errors.New("proto: oneof field has nil value")
// ErrNil is the error returned if Marshal is called with nil.
ErrNil = errors.New("proto: Marshal called with nil")
// ErrTooLarge is the error returned if Marshal is called with a
// message that encodes to >2GB.
ErrTooLarge = errors.New("proto: message encodes to over 2 GB")
)
// The fundamental encoders that put bytes on the wire.
// Those that take integer types all accept uint64 and are
// therefore of type valueEncoder.
const maxVarintBytes = 10 // maximum length of a varint
// EncodeVarint returns the varint encoding of x.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
// Not used by the package itself, but helpful to clients
// wishing to use the same encoding.
func EncodeVarint(x uint64) []byte {
var buf [maxVarintBytes]byte
var n int
for n = 0; x > 127; n++ {
buf[n] = 0x80 | uint8(x&0x7F)
x >>= 7
}
buf[n] = uint8(x)
n++
return buf[0:n]
}
// EncodeVarint writes a varint-encoded integer to the Buffer.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func (p *Buffer) EncodeVarint(x uint64) error {
for x >= 1<<7 {
p.buf = append(p.buf, uint8(x&0x7f|0x80))
x >>= 7
}
p.buf = append(p.buf, uint8(x))
return nil
}
// SizeVarint returns the varint encoding size of an integer.
func SizeVarint(x uint64) int {
switch {
case x < 1<<7:
return 1
case x < 1<<14:
return 2
case x < 1<<21:
return 3
case x < 1<<28:
return 4
case x < 1<<35:
return 5
case x < 1<<42:
return 6
case x < 1<<49:
return 7
case x < 1<<56:
return 8
case x < 1<<63:
return 9
}
return 10
}
// EncodeFixed64 writes a 64-bit integer to the Buffer.
// This is the format for the
// fixed64, sfixed64, and double protocol buffer types.
func (p *Buffer) EncodeFixed64(x uint64) error {
p.buf = append(p.buf,
uint8(x),
uint8(x>>8),
uint8(x>>16),
uint8(x>>24),
uint8(x>>32),
uint8(x>>40),
uint8(x>>48),
uint8(x>>56))
return nil
}
// EncodeFixed32 writes a 32-bit integer to the Buffer.
// This is the format for the
// fixed32, sfixed32, and float protocol buffer types.
func (p *Buffer) EncodeFixed32(x uint64) error {
p.buf = append(p.buf,
uint8(x),
uint8(x>>8),
uint8(x>>16),
uint8(x>>24))
return nil
}
// EncodeZigzag64 writes a zigzag-encoded 64-bit integer
// to the Buffer.
// This is the format used for the sint64 protocol buffer type.
func (p *Buffer) EncodeZigzag64(x uint64) error {
// use signed number to get arithmetic right shift.
return p.EncodeVarint(uint64((x << 1) ^ uint64((int64(x) >> 63))))
}
// EncodeZigzag32 writes a zigzag-encoded 32-bit integer
// to the Buffer.
// This is the format used for the sint32 protocol buffer type.
func (p *Buffer) EncodeZigzag32(x uint64) error {
// use signed number to get arithmetic right shift.
return p.EncodeVarint(uint64((uint32(x) << 1) ^ uint32((int32(x) >> 31))))
}
// EncodeRawBytes writes a count-delimited byte buffer to the Buffer.
// This is the format used for the bytes protocol buffer
// type and for embedded messages.
func (p *Buffer) EncodeRawBytes(b []byte) error {
p.EncodeVarint(uint64(len(b)))
p.buf = append(p.buf, b...)
return nil
}
// EncodeStringBytes writes an encoded string to the Buffer.
// This is the format used for the proto2 string type.
func (p *Buffer) EncodeStringBytes(s string) error {
p.EncodeVarint(uint64(len(s)))
p.buf = append(p.buf, s...)
return nil
}
// Marshaler is the interface representing objects that can marshal themselves.
type Marshaler interface {
Marshal() ([]byte, error)
}
// EncodeMessage writes the protocol buffer to the Buffer,
// prefixed by a varint-encoded length.
func (p *Buffer) EncodeMessage(pb Message) error {
siz := Size(pb)
p.EncodeVarint(uint64(siz))
return p.Marshal(pb)
}
// All protocol buffer fields are nillable, but be careful.
func isNil(v reflect.Value) bool {
switch v.Kind() {
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return v.IsNil()
}
return false
}

View File

@ -1,301 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2011 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Protocol buffer comparison.
package proto
import (
"bytes"
"log"
"reflect"
"strings"
)
/*
Equal returns true iff protocol buffers a and b are equal.
The arguments must both be pointers to protocol buffer structs.
Equality is defined in this way:
- Two messages are equal iff they are the same type,
corresponding fields are equal, unknown field sets
are equal, and extensions sets are equal.
- Two set scalar fields are equal iff their values are equal.
If the fields are of a floating-point type, remember that
NaN != x for all x, including NaN. If the message is defined
in a proto3 .proto file, fields are not "set"; specifically,
zero length proto3 "bytes" fields are equal (nil == {}).
- Two repeated fields are equal iff their lengths are the same,
and their corresponding elements are equal. Note a "bytes" field,
although represented by []byte, is not a repeated field and the
rule for the scalar fields described above applies.
- Two unset fields are equal.
- Two unknown field sets are equal if their current
encoded state is equal.
- Two extension sets are equal iff they have corresponding
elements that are pairwise equal.
- Two map fields are equal iff their lengths are the same,
and they contain the same set of elements. Zero-length map
fields are equal.
- Every other combination of things are not equal.
The return value is undefined if a and b are not protocol buffers.
*/
func Equal(a, b Message) bool {
if a == nil || b == nil {
return a == b
}
v1, v2 := reflect.ValueOf(a), reflect.ValueOf(b)
if v1.Type() != v2.Type() {
return false
}
if v1.Kind() == reflect.Ptr {
if v1.IsNil() {
return v2.IsNil()
}
if v2.IsNil() {
return false
}
v1, v2 = v1.Elem(), v2.Elem()
}
if v1.Kind() != reflect.Struct {
return false
}
return equalStruct(v1, v2)
}
// v1 and v2 are known to have the same type.
func equalStruct(v1, v2 reflect.Value) bool {
sprop := GetProperties(v1.Type())
for i := 0; i < v1.NumField(); i++ {
f := v1.Type().Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
f1, f2 := v1.Field(i), v2.Field(i)
if f.Type.Kind() == reflect.Ptr {
if n1, n2 := f1.IsNil(), f2.IsNil(); n1 && n2 {
// both unset
continue
} else if n1 != n2 {
// set/unset mismatch
return false
}
f1, f2 = f1.Elem(), f2.Elem()
}
if !equalAny(f1, f2, sprop.Prop[i]) {
return false
}
}
if em1 := v1.FieldByName("XXX_InternalExtensions"); em1.IsValid() {
em2 := v2.FieldByName("XXX_InternalExtensions")
if !equalExtensions(v1.Type(), em1.Interface().(XXX_InternalExtensions), em2.Interface().(XXX_InternalExtensions)) {
return false
}
}
if em1 := v1.FieldByName("XXX_extensions"); em1.IsValid() {
em2 := v2.FieldByName("XXX_extensions")
if !equalExtMap(v1.Type(), em1.Interface().(map[int32]Extension), em2.Interface().(map[int32]Extension)) {
return false
}
}
uf := v1.FieldByName("XXX_unrecognized")
if !uf.IsValid() {
return true
}
u1 := uf.Bytes()
u2 := v2.FieldByName("XXX_unrecognized").Bytes()
return bytes.Equal(u1, u2)
}
// v1 and v2 are known to have the same type.
// prop may be nil.
func equalAny(v1, v2 reflect.Value, prop *Properties) bool {
if v1.Type() == protoMessageType {
m1, _ := v1.Interface().(Message)
m2, _ := v2.Interface().(Message)
return Equal(m1, m2)
}
switch v1.Kind() {
case reflect.Bool:
return v1.Bool() == v2.Bool()
case reflect.Float32, reflect.Float64:
return v1.Float() == v2.Float()
case reflect.Int32, reflect.Int64:
return v1.Int() == v2.Int()
case reflect.Interface:
// Probably a oneof field; compare the inner values.
n1, n2 := v1.IsNil(), v2.IsNil()
if n1 || n2 {
return n1 == n2
}
e1, e2 := v1.Elem(), v2.Elem()
if e1.Type() != e2.Type() {
return false
}
return equalAny(e1, e2, nil)
case reflect.Map:
if v1.Len() != v2.Len() {
return false
}
for _, key := range v1.MapKeys() {
val2 := v2.MapIndex(key)
if !val2.IsValid() {
// This key was not found in the second map.
return false
}
if !equalAny(v1.MapIndex(key), val2, nil) {
return false
}
}
return true
case reflect.Ptr:
// Maps may have nil values in them, so check for nil.
if v1.IsNil() && v2.IsNil() {
return true
}
if v1.IsNil() != v2.IsNil() {
return false
}
return equalAny(v1.Elem(), v2.Elem(), prop)
case reflect.Slice:
if v1.Type().Elem().Kind() == reflect.Uint8 {
// short circuit: []byte
// Edge case: if this is in a proto3 message, a zero length
// bytes field is considered the zero value.
if prop != nil && prop.proto3 && v1.Len() == 0 && v2.Len() == 0 {
return true
}
if v1.IsNil() != v2.IsNil() {
return false
}
return bytes.Equal(v1.Interface().([]byte), v2.Interface().([]byte))
}
if v1.Len() != v2.Len() {
return false
}
for i := 0; i < v1.Len(); i++ {
if !equalAny(v1.Index(i), v2.Index(i), prop) {
return false
}
}
return true
case reflect.String:
return v1.Interface().(string) == v2.Interface().(string)
case reflect.Struct:
return equalStruct(v1, v2)
case reflect.Uint32, reflect.Uint64:
return v1.Uint() == v2.Uint()
}
// unknown type, so not a protocol buffer
log.Printf("proto: don't know how to compare %v", v1)
return false
}
// base is the struct type that the extensions are based on.
// x1 and x2 are InternalExtensions.
func equalExtensions(base reflect.Type, x1, x2 XXX_InternalExtensions) bool {
em1, _ := x1.extensionsRead()
em2, _ := x2.extensionsRead()
return equalExtMap(base, em1, em2)
}
func equalExtMap(base reflect.Type, em1, em2 map[int32]Extension) bool {
if len(em1) != len(em2) {
return false
}
for extNum, e1 := range em1 {
e2, ok := em2[extNum]
if !ok {
return false
}
m1 := extensionAsLegacyType(e1.value)
m2 := extensionAsLegacyType(e2.value)
if m1 == nil && m2 == nil {
// Both have only encoded form.
if bytes.Equal(e1.enc, e2.enc) {
continue
}
// The bytes are different, but the extensions might still be
// equal. We need to decode them to compare.
}
if m1 != nil && m2 != nil {
// Both are unencoded.
if !equalAny(reflect.ValueOf(m1), reflect.ValueOf(m2), nil) {
return false
}
continue
}
// At least one is encoded. To do a semantically correct comparison
// we need to unmarshal them first.
var desc *ExtensionDesc
if m := extensionMaps[base]; m != nil {
desc = m[extNum]
}
if desc == nil {
// If both have only encoded form and the bytes are the same,
// it is handled above. We get here when the bytes are different.
// We don't know how to decode it, so just compare them as byte
// slices.
log.Printf("proto: don't know how to compare extension %d of %v", extNum, base)
return false
}
var err error
if m1 == nil {
m1, err = decodeExtension(e1.enc, desc)
}
if m2 == nil && err == nil {
m2, err = decodeExtension(e2.enc, desc)
}
if err != nil {
// The encoded form is invalid.
log.Printf("proto: badly encoded extension %d of %v: %v", extNum, base, err)
return false
}
if !equalAny(reflect.ValueOf(m1), reflect.ValueOf(m2), nil) {
return false
}
}
return true
}

View File

@ -1,607 +1,356 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
/*
* Types and routines for supporting protocol buffer extensions.
*/
import (
"errors"
"fmt"
"io"
"reflect"
"strconv"
"sync"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
"google.golang.org/protobuf/runtime/protoiface"
"google.golang.org/protobuf/runtime/protoimpl"
)
// ErrMissingExtension is the error returned by GetExtension if the named extension is not in the message.
type (
// ExtensionDesc represents an extension descriptor and
// is used to interact with an extension field in a message.
//
// Variables of this type are generated in code by protoc-gen-go.
ExtensionDesc = protoimpl.ExtensionInfo
// ExtensionRange represents a range of message extensions.
// Used in code generated by protoc-gen-go.
ExtensionRange = protoiface.ExtensionRangeV1
// Deprecated: Do not use; this is an internal type.
Extension = protoimpl.ExtensionFieldV1
// Deprecated: Do not use; this is an internal type.
XXX_InternalExtensions = protoimpl.ExtensionFields
)
// ErrMissingExtension reports whether the extension was not present.
var ErrMissingExtension = errors.New("proto: missing extension")
// ExtensionRange represents a range of message extensions for a protocol buffer.
// Used in code generated by the protocol compiler.
type ExtensionRange struct {
Start, End int32 // both inclusive
}
// extendableProto is an interface implemented by any protocol buffer generated by the current
// proto compiler that may be extended.
type extendableProto interface {
Message
ExtensionRangeArray() []ExtensionRange
extensionsWrite() map[int32]Extension
extensionsRead() (map[int32]Extension, sync.Locker)
}
// extendableProtoV1 is an interface implemented by a protocol buffer generated by the previous
// version of the proto compiler that may be extended.
type extendableProtoV1 interface {
Message
ExtensionRangeArray() []ExtensionRange
ExtensionMap() map[int32]Extension
}
// extensionAdapter is a wrapper around extendableProtoV1 that implements extendableProto.
type extensionAdapter struct {
extendableProtoV1
}
func (e extensionAdapter) extensionsWrite() map[int32]Extension {
return e.ExtensionMap()
}
func (e extensionAdapter) extensionsRead() (map[int32]Extension, sync.Locker) {
return e.ExtensionMap(), notLocker{}
}
// notLocker is a sync.Locker whose Lock and Unlock methods are nops.
type notLocker struct{}
func (n notLocker) Lock() {}
func (n notLocker) Unlock() {}
// extendable returns the extendableProto interface for the given generated proto message.
// If the proto message has the old extension format, it returns a wrapper that implements
// the extendableProto interface.
func extendable(p interface{}) (extendableProto, error) {
switch p := p.(type) {
case extendableProto:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return p, nil
case extendableProtoV1:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return extensionAdapter{p}, nil
}
// Don't allocate a specific error containing %T:
// this is the hot path for Clone and MarshalText.
return nil, errNotExtendable
}
var errNotExtendable = errors.New("proto: not an extendable proto.Message")
func isNilPtr(x interface{}) bool {
v := reflect.ValueOf(x)
return v.Kind() == reflect.Ptr && v.IsNil()
}
// XXX_InternalExtensions is an internal representation of proto extensions.
//
// Each generated message struct type embeds an anonymous XXX_InternalExtensions field,
// thus gaining the unexported 'extensions' method, which can be called only from the proto package.
//
// The methods of XXX_InternalExtensions are not concurrency safe in general,
// but calls to logically read-only methods such as has and get may be executed concurrently.
type XXX_InternalExtensions struct {
// The struct must be indirect so that if a user inadvertently copies a
// generated message and its embedded XXX_InternalExtensions, they
// avoid the mayhem of a copied mutex.
//
// The mutex serializes all logically read-only operations to p.extensionMap.
// It is up to the client to ensure that write operations to p.extensionMap are
// mutually exclusive with other accesses.
p *struct {
mu sync.Mutex
extensionMap map[int32]Extension
// HasExtension reports whether the extension field is present in m
// either as an explicitly populated field or as an unknown field.
func HasExtension(m Message, xt *ExtensionDesc) (has bool) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() {
return false
}
}
// extensionsWrite returns the extension map, creating it on first use.
func (e *XXX_InternalExtensions) extensionsWrite() map[int32]Extension {
if e.p == nil {
e.p = new(struct {
mu sync.Mutex
extensionMap map[int32]Extension
// Check whether any populated known field matches the field number.
xtd := xt.TypeDescriptor()
if isValidExtension(mr.Descriptor(), xtd) {
has = mr.Has(xtd)
} else {
mr.Range(func(fd protoreflect.FieldDescriptor, _ protoreflect.Value) bool {
has = int32(fd.Number()) == xt.Field
return !has
})
e.p.extensionMap = make(map[int32]Extension)
}
return e.p.extensionMap
}
// extensionsRead returns the extensions map for read-only use. It may be nil.
// The caller must hold the returned mutex's lock when accessing Elements within the map.
func (e *XXX_InternalExtensions) extensionsRead() (map[int32]Extension, sync.Locker) {
if e.p == nil {
return nil, nil
// Check whether any unknown field matches the field number.
for b := mr.GetUnknown(); !has && len(b) > 0; {
num, _, n := protowire.ConsumeField(b)
has = int32(num) == xt.Field
b = b[n:]
}
return e.p.extensionMap, &e.p.mu
return has
}
// ExtensionDesc represents an extension specification.
// Used in generated code from the protocol compiler.
type ExtensionDesc struct {
ExtendedType Message // nil pointer to the type that is being extended
ExtensionType interface{} // nil pointer to the extension type
Field int32 // field number
Name string // fully-qualified name of extension, for text formatting
Tag string // protobuf tag style
Filename string // name of the file in which the extension is defined
}
func (ed *ExtensionDesc) repeated() bool {
t := reflect.TypeOf(ed.ExtensionType)
return t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
}
// Extension represents an extension in a message.
type Extension struct {
// When an extension is stored in a message using SetExtension
// only desc and value are set. When the message is marshaled
// enc will be set to the encoded form of the message.
//
// When a message is unmarshaled and contains extensions, each
// extension will have only enc set. When such an extension is
// accessed using GetExtension (or GetExtensions) desc and value
// will be set.
desc *ExtensionDesc
// value is a concrete value for the extension field. Let the type of
// desc.ExtensionType be the "API type" and the type of Extension.value
// be the "storage type". The API type and storage type are the same except:
// * For scalars (except []byte), the API type uses *T,
// while the storage type uses T.
// * For repeated fields, the API type uses []T, while the storage type
// uses *[]T.
//
// The reason for the divergence is so that the storage type more naturally
// matches what is expected of when retrieving the values through the
// protobuf reflection APIs.
//
// The value may only be populated if desc is also populated.
value interface{}
// enc is the raw bytes for the extension field.
enc []byte
}
// SetRawExtension is for testing only.
func SetRawExtension(base Message, id int32, b []byte) {
epb, err := extendable(base)
if err != nil {
// ClearExtension removes the extension field from m
// either as an explicitly populated field or as an unknown field.
func ClearExtension(m Message, xt *ExtensionDesc) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() {
return
}
extmap := epb.extensionsWrite()
extmap[id] = Extension{enc: b}
}
// isExtensionField returns true iff the given field number is in an extension range.
func isExtensionField(pb extendableProto, field int32) bool {
for _, er := range pb.ExtensionRangeArray() {
if er.Start <= field && field <= er.End {
xtd := xt.TypeDescriptor()
if isValidExtension(mr.Descriptor(), xtd) {
mr.Clear(xtd)
} else {
mr.Range(func(fd protoreflect.FieldDescriptor, _ protoreflect.Value) bool {
if int32(fd.Number()) == xt.Field {
mr.Clear(fd)
return false
}
return true
}
})
}
return false
clearUnknown(mr, fieldNum(xt.Field))
}
// checkExtensionTypes checks that the given extension is valid for pb.
func checkExtensionTypes(pb extendableProto, extension *ExtensionDesc) error {
var pbi interface{} = pb
// Check the extended type.
if ea, ok := pbi.(extensionAdapter); ok {
pbi = ea.extendableProtoV1
}
if a, b := reflect.TypeOf(pbi), reflect.TypeOf(extension.ExtendedType); a != b {
return fmt.Errorf("proto: bad extended type; %v does not extend %v", b, a)
}
// Check the range.
if !isExtensionField(pb, extension.Field) {
return errors.New("proto: bad extension number; not in declared ranges")
}
return nil
}
// extPropKey is sufficient to uniquely identify an extension.
type extPropKey struct {
base reflect.Type
field int32
}
var extProp = struct {
sync.RWMutex
m map[extPropKey]*Properties
}{
m: make(map[extPropKey]*Properties),
}
func extensionProperties(ed *ExtensionDesc) *Properties {
key := extPropKey{base: reflect.TypeOf(ed.ExtendedType), field: ed.Field}
extProp.RLock()
if prop, ok := extProp.m[key]; ok {
extProp.RUnlock()
return prop
}
extProp.RUnlock()
extProp.Lock()
defer extProp.Unlock()
// Check again.
if prop, ok := extProp.m[key]; ok {
return prop
}
prop := new(Properties)
prop.Init(reflect.TypeOf(ed.ExtensionType), "unknown_name", ed.Tag, nil)
extProp.m[key] = prop
return prop
}
// HasExtension returns whether the given extension is present in pb.
func HasExtension(pb Message, extension *ExtensionDesc) bool {
// TODO: Check types, field numbers, etc.?
epb, err := extendable(pb)
if err != nil {
return false
}
extmap, mu := epb.extensionsRead()
if extmap == nil {
return false
}
mu.Lock()
_, ok := extmap[extension.Field]
mu.Unlock()
return ok
}
// ClearExtension removes the given extension from pb.
func ClearExtension(pb Message, extension *ExtensionDesc) {
epb, err := extendable(pb)
if err != nil {
// ClearAllExtensions clears all extensions from m.
// This includes populated fields and unknown fields in the extension range.
func ClearAllExtensions(m Message) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() {
return
}
// TODO: Check types, field numbers, etc.?
extmap := epb.extensionsWrite()
delete(extmap, extension.Field)
mr.Range(func(fd protoreflect.FieldDescriptor, _ protoreflect.Value) bool {
if fd.IsExtension() {
mr.Clear(fd)
}
return true
})
clearUnknown(mr, mr.Descriptor().ExtensionRanges())
}
// GetExtension retrieves a proto2 extended field from pb.
// GetExtension retrieves a proto2 extended field from m.
//
// If the descriptor is type complete (i.e., ExtensionDesc.ExtensionType is non-nil),
// then GetExtension parses the encoded field and returns a Go value of the specified type.
// If the field is not present, then the default value is returned (if one is specified),
// otherwise ErrMissingExtension is reported.
//
// If the descriptor is not type complete (i.e., ExtensionDesc.ExtensionType is nil),
// then GetExtension returns the raw encoded bytes of the field extension.
func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
epb, err := extendable(pb)
if err != nil {
return nil, err
// If the descriptor is type incomplete (i.e., ExtensionDesc.ExtensionType is nil),
// then GetExtension returns the raw encoded bytes for the extension field.
func GetExtension(m Message, xt *ExtensionDesc) (interface{}, error) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() || mr.Descriptor().ExtensionRanges().Len() == 0 {
return nil, errNotExtendable
}
if extension.ExtendedType != nil {
// can only check type if this is a complete descriptor
if err := checkExtensionTypes(epb, extension); err != nil {
// Retrieve the unknown fields for this extension field.
var bo protoreflect.RawFields
for bi := mr.GetUnknown(); len(bi) > 0; {
num, _, n := protowire.ConsumeField(bi)
if int32(num) == xt.Field {
bo = append(bo, bi[:n]...)
}
bi = bi[n:]
}
// For type incomplete descriptors, only retrieve the unknown fields.
if xt.ExtensionType == nil {
return []byte(bo), nil
}
// If the extension field only exists as unknown fields, unmarshal it.
// This is rarely done since proto.Unmarshal eagerly unmarshals extensions.
xtd := xt.TypeDescriptor()
if !isValidExtension(mr.Descriptor(), xtd) {
return nil, fmt.Errorf("proto: bad extended type; %T does not extend %T", xt.ExtendedType, m)
}
if !mr.Has(xtd) && len(bo) > 0 {
m2 := mr.New()
if err := (proto.UnmarshalOptions{
Resolver: extensionResolver{xt},
}.Unmarshal(bo, m2.Interface())); err != nil {
return nil, err
}
}
emap, mu := epb.extensionsRead()
if emap == nil {
return defaultExtensionValue(extension)
}
mu.Lock()
defer mu.Unlock()
e, ok := emap[extension.Field]
if !ok {
// defaultExtensionValue returns the default value or
// ErrMissingExtension if there is no default.
return defaultExtensionValue(extension)
}
if e.value != nil {
// Already decoded. Check the descriptor, though.
if e.desc != extension {
// This shouldn't happen. If it does, it means that
// GetExtension was called twice with two different
// descriptors with the same field number.
return nil, errors.New("proto: descriptor conflict")
if m2.Has(xtd) {
mr.Set(xtd, m2.Get(xtd))
clearUnknown(mr, fieldNum(xt.Field))
}
return extensionAsLegacyType(e.value), nil
}
if extension.ExtensionType == nil {
// incomplete descriptor
return e.enc, nil
}
v, err := decodeExtension(e.enc, extension)
if err != nil {
return nil, err
}
// Remember the decoded version and drop the encoded version.
// That way it is safe to mutate what we return.
e.value = extensionAsStorageType(v)
e.desc = extension
e.enc = nil
emap[extension.Field] = e
return extensionAsLegacyType(e.value), nil
}
// defaultExtensionValue returns the default value for extension.
// If no default for an extension is defined ErrMissingExtension is returned.
func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {
if extension.ExtensionType == nil {
// incomplete descriptor, so no default
// Check whether the message has the extension field set or a default.
var pv protoreflect.Value
switch {
case mr.Has(xtd):
pv = mr.Get(xtd)
case xtd.HasDefault():
pv = xtd.Default()
default:
return nil, ErrMissingExtension
}
t := reflect.TypeOf(extension.ExtensionType)
props := extensionProperties(extension)
sf, _, err := fieldDefault(t, props)
if err != nil {
return nil, err
}
if sf == nil || sf.value == nil {
// There is no default value.
return nil, ErrMissingExtension
}
if t.Kind() != reflect.Ptr {
// We do not need to return a Ptr, we can directly return sf.value.
return sf.value, nil
}
// We need to return an interface{} that is a pointer to sf.value.
value := reflect.New(t).Elem()
value.Set(reflect.New(value.Type().Elem()))
if sf.kind == reflect.Int32 {
// We may have an int32 or an enum, but the underlying data is int32.
// Since we can't set an int32 into a non int32 reflect.value directly
// set it as a int32.
value.Elem().SetInt(int64(sf.value.(int32)))
} else {
value.Elem().Set(reflect.ValueOf(sf.value))
}
return value.Interface(), nil
}
// decodeExtension decodes an extension encoded in b.
func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
t := reflect.TypeOf(extension.ExtensionType)
unmarshal := typeUnmarshaler(t, extension.Tag)
// t is a pointer to a struct, pointer to basic type or a slice.
// Allocate space to store the pointer/slice.
value := reflect.New(t).Elem()
var err error
for {
x, n := decodeVarint(b)
if n == 0 {
return nil, io.ErrUnexpectedEOF
}
b = b[n:]
wire := int(x) & 7
b, err = unmarshal(b, valToPointer(value.Addr()), wire)
if err != nil {
return nil, err
}
if len(b) == 0 {
break
}
}
return value.Interface(), nil
}
// GetExtensions returns a slice of the extensions present in pb that are also listed in es.
// The returned slice has the same length as es; missing extensions will appear as nil elements.
func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, err error) {
epb, err := extendable(pb)
if err != nil {
return nil, err
}
extensions = make([]interface{}, len(es))
for i, e := range es {
extensions[i], err = GetExtension(epb, e)
if err == ErrMissingExtension {
err = nil
}
if err != nil {
return
}
}
return
}
// ExtensionDescs returns a new slice containing pb's extension descriptors, in undefined order.
// For non-registered extensions, ExtensionDescs returns an incomplete descriptor containing
// just the Field field, which defines the extension's field number.
func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {
epb, err := extendable(pb)
if err != nil {
return nil, err
}
registeredExtensions := RegisteredExtensions(pb)
emap, mu := epb.extensionsRead()
if emap == nil {
return nil, nil
}
mu.Lock()
defer mu.Unlock()
extensions := make([]*ExtensionDesc, 0, len(emap))
for extid, e := range emap {
desc := e.desc
if desc == nil {
desc = registeredExtensions[extid]
if desc == nil {
desc = &ExtensionDesc{Field: extid}
}
}
extensions = append(extensions, desc)
}
return extensions, nil
}
// SetExtension sets the specified extension of pb to the specified value.
func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error {
epb, err := extendable(pb)
if err != nil {
return err
}
if err := checkExtensionTypes(epb, extension); err != nil {
return err
}
typ := reflect.TypeOf(extension.ExtensionType)
if typ != reflect.TypeOf(value) {
return fmt.Errorf("proto: bad extension value type. got: %T, want: %T", value, extension.ExtensionType)
}
// nil extension values need to be caught early, because the
// encoder can't distinguish an ErrNil due to a nil extension
// from an ErrNil due to a missing field. Extensions are
// always optional, so the encoder would just swallow the error
// and drop all the extensions from the encoded message.
if reflect.ValueOf(value).IsNil() {
return fmt.Errorf("proto: SetExtension called with nil value of type %T", value)
}
extmap := epb.extensionsWrite()
extmap[extension.Field] = Extension{desc: extension, value: extensionAsStorageType(value)}
return nil
}
// ClearAllExtensions clears all extensions from pb.
func ClearAllExtensions(pb Message) {
epb, err := extendable(pb)
if err != nil {
return
}
m := epb.extensionsWrite()
for k := range m {
delete(m, k)
}
}
// A global registry of extensions.
// The generated code will register the generated descriptors by calling RegisterExtension.
var extensionMaps = make(map[reflect.Type]map[int32]*ExtensionDesc)
// RegisterExtension is called from the generated code.
func RegisterExtension(desc *ExtensionDesc) {
st := reflect.TypeOf(desc.ExtendedType).Elem()
m := extensionMaps[st]
if m == nil {
m = make(map[int32]*ExtensionDesc)
extensionMaps[st] = m
}
if _, ok := m[desc.Field]; ok {
panic("proto: duplicate extension registered: " + st.String() + " " + strconv.Itoa(int(desc.Field)))
}
m[desc.Field] = desc
}
// RegisteredExtensions returns a map of the registered extensions of a
// protocol buffer struct, indexed by the extension number.
// The argument pb should be a nil pointer to the struct type.
func RegisteredExtensions(pb Message) map[int32]*ExtensionDesc {
return extensionMaps[reflect.TypeOf(pb).Elem()]
}
// extensionAsLegacyType converts an value in the storage type as the API type.
// See Extension.value.
func extensionAsLegacyType(v interface{}) interface{} {
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
// Represent primitive types as a pointer to the value.
v := xt.InterfaceOf(pv)
rv := reflect.ValueOf(v)
if isScalarKind(rv.Kind()) {
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
v = rv2.Interface()
case reflect.Ptr:
// Represent slice types as the value itself.
switch rv.Type().Elem().Kind() {
case reflect.Slice:
if rv.IsNil() {
v = reflect.Zero(rv.Type().Elem()).Interface()
} else {
v = rv.Elem().Interface()
}
}
}
return v
return v, nil
}
// extensionAsStorageType converts an value in the API type as the storage type.
// See Extension.value.
func extensionAsStorageType(v interface{}) interface{} {
switch rv := reflect.ValueOf(v); rv.Kind() {
case reflect.Ptr:
// Represent slice types as the value itself.
switch rv.Type().Elem().Kind() {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
if rv.IsNil() {
v = reflect.Zero(rv.Type().Elem()).Interface()
} else {
v = rv.Elem().Interface()
// extensionResolver is a custom extension resolver that stores a single
// extension type that takes precedence over the global registry.
type extensionResolver struct{ xt protoreflect.ExtensionType }
func (r extensionResolver) FindExtensionByName(field protoreflect.FullName) (protoreflect.ExtensionType, error) {
if xtd := r.xt.TypeDescriptor(); xtd.FullName() == field {
return r.xt, nil
}
return protoregistry.GlobalTypes.FindExtensionByName(field)
}
func (r extensionResolver) FindExtensionByNumber(message protoreflect.FullName, field protoreflect.FieldNumber) (protoreflect.ExtensionType, error) {
if xtd := r.xt.TypeDescriptor(); xtd.ContainingMessage().FullName() == message && xtd.Number() == field {
return r.xt, nil
}
return protoregistry.GlobalTypes.FindExtensionByNumber(message, field)
}
// GetExtensions returns a list of the extensions values present in m,
// corresponding with the provided list of extension descriptors, xts.
// If an extension is missing in m, the corresponding value is nil.
func GetExtensions(m Message, xts []*ExtensionDesc) ([]interface{}, error) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() {
return nil, errNotExtendable
}
vs := make([]interface{}, len(xts))
for i, xt := range xts {
v, err := GetExtension(m, xt)
if err != nil {
if err == ErrMissingExtension {
continue
}
return vs, err
}
case reflect.Slice:
// Represent slice types as a pointer to the value.
if rv.Type().Elem().Kind() != reflect.Uint8 {
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
v = rv2.Interface()
vs[i] = v
}
return vs, nil
}
// SetExtension sets an extension field in m to the provided value.
func SetExtension(m Message, xt *ExtensionDesc, v interface{}) error {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() || mr.Descriptor().ExtensionRanges().Len() == 0 {
return errNotExtendable
}
rv := reflect.ValueOf(v)
if reflect.TypeOf(v) != reflect.TypeOf(xt.ExtensionType) {
return fmt.Errorf("proto: bad extension value type. got: %T, want: %T", v, xt.ExtensionType)
}
if rv.Kind() == reflect.Ptr {
if rv.IsNil() {
return fmt.Errorf("proto: SetExtension called with nil value of type %T", v)
}
if isScalarKind(rv.Elem().Kind()) {
v = rv.Elem().Interface()
}
}
return v
xtd := xt.TypeDescriptor()
if !isValidExtension(mr.Descriptor(), xtd) {
return fmt.Errorf("proto: bad extended type; %T does not extend %T", xt.ExtendedType, m)
}
mr.Set(xtd, xt.ValueOf(v))
clearUnknown(mr, fieldNum(xt.Field))
return nil
}
// SetRawExtension inserts b into the unknown fields of m.
//
// Deprecated: Use Message.ProtoReflect.SetUnknown instead.
func SetRawExtension(m Message, fnum int32, b []byte) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() {
return
}
// Verify that the raw field is valid.
for b0 := b; len(b0) > 0; {
num, _, n := protowire.ConsumeField(b0)
if int32(num) != fnum {
panic(fmt.Sprintf("mismatching field number: got %d, want %d", num, fnum))
}
b0 = b0[n:]
}
ClearExtension(m, &ExtensionDesc{Field: fnum})
mr.SetUnknown(append(mr.GetUnknown(), b...))
}
// ExtensionDescs returns a list of extension descriptors found in m,
// containing descriptors for both populated extension fields in m and
// also unknown fields of m that are in the extension range.
// For the later case, an type incomplete descriptor is provided where only
// the ExtensionDesc.Field field is populated.
// The order of the extension descriptors is undefined.
func ExtensionDescs(m Message) ([]*ExtensionDesc, error) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() || mr.Descriptor().ExtensionRanges().Len() == 0 {
return nil, errNotExtendable
}
// Collect a set of known extension descriptors.
extDescs := make(map[protoreflect.FieldNumber]*ExtensionDesc)
mr.Range(func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
if fd.IsExtension() {
xt := fd.(protoreflect.ExtensionTypeDescriptor)
if xd, ok := xt.Type().(*ExtensionDesc); ok {
extDescs[fd.Number()] = xd
}
}
return true
})
// Collect a set of unknown extension descriptors.
extRanges := mr.Descriptor().ExtensionRanges()
for b := mr.GetUnknown(); len(b) > 0; {
num, _, n := protowire.ConsumeField(b)
if extRanges.Has(num) && extDescs[num] == nil {
extDescs[num] = nil
}
b = b[n:]
}
// Transpose the set of descriptors into a list.
var xts []*ExtensionDesc
for num, xt := range extDescs {
if xt == nil {
xt = &ExtensionDesc{Field: int32(num)}
}
xts = append(xts, xt)
}
return xts, nil
}
// isValidExtension reports whether xtd is a valid extension descriptor for md.
func isValidExtension(md protoreflect.MessageDescriptor, xtd protoreflect.ExtensionTypeDescriptor) bool {
return xtd.ContainingMessage() == md && md.ExtensionRanges().Has(xtd.Number())
}
// isScalarKind reports whether k is a protobuf scalar kind (except bytes).
// This function exists for historical reasons since the representation of
// scalars differs between v1 and v2, where v1 uses *T and v2 uses T.
func isScalarKind(k reflect.Kind) bool {
switch k {
case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
return true
default:
return false
}
}
// clearUnknown removes unknown fields from m where remover.Has reports true.
func clearUnknown(m protoreflect.Message, remover interface {
Has(protoreflect.FieldNumber) bool
}) {
var bo protoreflect.RawFields
for bi := m.GetUnknown(); len(bi) > 0; {
num, _, n := protowire.ConsumeField(bi)
if !remover.Has(num) {
bo = append(bo, bi[:n]...)
}
bi = bi[n:]
}
if bi := m.GetUnknown(); len(bi) != len(bo) {
m.SetUnknown(bo)
}
}
type fieldNum protoreflect.FieldNumber
func (n1 fieldNum) Has(n2 protoreflect.FieldNumber) bool {
return protoreflect.FieldNumber(n1) == n2
}

View File

@ -1,965 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/*
Package proto converts data structures to and from the wire format of
protocol buffers. It works in concert with the Go source code generated
for .proto files by the protocol compiler.
A summary of the properties of the protocol buffer interface
for a protocol buffer variable v:
- Names are turned from camel_case to CamelCase for export.
- There are no methods on v to set fields; just treat
them as structure fields.
- There are getters that return a field's value if set,
and return the field's default value if unset.
The getters work even if the receiver is a nil message.
- The zero value for a struct is its correct initialization state.
All desired fields must be set before marshaling.
- A Reset() method will restore a protobuf struct to its zero state.
- Non-repeated fields are pointers to the values; nil means unset.
That is, optional or required field int32 f becomes F *int32.
- Repeated fields are slices.
- Helper functions are available to aid the setting of fields.
msg.Foo = proto.String("hello") // set field
- Constants are defined to hold the default values of all fields that
have them. They have the form Default_StructName_FieldName.
Because the getter methods handle defaulted values,
direct use of these constants should be rare.
- Enums are given type names and maps from names to values.
Enum values are prefixed by the enclosing message's name, or by the
enum's type name if it is a top-level enum. Enum types have a String
method, and a Enum method to assist in message construction.
- Nested messages, groups and enums have type names prefixed with the name of
the surrounding message type.
- Extensions are given descriptor names that start with E_,
followed by an underscore-delimited list of the nested messages
that contain it (if any) followed by the CamelCased name of the
extension field itself. HasExtension, ClearExtension, GetExtension
and SetExtension are functions for manipulating extensions.
- Oneof field sets are given a single field in their message,
with distinguished wrapper types for each possible field value.
- Marshal and Unmarshal are functions to encode and decode the wire format.
When the .proto file specifies `syntax="proto3"`, there are some differences:
- Non-repeated fields of non-message type are values instead of pointers.
- Enum types do not get an Enum method.
The simplest way to describe this is to see an example.
Given file test.proto, containing
package example;
enum FOO { X = 17; }
message Test {
required string label = 1;
optional int32 type = 2 [default=77];
repeated int64 reps = 3;
optional group OptionalGroup = 4 {
required string RequiredField = 5;
}
oneof union {
int32 number = 6;
string name = 7;
}
}
The resulting file, test.pb.go, is:
package example
import proto "github.com/golang/protobuf/proto"
import math "math"
type FOO int32
const (
FOO_X FOO = 17
)
var FOO_name = map[int32]string{
17: "X",
}
var FOO_value = map[string]int32{
"X": 17,
}
func (x FOO) Enum() *FOO {
p := new(FOO)
*p = x
return p
}
func (x FOO) String() string {
return proto.EnumName(FOO_name, int32(x))
}
func (x *FOO) UnmarshalJSON(data []byte) error {
value, err := proto.UnmarshalJSONEnum(FOO_value, data)
if err != nil {
return err
}
*x = FOO(value)
return nil
}
type Test struct {
Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
// Types that are valid to be assigned to Union:
// *Test_Number
// *Test_Name
Union isTest_Union `protobuf_oneof:"union"`
XXX_unrecognized []byte `json:"-"`
}
func (m *Test) Reset() { *m = Test{} }
func (m *Test) String() string { return proto.CompactTextString(m) }
func (*Test) ProtoMessage() {}
type isTest_Union interface {
isTest_Union()
}
type Test_Number struct {
Number int32 `protobuf:"varint,6,opt,name=number"`
}
type Test_Name struct {
Name string `protobuf:"bytes,7,opt,name=name"`
}
func (*Test_Number) isTest_Union() {}
func (*Test_Name) isTest_Union() {}
func (m *Test) GetUnion() isTest_Union {
if m != nil {
return m.Union
}
return nil
}
const Default_Test_Type int32 = 77
func (m *Test) GetLabel() string {
if m != nil && m.Label != nil {
return *m.Label
}
return ""
}
func (m *Test) GetType() int32 {
if m != nil && m.Type != nil {
return *m.Type
}
return Default_Test_Type
}
func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
if m != nil {
return m.Optionalgroup
}
return nil
}
type Test_OptionalGroup struct {
RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
}
func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} }
func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
func (m *Test_OptionalGroup) GetRequiredField() string {
if m != nil && m.RequiredField != nil {
return *m.RequiredField
}
return ""
}
func (m *Test) GetNumber() int32 {
if x, ok := m.GetUnion().(*Test_Number); ok {
return x.Number
}
return 0
}
func (m *Test) GetName() string {
if x, ok := m.GetUnion().(*Test_Name); ok {
return x.Name
}
return ""
}
func init() {
proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
}
To create and play with a Test object:
package main
import (
"log"
"github.com/golang/protobuf/proto"
pb "./example.pb"
)
func main() {
test := &pb.Test{
Label: proto.String("hello"),
Type: proto.Int32(17),
Reps: []int64{1, 2, 3},
Optionalgroup: &pb.Test_OptionalGroup{
RequiredField: proto.String("good bye"),
},
Union: &pb.Test_Name{"fred"},
}
data, err := proto.Marshal(test)
if err != nil {
log.Fatal("marshaling error: ", err)
}
newTest := &pb.Test{}
err = proto.Unmarshal(data, newTest)
if err != nil {
log.Fatal("unmarshaling error: ", err)
}
// Now test and newTest contain the same data.
if test.GetLabel() != newTest.GetLabel() {
log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
}
// Use a type switch to determine which oneof was set.
switch u := test.Union.(type) {
case *pb.Test_Number: // u.Number contains the number.
case *pb.Test_Name: // u.Name contains the string.
}
// etc.
}
*/
package proto
import (
"encoding/json"
"fmt"
"log"
"reflect"
"sort"
"strconv"
"sync"
)
// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
// Marshal reports this when a required field is not initialized.
// Unmarshal reports this when a required field is missing from the wire data.
type RequiredNotSetError struct{ field string }
func (e *RequiredNotSetError) Error() string {
if e.field == "" {
return fmt.Sprintf("proto: required field not set")
}
return fmt.Sprintf("proto: required field %q not set", e.field)
}
func (e *RequiredNotSetError) RequiredNotSet() bool {
return true
}
type invalidUTF8Error struct{ field string }
func (e *invalidUTF8Error) Error() string {
if e.field == "" {
return "proto: invalid UTF-8 detected"
}
return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
}
func (e *invalidUTF8Error) InvalidUTF8() bool {
return true
}
// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
// This error should not be exposed to the external API as such errors should
// be recreated with the field information.
var errInvalidUTF8 = &invalidUTF8Error{}
// isNonFatal reports whether the error is either a RequiredNotSet error
// or a InvalidUTF8 error.
func isNonFatal(err error) bool {
if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
return true
}
if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
return true
}
return false
}
type nonFatal struct{ E error }
// Merge merges err into nf and reports whether it was successful.
// Otherwise it returns false for any fatal non-nil errors.
func (nf *nonFatal) Merge(err error) (ok bool) {
if err == nil {
return true // not an error
}
if !isNonFatal(err) {
return false // fatal error
}
if nf.E == nil {
nf.E = err // store first instance of non-fatal error
}
return true
}
// Message is implemented by generated protocol buffer messages.
type Message interface {
Reset()
String() string
ProtoMessage()
}
// A Buffer is a buffer manager for marshaling and unmarshaling
// protocol buffers. It may be reused between invocations to
// reduce memory usage. It is not necessary to use a Buffer;
// the global functions Marshal and Unmarshal create a
// temporary Buffer and are fine for most applications.
type Buffer struct {
buf []byte // encode/decode byte stream
index int // read point
deterministic bool
}
// NewBuffer allocates a new Buffer and initializes its internal data to
// the contents of the argument slice.
func NewBuffer(e []byte) *Buffer {
return &Buffer{buf: e}
}
// Reset resets the Buffer, ready for marshaling a new protocol buffer.
func (p *Buffer) Reset() {
p.buf = p.buf[0:0] // for reading/writing
p.index = 0 // for reading
}
// SetBuf replaces the internal buffer with the slice,
// ready for unmarshaling the contents of the slice.
func (p *Buffer) SetBuf(s []byte) {
p.buf = s
p.index = 0
}
// Bytes returns the contents of the Buffer.
func (p *Buffer) Bytes() []byte { return p.buf }
// SetDeterministic sets whether to use deterministic serialization.
//
// Deterministic serialization guarantees that for a given binary, equal
// messages will always be serialized to the same bytes. This implies:
//
// - Repeated serialization of a message will return the same bytes.
// - Different processes of the same binary (which may be executing on
// different machines) will serialize equal messages to the same bytes.
//
// Note that the deterministic serialization is NOT canonical across
// languages. It is not guaranteed to remain stable over time. It is unstable
// across different builds with schema changes due to unknown fields.
// Users who need canonical serialization (e.g., persistent storage in a
// canonical form, fingerprinting, etc.) should define their own
// canonicalization specification and implement their own serializer rather
// than relying on this API.
//
// If deterministic serialization is requested, map entries will be sorted
// by keys in lexicographical order. This is an implementation detail and
// subject to change.
func (p *Buffer) SetDeterministic(deterministic bool) {
p.deterministic = deterministic
}
/*
* Helper routines for simplifying the creation of optional fields of basic type.
*/
// Bool is a helper routine that allocates a new bool value
// to store v and returns a pointer to it.
func Bool(v bool) *bool {
return &v
}
// Int32 is a helper routine that allocates a new int32 value
// to store v and returns a pointer to it.
func Int32(v int32) *int32 {
return &v
}
// Int is a helper routine that allocates a new int32 value
// to store v and returns a pointer to it, but unlike Int32
// its argument value is an int.
func Int(v int) *int32 {
p := new(int32)
*p = int32(v)
return p
}
// Int64 is a helper routine that allocates a new int64 value
// to store v and returns a pointer to it.
func Int64(v int64) *int64 {
return &v
}
// Float32 is a helper routine that allocates a new float32 value
// to store v and returns a pointer to it.
func Float32(v float32) *float32 {
return &v
}
// Float64 is a helper routine that allocates a new float64 value
// to store v and returns a pointer to it.
func Float64(v float64) *float64 {
return &v
}
// Uint32 is a helper routine that allocates a new uint32 value
// to store v and returns a pointer to it.
func Uint32(v uint32) *uint32 {
return &v
}
// Uint64 is a helper routine that allocates a new uint64 value
// to store v and returns a pointer to it.
func Uint64(v uint64) *uint64 {
return &v
}
// String is a helper routine that allocates a new string value
// to store v and returns a pointer to it.
func String(v string) *string {
return &v
}
// EnumName is a helper function to simplify printing protocol buffer enums
// by name. Given an enum map and a value, it returns a useful string.
func EnumName(m map[int32]string, v int32) string {
s, ok := m[v]
if ok {
return s
}
return strconv.Itoa(int(v))
}
// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
// from their JSON-encoded representation. Given a map from the enum's symbolic
// names to its int values, and a byte buffer containing the JSON-encoded
// value, it returns an int32 that can be cast to the enum type by the caller.
//
// The function can deal with both JSON representations, numeric and symbolic.
func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
if data[0] == '"' {
// New style: enums are strings.
var repr string
if err := json.Unmarshal(data, &repr); err != nil {
return -1, err
}
val, ok := m[repr]
if !ok {
return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
}
return val, nil
}
// Old style: enums are ints.
var val int32
if err := json.Unmarshal(data, &val); err != nil {
return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
}
return val, nil
}
// DebugPrint dumps the encoded data in b in a debugging format with a header
// including the string s. Used in testing but made available for general debugging.
func (p *Buffer) DebugPrint(s string, b []byte) {
var u uint64
obuf := p.buf
index := p.index
p.buf = b
p.index = 0
depth := 0
fmt.Printf("\n--- %s ---\n", s)
out:
for {
for i := 0; i < depth; i++ {
fmt.Print(" ")
}
index := p.index
if index == len(p.buf) {
break
}
op, err := p.DecodeVarint()
if err != nil {
fmt.Printf("%3d: fetching op err %v\n", index, err)
break out
}
tag := op >> 3
wire := op & 7
switch wire {
default:
fmt.Printf("%3d: t=%3d unknown wire=%d\n",
index, tag, wire)
break out
case WireBytes:
var r []byte
r, err = p.DecodeRawBytes(false)
if err != nil {
break out
}
fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
if len(r) <= 6 {
for i := 0; i < len(r); i++ {
fmt.Printf(" %.2x", r[i])
}
} else {
for i := 0; i < 3; i++ {
fmt.Printf(" %.2x", r[i])
}
fmt.Printf(" ..")
for i := len(r) - 3; i < len(r); i++ {
fmt.Printf(" %.2x", r[i])
}
}
fmt.Printf("\n")
case WireFixed32:
u, err = p.DecodeFixed32()
if err != nil {
fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
case WireFixed64:
u, err = p.DecodeFixed64()
if err != nil {
fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
case WireVarint:
u, err = p.DecodeVarint()
if err != nil {
fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
case WireStartGroup:
fmt.Printf("%3d: t=%3d start\n", index, tag)
depth++
case WireEndGroup:
depth--
fmt.Printf("%3d: t=%3d end\n", index, tag)
}
}
if depth != 0 {
fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
}
fmt.Printf("\n")
p.buf = obuf
p.index = index
}
// SetDefaults sets unset protocol buffer fields to their default values.
// It only modifies fields that are both unset and have defined defaults.
// It recursively sets default values in any non-nil sub-messages.
func SetDefaults(pb Message) {
setDefaults(reflect.ValueOf(pb), true, false)
}
// v is a pointer to a struct.
func setDefaults(v reflect.Value, recur, zeros bool) {
v = v.Elem()
defaultMu.RLock()
dm, ok := defaults[v.Type()]
defaultMu.RUnlock()
if !ok {
dm = buildDefaultMessage(v.Type())
defaultMu.Lock()
defaults[v.Type()] = dm
defaultMu.Unlock()
}
for _, sf := range dm.scalars {
f := v.Field(sf.index)
if !f.IsNil() {
// field already set
continue
}
dv := sf.value
if dv == nil && !zeros {
// no explicit default, and don't want to set zeros
continue
}
fptr := f.Addr().Interface() // **T
// TODO: Consider batching the allocations we do here.
switch sf.kind {
case reflect.Bool:
b := new(bool)
if dv != nil {
*b = dv.(bool)
}
*(fptr.(**bool)) = b
case reflect.Float32:
f := new(float32)
if dv != nil {
*f = dv.(float32)
}
*(fptr.(**float32)) = f
case reflect.Float64:
f := new(float64)
if dv != nil {
*f = dv.(float64)
}
*(fptr.(**float64)) = f
case reflect.Int32:
// might be an enum
if ft := f.Type(); ft != int32PtrType {
// enum
f.Set(reflect.New(ft.Elem()))
if dv != nil {
f.Elem().SetInt(int64(dv.(int32)))
}
} else {
// int32 field
i := new(int32)
if dv != nil {
*i = dv.(int32)
}
*(fptr.(**int32)) = i
}
case reflect.Int64:
i := new(int64)
if dv != nil {
*i = dv.(int64)
}
*(fptr.(**int64)) = i
case reflect.String:
s := new(string)
if dv != nil {
*s = dv.(string)
}
*(fptr.(**string)) = s
case reflect.Uint8:
// exceptional case: []byte
var b []byte
if dv != nil {
db := dv.([]byte)
b = make([]byte, len(db))
copy(b, db)
} else {
b = []byte{}
}
*(fptr.(*[]byte)) = b
case reflect.Uint32:
u := new(uint32)
if dv != nil {
*u = dv.(uint32)
}
*(fptr.(**uint32)) = u
case reflect.Uint64:
u := new(uint64)
if dv != nil {
*u = dv.(uint64)
}
*(fptr.(**uint64)) = u
default:
log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
}
}
for _, ni := range dm.nested {
f := v.Field(ni)
// f is *T or []*T or map[T]*T
switch f.Kind() {
case reflect.Ptr:
if f.IsNil() {
continue
}
setDefaults(f, recur, zeros)
case reflect.Slice:
for i := 0; i < f.Len(); i++ {
e := f.Index(i)
if e.IsNil() {
continue
}
setDefaults(e, recur, zeros)
}
case reflect.Map:
for _, k := range f.MapKeys() {
e := f.MapIndex(k)
if e.IsNil() {
continue
}
setDefaults(e, recur, zeros)
}
}
}
}
var (
// defaults maps a protocol buffer struct type to a slice of the fields,
// with its scalar fields set to their proto-declared non-zero default values.
defaultMu sync.RWMutex
defaults = make(map[reflect.Type]defaultMessage)
int32PtrType = reflect.TypeOf((*int32)(nil))
)
// defaultMessage represents information about the default values of a message.
type defaultMessage struct {
scalars []scalarField
nested []int // struct field index of nested messages
}
type scalarField struct {
index int // struct field index
kind reflect.Kind // element type (the T in *T or []T)
value interface{} // the proto-declared default value, or nil
}
// t is a struct type.
func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
sprop := GetProperties(t)
for _, prop := range sprop.Prop {
fi, ok := sprop.decoderTags.get(prop.Tag)
if !ok {
// XXX_unrecognized
continue
}
ft := t.Field(fi).Type
sf, nested, err := fieldDefault(ft, prop)
switch {
case err != nil:
log.Print(err)
case nested:
dm.nested = append(dm.nested, fi)
case sf != nil:
sf.index = fi
dm.scalars = append(dm.scalars, *sf)
}
}
return dm
}
// fieldDefault returns the scalarField for field type ft.
// sf will be nil if the field can not have a default.
// nestedMessage will be true if this is a nested message.
// Note that sf.index is not set on return.
func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
var canHaveDefault bool
switch ft.Kind() {
case reflect.Ptr:
if ft.Elem().Kind() == reflect.Struct {
nestedMessage = true
} else {
canHaveDefault = true // proto2 scalar field
}
case reflect.Slice:
switch ft.Elem().Kind() {
case reflect.Ptr:
nestedMessage = true // repeated message
case reflect.Uint8:
canHaveDefault = true // bytes field
}
case reflect.Map:
if ft.Elem().Kind() == reflect.Ptr {
nestedMessage = true // map with message values
}
}
if !canHaveDefault {
if nestedMessage {
return nil, true, nil
}
return nil, false, nil
}
// We now know that ft is a pointer or slice.
sf = &scalarField{kind: ft.Elem().Kind()}
// scalar fields without defaults
if !prop.HasDefault {
return sf, false, nil
}
// a scalar field: either *T or []byte
switch ft.Elem().Kind() {
case reflect.Bool:
x, err := strconv.ParseBool(prop.Default)
if err != nil {
return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
}
sf.value = x
case reflect.Float32:
x, err := strconv.ParseFloat(prop.Default, 32)
if err != nil {
return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
}
sf.value = float32(x)
case reflect.Float64:
x, err := strconv.ParseFloat(prop.Default, 64)
if err != nil {
return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
}
sf.value = x
case reflect.Int32:
x, err := strconv.ParseInt(prop.Default, 10, 32)
if err != nil {
return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
}
sf.value = int32(x)
case reflect.Int64:
x, err := strconv.ParseInt(prop.Default, 10, 64)
if err != nil {
return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
}
sf.value = x
case reflect.String:
sf.value = prop.Default
case reflect.Uint8:
// []byte (not *uint8)
sf.value = []byte(prop.Default)
case reflect.Uint32:
x, err := strconv.ParseUint(prop.Default, 10, 32)
if err != nil {
return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
}
sf.value = uint32(x)
case reflect.Uint64:
x, err := strconv.ParseUint(prop.Default, 10, 64)
if err != nil {
return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
}
sf.value = x
default:
return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
}
return sf, false, nil
}
// mapKeys returns a sort.Interface to be used for sorting the map keys.
// Map fields may have key types of non-float scalars, strings and enums.
func mapKeys(vs []reflect.Value) sort.Interface {
s := mapKeySorter{vs: vs}
// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
if len(vs) == 0 {
return s
}
switch vs[0].Kind() {
case reflect.Int32, reflect.Int64:
s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
case reflect.Uint32, reflect.Uint64:
s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
case reflect.Bool:
s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
case reflect.String:
s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
default:
panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
}
return s
}
type mapKeySorter struct {
vs []reflect.Value
less func(a, b reflect.Value) bool
}
func (s mapKeySorter) Len() int { return len(s.vs) }
func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
func (s mapKeySorter) Less(i, j int) bool {
return s.less(s.vs[i], s.vs[j])
}
// isProto3Zero reports whether v is a zero proto3 value.
func isProto3Zero(v reflect.Value) bool {
switch v.Kind() {
case reflect.Bool:
return !v.Bool()
case reflect.Int32, reflect.Int64:
return v.Int() == 0
case reflect.Uint32, reflect.Uint64:
return v.Uint() == 0
case reflect.Float32, reflect.Float64:
return v.Float() == 0
case reflect.String:
return v.String() == ""
}
return false
}
const (
// ProtoPackageIsVersion3 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion3 = true
// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion2 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
ProtoPackageIsVersion1 = true
)
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.
// This type is not subject to any compatibility guarantee.
type InternalMessageInfo struct {
marshal *marshalInfo
unmarshal *unmarshalInfo
merge *mergeInfo
discard *discardInfo
}

View File

@ -1,181 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
/*
* Support for message sets.
*/
import (
"errors"
)
// errNoMessageTypeID occurs when a protocol buffer does not have a message type ID.
// A message type ID is required for storing a protocol buffer in a message set.
var errNoMessageTypeID = errors.New("proto does not have a message type ID")
// The first two types (_MessageSet_Item and messageSet)
// model what the protocol compiler produces for the following protocol message:
// message MessageSet {
// repeated group Item = 1 {
// required int32 type_id = 2;
// required string message = 3;
// };
// }
// That is the MessageSet wire format. We can't use a proto to generate these
// because that would introduce a circular dependency between it and this package.
type _MessageSet_Item struct {
TypeId *int32 `protobuf:"varint,2,req,name=type_id"`
Message []byte `protobuf:"bytes,3,req,name=message"`
}
type messageSet struct {
Item []*_MessageSet_Item `protobuf:"group,1,rep"`
XXX_unrecognized []byte
// TODO: caching?
}
// Make sure messageSet is a Message.
var _ Message = (*messageSet)(nil)
// messageTypeIder is an interface satisfied by a protocol buffer type
// that may be stored in a MessageSet.
type messageTypeIder interface {
MessageTypeId() int32
}
func (ms *messageSet) find(pb Message) *_MessageSet_Item {
mti, ok := pb.(messageTypeIder)
if !ok {
return nil
}
id := mti.MessageTypeId()
for _, item := range ms.Item {
if *item.TypeId == id {
return item
}
}
return nil
}
func (ms *messageSet) Has(pb Message) bool {
return ms.find(pb) != nil
}
func (ms *messageSet) Unmarshal(pb Message) error {
if item := ms.find(pb); item != nil {
return Unmarshal(item.Message, pb)
}
if _, ok := pb.(messageTypeIder); !ok {
return errNoMessageTypeID
}
return nil // TODO: return error instead?
}
func (ms *messageSet) Marshal(pb Message) error {
msg, err := Marshal(pb)
if err != nil {
return err
}
if item := ms.find(pb); item != nil {
// reuse existing item
item.Message = msg
return nil
}
mti, ok := pb.(messageTypeIder)
if !ok {
return errNoMessageTypeID
}
mtid := mti.MessageTypeId()
ms.Item = append(ms.Item, &_MessageSet_Item{
TypeId: &mtid,
Message: msg,
})
return nil
}
func (ms *messageSet) Reset() { *ms = messageSet{} }
func (ms *messageSet) String() string { return CompactTextString(ms) }
func (*messageSet) ProtoMessage() {}
// Support for the message_set_wire_format message option.
func skipVarint(buf []byte) []byte {
i := 0
for ; buf[i]&0x80 != 0; i++ {
}
return buf[i+1:]
}
// unmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func unmarshalMessageSet(buf []byte, exts interface{}) error {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
m = exts.extensionsWrite()
case map[int32]Extension:
m = exts
default:
return errors.New("proto: not an extension map")
}
ms := new(messageSet)
if err := Unmarshal(buf, ms); err != nil {
return err
}
for _, item := range ms.Item {
id := *item.TypeId
msg := item.Message
// Restore wire type and field number varint, plus length varint.
// Be careful to preserve duplicate items.
b := EncodeVarint(uint64(id)<<3 | WireBytes)
if ext, ok := m[id]; ok {
// Existing data; rip off the tag and length varint
// so we join the new data correctly.
// We can assume that ext.enc is set because we are unmarshaling.
o := ext.enc[len(b):] // skip wire type and field number
_, n := DecodeVarint(o) // calculate length of length varint
o = o[n:] // skip length varint
msg = append(o, msg...) // join old data and new data
}
b = append(b, EncodeVarint(uint64(len(msg)))...)
b = append(b, msg...)
m[id] = Extension{enc: b}
}
return nil
}

View File

@ -1,360 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2012 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build purego appengine js
// This file contains an implementation of proto field accesses using package reflect.
// It is slower than the code in pointer_unsafe.go but it avoids package unsafe and can
// be used on App Engine.
package proto
import (
"reflect"
"sync"
)
const unsafeAllowed = false
// A field identifies a field in a struct, accessible from a pointer.
// In this implementation, a field is identified by the sequence of field indices
// passed to reflect's FieldByIndex.
type field []int
// toField returns a field equivalent to the given reflect field.
func toField(f *reflect.StructField) field {
return f.Index
}
// invalidField is an invalid field identifier.
var invalidField = field(nil)
// zeroField is a noop when calling pointer.offset.
var zeroField = field([]int{})
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool { return f != nil }
// The pointer type is for the table-driven decoder.
// The implementation here uses a reflect.Value of pointer type to
// create a generic pointer. In pointer_unsafe.go we use unsafe
// instead of reflect to implement the same (but faster) interface.
type pointer struct {
v reflect.Value
}
// toPointer converts an interface of pointer type to a pointer
// that points to the same target.
func toPointer(i *Message) pointer {
return pointer{v: reflect.ValueOf(*i)}
}
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr, deref bool) pointer {
v := reflect.ValueOf(*i)
u := reflect.New(v.Type())
u.Elem().Set(v)
if deref {
u = u.Elem()
}
return pointer{v: u}
}
// valToPointer converts v to a pointer. v must be of pointer type.
func valToPointer(v reflect.Value) pointer {
return pointer{v: v}
}
// offset converts from a pointer to a structure to a pointer to
// one of its fields.
func (p pointer) offset(f field) pointer {
return pointer{v: p.v.Elem().FieldByIndex(f).Addr()}
}
func (p pointer) isNil() bool {
return p.v.IsNil()
}
// grow updates the slice s in place to make it one element longer.
// s must be addressable.
// Returns the (addressable) new element.
func grow(s reflect.Value) reflect.Value {
n, m := s.Len(), s.Cap()
if n < m {
s.SetLen(n + 1)
} else {
s.Set(reflect.Append(s, reflect.Zero(s.Type().Elem())))
}
return s.Index(n)
}
func (p pointer) toInt64() *int64 {
return p.v.Interface().(*int64)
}
func (p pointer) toInt64Ptr() **int64 {
return p.v.Interface().(**int64)
}
func (p pointer) toInt64Slice() *[]int64 {
return p.v.Interface().(*[]int64)
}
var int32ptr = reflect.TypeOf((*int32)(nil))
func (p pointer) toInt32() *int32 {
return p.v.Convert(int32ptr).Interface().(*int32)
}
// The toInt32Ptr/Slice methods don't work because of enums.
// Instead, we must use set/get methods for the int32ptr/slice case.
/*
func (p pointer) toInt32Ptr() **int32 {
return p.v.Interface().(**int32)
}
func (p pointer) toInt32Slice() *[]int32 {
return p.v.Interface().(*[]int32)
}
*/
func (p pointer) getInt32Ptr() *int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
return p.v.Elem().Interface().(*int32)
}
// an enum
return p.v.Elem().Convert(int32PtrType).Interface().(*int32)
}
func (p pointer) setInt32Ptr(v int32) {
// Allocate value in a *int32. Possibly convert that to a *enum.
// Then assign it to a **int32 or **enum.
// Note: we can convert *int32 to *enum, but we can't convert
// **int32 to **enum!
p.v.Elem().Set(reflect.ValueOf(&v).Convert(p.v.Type().Elem()))
}
// getInt32Slice copies []int32 from p as a new slice.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) getInt32Slice() []int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
return p.v.Elem().Interface().([]int32)
}
// an enum
// Allocate a []int32, then assign []enum's values into it.
// Note: we can't convert []enum to []int32.
slice := p.v.Elem()
s := make([]int32, slice.Len())
for i := 0; i < slice.Len(); i++ {
s[i] = int32(slice.Index(i).Int())
}
return s
}
// setInt32Slice copies []int32 into p as a new slice.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) setInt32Slice(v []int32) {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
p.v.Elem().Set(reflect.ValueOf(v))
return
}
// an enum
// Allocate a []enum, then assign []int32's values into it.
// Note: we can't convert []enum to []int32.
slice := reflect.MakeSlice(p.v.Type().Elem(), len(v), cap(v))
for i, x := range v {
slice.Index(i).SetInt(int64(x))
}
p.v.Elem().Set(slice)
}
func (p pointer) appendInt32Slice(v int32) {
grow(p.v.Elem()).SetInt(int64(v))
}
func (p pointer) toUint64() *uint64 {
return p.v.Interface().(*uint64)
}
func (p pointer) toUint64Ptr() **uint64 {
return p.v.Interface().(**uint64)
}
func (p pointer) toUint64Slice() *[]uint64 {
return p.v.Interface().(*[]uint64)
}
func (p pointer) toUint32() *uint32 {
return p.v.Interface().(*uint32)
}
func (p pointer) toUint32Ptr() **uint32 {
return p.v.Interface().(**uint32)
}
func (p pointer) toUint32Slice() *[]uint32 {
return p.v.Interface().(*[]uint32)
}
func (p pointer) toBool() *bool {
return p.v.Interface().(*bool)
}
func (p pointer) toBoolPtr() **bool {
return p.v.Interface().(**bool)
}
func (p pointer) toBoolSlice() *[]bool {
return p.v.Interface().(*[]bool)
}
func (p pointer) toFloat64() *float64 {
return p.v.Interface().(*float64)
}
func (p pointer) toFloat64Ptr() **float64 {
return p.v.Interface().(**float64)
}
func (p pointer) toFloat64Slice() *[]float64 {
return p.v.Interface().(*[]float64)
}
func (p pointer) toFloat32() *float32 {
return p.v.Interface().(*float32)
}
func (p pointer) toFloat32Ptr() **float32 {
return p.v.Interface().(**float32)
}
func (p pointer) toFloat32Slice() *[]float32 {
return p.v.Interface().(*[]float32)
}
func (p pointer) toString() *string {
return p.v.Interface().(*string)
}
func (p pointer) toStringPtr() **string {
return p.v.Interface().(**string)
}
func (p pointer) toStringSlice() *[]string {
return p.v.Interface().(*[]string)
}
func (p pointer) toBytes() *[]byte {
return p.v.Interface().(*[]byte)
}
func (p pointer) toBytesSlice() *[][]byte {
return p.v.Interface().(*[][]byte)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return p.v.Interface().(*XXX_InternalExtensions)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return p.v.Interface().(*map[int32]Extension)
}
func (p pointer) getPointer() pointer {
return pointer{v: p.v.Elem()}
}
func (p pointer) setPointer(q pointer) {
p.v.Elem().Set(q.v)
}
func (p pointer) appendPointer(q pointer) {
grow(p.v.Elem()).Set(q.v)
}
// getPointerSlice copies []*T from p as a new []pointer.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) getPointerSlice() []pointer {
if p.v.IsNil() {
return nil
}
n := p.v.Elem().Len()
s := make([]pointer, n)
for i := 0; i < n; i++ {
s[i] = pointer{v: p.v.Elem().Index(i)}
}
return s
}
// setPointerSlice copies []pointer into p as a new []*T.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) setPointerSlice(v []pointer) {
if v == nil {
p.v.Elem().Set(reflect.New(p.v.Elem().Type()).Elem())
return
}
s := reflect.MakeSlice(p.v.Elem().Type(), 0, len(v))
for _, p := range v {
s = reflect.Append(s, p.v)
}
p.v.Elem().Set(s)
}
// getInterfacePointer returns a pointer that points to the
// interface data of the interface pointed by p.
func (p pointer) getInterfacePointer() pointer {
if p.v.Elem().IsNil() {
return pointer{v: p.v.Elem()}
}
return pointer{v: p.v.Elem().Elem().Elem().Field(0).Addr()} // *interface -> interface -> *struct -> struct
}
func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
// TODO: check that p.v.Type().Elem() == t?
return p.v
}
func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
var atomicLock sync.Mutex

View File

@ -1,313 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2012 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build !purego,!appengine,!js
// This file contains the implementation of the proto field accesses using package unsafe.
package proto
import (
"reflect"
"sync/atomic"
"unsafe"
)
const unsafeAllowed = true
// A field identifies a field in a struct, accessible from a pointer.
// In this implementation, a field is identified by its byte offset from the start of the struct.
type field uintptr
// toField returns a field equivalent to the given reflect field.
func toField(f *reflect.StructField) field {
return field(f.Offset)
}
// invalidField is an invalid field identifier.
const invalidField = ^field(0)
// zeroField is a noop when calling pointer.offset.
const zeroField = field(0)
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool {
return f != invalidField
}
// The pointer type below is for the new table-driven encoder/decoder.
// The implementation here uses unsafe.Pointer to create a generic pointer.
// In pointer_reflect.go we use reflect instead of unsafe to implement
// the same (but slower) interface.
type pointer struct {
p unsafe.Pointer
}
// size of pointer
var ptrSize = unsafe.Sizeof(uintptr(0))
// toPointer converts an interface of pointer type to a pointer
// that points to the same target.
func toPointer(i *Message) pointer {
// Super-tricky - read pointer out of data word of interface value.
// Saves ~25ns over the equivalent:
// return valToPointer(reflect.ValueOf(*i))
return pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
}
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr, deref bool) (p pointer) {
// Super-tricky - read or get the address of data word of interface value.
if isptr {
// The interface is of pointer type, thus it is a direct interface.
// The data word is the pointer data itself. We take its address.
p = pointer{p: unsafe.Pointer(uintptr(unsafe.Pointer(i)) + ptrSize)}
} else {
// The interface is not of pointer type. The data word is the pointer
// to the data.
p = pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
}
if deref {
p.p = *(*unsafe.Pointer)(p.p)
}
return p
}
// valToPointer converts v to a pointer. v must be of pointer type.
func valToPointer(v reflect.Value) pointer {
return pointer{p: unsafe.Pointer(v.Pointer())}
}
// offset converts from a pointer to a structure to a pointer to
// one of its fields.
func (p pointer) offset(f field) pointer {
// For safety, we should panic if !f.IsValid, however calling panic causes
// this to no longer be inlineable, which is a serious performance cost.
/*
if !f.IsValid() {
panic("invalid field")
}
*/
return pointer{p: unsafe.Pointer(uintptr(p.p) + uintptr(f))}
}
func (p pointer) isNil() bool {
return p.p == nil
}
func (p pointer) toInt64() *int64 {
return (*int64)(p.p)
}
func (p pointer) toInt64Ptr() **int64 {
return (**int64)(p.p)
}
func (p pointer) toInt64Slice() *[]int64 {
return (*[]int64)(p.p)
}
func (p pointer) toInt32() *int32 {
return (*int32)(p.p)
}
// See pointer_reflect.go for why toInt32Ptr/Slice doesn't exist.
/*
func (p pointer) toInt32Ptr() **int32 {
return (**int32)(p.p)
}
func (p pointer) toInt32Slice() *[]int32 {
return (*[]int32)(p.p)
}
*/
func (p pointer) getInt32Ptr() *int32 {
return *(**int32)(p.p)
}
func (p pointer) setInt32Ptr(v int32) {
*(**int32)(p.p) = &v
}
// getInt32Slice loads a []int32 from p.
// The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getInt32Slice() []int32 {
return *(*[]int32)(p.p)
}
// setInt32Slice stores a []int32 to p.
// The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) setInt32Slice(v []int32) {
*(*[]int32)(p.p) = v
}
// TODO: Can we get rid of appendInt32Slice and use setInt32Slice instead?
func (p pointer) appendInt32Slice(v int32) {
s := (*[]int32)(p.p)
*s = append(*s, v)
}
func (p pointer) toUint64() *uint64 {
return (*uint64)(p.p)
}
func (p pointer) toUint64Ptr() **uint64 {
return (**uint64)(p.p)
}
func (p pointer) toUint64Slice() *[]uint64 {
return (*[]uint64)(p.p)
}
func (p pointer) toUint32() *uint32 {
return (*uint32)(p.p)
}
func (p pointer) toUint32Ptr() **uint32 {
return (**uint32)(p.p)
}
func (p pointer) toUint32Slice() *[]uint32 {
return (*[]uint32)(p.p)
}
func (p pointer) toBool() *bool {
return (*bool)(p.p)
}
func (p pointer) toBoolPtr() **bool {
return (**bool)(p.p)
}
func (p pointer) toBoolSlice() *[]bool {
return (*[]bool)(p.p)
}
func (p pointer) toFloat64() *float64 {
return (*float64)(p.p)
}
func (p pointer) toFloat64Ptr() **float64 {
return (**float64)(p.p)
}
func (p pointer) toFloat64Slice() *[]float64 {
return (*[]float64)(p.p)
}
func (p pointer) toFloat32() *float32 {
return (*float32)(p.p)
}
func (p pointer) toFloat32Ptr() **float32 {
return (**float32)(p.p)
}
func (p pointer) toFloat32Slice() *[]float32 {
return (*[]float32)(p.p)
}
func (p pointer) toString() *string {
return (*string)(p.p)
}
func (p pointer) toStringPtr() **string {
return (**string)(p.p)
}
func (p pointer) toStringSlice() *[]string {
return (*[]string)(p.p)
}
func (p pointer) toBytes() *[]byte {
return (*[]byte)(p.p)
}
func (p pointer) toBytesSlice() *[][]byte {
return (*[][]byte)(p.p)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return (*XXX_InternalExtensions)(p.p)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return (*map[int32]Extension)(p.p)
}
// getPointerSlice loads []*T from p as a []pointer.
// The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getPointerSlice() []pointer {
// Super-tricky - p should point to a []*T where T is a
// message type. We load it as []pointer.
return *(*[]pointer)(p.p)
}
// setPointerSlice stores []pointer into p as a []*T.
// The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) setPointerSlice(v []pointer) {
// Super-tricky - p should point to a []*T where T is a
// message type. We store it as []pointer.
*(*[]pointer)(p.p) = v
}
// getPointer loads the pointer at p and returns it.
func (p pointer) getPointer() pointer {
return pointer{p: *(*unsafe.Pointer)(p.p)}
}
// setPointer stores the pointer q at p.
func (p pointer) setPointer(q pointer) {
*(*unsafe.Pointer)(p.p) = q.p
}
// append q to the slice pointed to by p.
func (p pointer) appendPointer(q pointer) {
s := (*[]unsafe.Pointer)(p.p)
*s = append(*s, q.p)
}
// getInterfacePointer returns a pointer that points to the
// interface data of the interface pointed by p.
func (p pointer) getInterfacePointer() pointer {
// Super-tricky - read pointer out of data word of interface value.
return pointer{p: (*(*[2]unsafe.Pointer)(p.p))[1]}
}
// asPointerTo returns a reflect.Value that is a pointer to an
// object of type t stored at p.
func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
return reflect.NewAt(t, p.p)
}
func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
return (*unmarshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
return (*marshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
return (*mergeInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
return (*discardInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}

View File

@ -1,162 +1,104 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
/*
* Routines for encoding data into the wire format for protocol buffers.
*/
import (
"fmt"
"log"
"reflect"
"sort"
"strconv"
"strings"
"sync"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/runtime/protoimpl"
)
const debug bool = false
// Constants that identify the encoding of a value on the wire.
const (
WireVarint = 0
WireFixed64 = 1
WireBytes = 2
WireStartGroup = 3
WireEndGroup = 4
WireFixed32 = 5
)
// tagMap is an optimization over map[int]int for typical protocol buffer
// use-cases. Encoded protocol buffers are often in tag order with small tag
// numbers.
type tagMap struct {
fastTags []int
slowTags map[int]int
}
// tagMapFastLimit is the upper bound on the tag number that will be stored in
// the tagMap slice rather than its map.
const tagMapFastLimit = 1024
func (p *tagMap) get(t int) (int, bool) {
if t > 0 && t < tagMapFastLimit {
if t >= len(p.fastTags) {
return 0, false
}
fi := p.fastTags[t]
return fi, fi >= 0
}
fi, ok := p.slowTags[t]
return fi, ok
}
func (p *tagMap) put(t int, fi int) {
if t > 0 && t < tagMapFastLimit {
for len(p.fastTags) < t+1 {
p.fastTags = append(p.fastTags, -1)
}
p.fastTags[t] = fi
return
}
if p.slowTags == nil {
p.slowTags = make(map[int]int)
}
p.slowTags[t] = fi
}
// StructProperties represents properties for all the fields of a struct.
// decoderTags and decoderOrigNames should only be used by the decoder.
// StructProperties represents protocol buffer type information for a
// generated protobuf message in the open-struct API.
//
// Deprecated: Do not use.
type StructProperties struct {
Prop []*Properties // properties for each field
reqCount int // required count
decoderTags tagMap // map from proto tag to struct field number
decoderOrigNames map[string]int // map from original name to struct field number
order []int // list of struct field numbers in tag order
// Prop are the properties for each field.
//
// Fields belonging to a oneof are stored in OneofTypes instead, with a
// single Properties representing the parent oneof held here.
//
// The order of Prop matches the order of fields in the Go struct.
// Struct fields that are not related to protobufs have a "XXX_" prefix
// in the Properties.Name and must be ignored by the user.
Prop []*Properties
// OneofTypes contains information about the oneof fields in this message.
// It is keyed by the original name of a field.
// It is keyed by the protobuf field name.
OneofTypes map[string]*OneofProperties
}
// OneofProperties represents information about a specific field in a oneof.
type OneofProperties struct {
Type reflect.Type // pointer to generated struct type for this oneof field
Field int // struct field number of the containing oneof in the message
Prop *Properties
}
// Implement the sorting interface so we can sort the fields in tag order, as recommended by the spec.
// See encode.go, (*Buffer).enc_struct.
func (sp *StructProperties) Len() int { return len(sp.order) }
func (sp *StructProperties) Less(i, j int) bool {
return sp.Prop[sp.order[i]].Tag < sp.Prop[sp.order[j]].Tag
}
func (sp *StructProperties) Swap(i, j int) { sp.order[i], sp.order[j] = sp.order[j], sp.order[i] }
// Properties represents the protocol-specific behavior of a single struct field.
// Properties represents the type information for a protobuf message field.
//
// Deprecated: Do not use.
type Properties struct {
Name string // name of the field, for error messages
OrigName string // original name before protocol compiler (always set)
JSONName string // name to use for JSON; determined by protoc
Wire string
// Name is a placeholder name with little meaningful semantic value.
// If the name has an "XXX_" prefix, the entire Properties must be ignored.
Name string
// OrigName is the protobuf field name or oneof name.
OrigName string
// JSONName is the JSON name for the protobuf field.
JSONName string
// Enum is a placeholder name for enums.
// For historical reasons, this is neither the Go name for the enum,
// nor the protobuf name for the enum.
Enum string // Deprecated: Do not use.
// Weak contains the full name of the weakly referenced message.
Weak string
// Wire is a string representation of the wire type.
Wire string
// WireType is the protobuf wire type for the field.
WireType int
Tag int
// Tag is the protobuf field number.
Tag int
// Required reports whether this is a required field.
Required bool
// Optional reports whether this is a optional field.
Optional bool
// Repeated reports whether this is a repeated field.
Repeated bool
Packed bool // relevant for repeated primitives only
Enum string // set for enum types only
proto3 bool // whether this is known to be a proto3 field
oneof bool // whether this is a oneof field
// Packed reports whether this is a packed repeated field of scalars.
Packed bool
// Proto3 reports whether this field operates under the proto3 syntax.
Proto3 bool
// Oneof reports whether this field belongs within a oneof.
Oneof bool
Default string // default value
HasDefault bool // whether an explicit default was provided
// Default is the default value in string form.
Default string
// HasDefault reports whether the field has a default value.
HasDefault bool
stype reflect.Type // set for struct types only
sprop *StructProperties // set for struct types only
// MapKeyProp is the properties for the key field for a map field.
MapKeyProp *Properties
// MapValProp is the properties for the value field for a map field.
MapValProp *Properties
}
mtype reflect.Type // set for map types only
MapKeyProp *Properties // set for map types only
MapValProp *Properties // set for map types only
// OneofProperties represents the type information for a protobuf oneof.
//
// Deprecated: Do not use.
type OneofProperties struct {
// Type is a pointer to the generated wrapper type for the field value.
// This is nil for messages that are not in the open-struct API.
Type reflect.Type
// Field is the index into StructProperties.Prop for the containing oneof.
Field int
// Prop is the properties for the field.
Prop *Properties
}
// String formats the properties in the protobuf struct field tag style.
func (p *Properties) String() string {
s := p.Wire
s += ","
s += strconv.Itoa(p.Tag)
s += "," + strconv.Itoa(p.Tag)
if p.Required {
s += ",req"
}
@ -170,18 +112,21 @@ func (p *Properties) String() string {
s += ",packed"
}
s += ",name=" + p.OrigName
if p.JSONName != p.OrigName {
if p.JSONName != "" {
s += ",json=" + p.JSONName
}
if p.proto3 {
s += ",proto3"
}
if p.oneof {
s += ",oneof"
}
if len(p.Enum) > 0 {
s += ",enum=" + p.Enum
}
if len(p.Weak) > 0 {
s += ",weak=" + p.Weak
}
if p.Proto3 {
s += ",proto3"
}
if p.Oneof {
s += ",oneof"
}
if p.HasDefault {
s += ",def=" + p.Default
}
@ -189,356 +134,173 @@ func (p *Properties) String() string {
}
// Parse populates p by parsing a string in the protobuf struct field tag style.
func (p *Properties) Parse(s string) {
// "bytes,49,opt,name=foo,def=hello!"
fields := strings.Split(s, ",") // breaks def=, but handled below.
if len(fields) < 2 {
log.Printf("proto: tag has too few fields: %q", s)
return
}
p.Wire = fields[0]
switch p.Wire {
case "varint":
p.WireType = WireVarint
case "fixed32":
p.WireType = WireFixed32
case "fixed64":
p.WireType = WireFixed64
case "zigzag32":
p.WireType = WireVarint
case "zigzag64":
p.WireType = WireVarint
case "bytes", "group":
p.WireType = WireBytes
// no numeric converter for non-numeric types
default:
log.Printf("proto: tag has unknown wire type: %q", s)
return
}
var err error
p.Tag, err = strconv.Atoi(fields[1])
if err != nil {
return
}
outer:
for i := 2; i < len(fields); i++ {
f := fields[i]
switch {
case f == "req":
p.Required = true
case f == "opt":
func (p *Properties) Parse(tag string) {
// For example: "bytes,49,opt,name=foo,def=hello!"
for len(tag) > 0 {
i := strings.IndexByte(tag, ',')
if i < 0 {
i = len(tag)
}
switch s := tag[:i]; {
case strings.HasPrefix(s, "name="):
p.OrigName = s[len("name="):]
case strings.HasPrefix(s, "json="):
p.JSONName = s[len("json="):]
case strings.HasPrefix(s, "enum="):
p.Enum = s[len("enum="):]
case strings.HasPrefix(s, "weak="):
p.Weak = s[len("weak="):]
case strings.Trim(s, "0123456789") == "":
n, _ := strconv.ParseUint(s, 10, 32)
p.Tag = int(n)
case s == "opt":
p.Optional = true
case f == "rep":
case s == "req":
p.Required = true
case s == "rep":
p.Repeated = true
case f == "packed":
case s == "varint" || s == "zigzag32" || s == "zigzag64":
p.Wire = s
p.WireType = WireVarint
case s == "fixed32":
p.Wire = s
p.WireType = WireFixed32
case s == "fixed64":
p.Wire = s
p.WireType = WireFixed64
case s == "bytes":
p.Wire = s
p.WireType = WireBytes
case s == "group":
p.Wire = s
p.WireType = WireStartGroup
case s == "packed":
p.Packed = true
case strings.HasPrefix(f, "name="):
p.OrigName = f[5:]
case strings.HasPrefix(f, "json="):
p.JSONName = f[5:]
case strings.HasPrefix(f, "enum="):
p.Enum = f[5:]
case f == "proto3":
p.proto3 = true
case f == "oneof":
p.oneof = true
case strings.HasPrefix(f, "def="):
case s == "proto3":
p.Proto3 = true
case s == "oneof":
p.Oneof = true
case strings.HasPrefix(s, "def="):
// The default tag is special in that everything afterwards is the
// default regardless of the presence of commas.
p.HasDefault = true
p.Default = f[4:] // rest of string
if i+1 < len(fields) {
// Commas aren't escaped, and def is always last.
p.Default += "," + strings.Join(fields[i+1:], ",")
break outer
}
p.Default, i = tag[len("def="):], len(tag)
}
tag = strings.TrimPrefix(tag[i:], ",")
}
}
var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem()
// setFieldProps initializes the field properties for submessages and maps.
func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, lockGetProp bool) {
switch t1 := typ; t1.Kind() {
case reflect.Ptr:
if t1.Elem().Kind() == reflect.Struct {
p.stype = t1.Elem()
}
case reflect.Slice:
if t2 := t1.Elem(); t2.Kind() == reflect.Ptr && t2.Elem().Kind() == reflect.Struct {
p.stype = t2.Elem()
}
case reflect.Map:
p.mtype = t1
p.MapKeyProp = &Properties{}
p.MapKeyProp.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
p.MapValProp = &Properties{}
vtype := p.mtype.Elem()
if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice {
// The value type is not a message (*T) or bytes ([]byte),
// so we need encoders for the pointer to this type.
vtype = reflect.PtrTo(vtype)
}
p.MapValProp.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
}
if p.stype != nil {
if lockGetProp {
p.sprop = GetProperties(p.stype)
} else {
p.sprop = getPropertiesLocked(p.stype)
}
}
}
var (
marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem()
)
// Init populates the properties from a protocol buffer struct tag.
//
// Deprecated: Do not use.
func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) {
p.init(typ, name, tag, f, true)
}
func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructField, lockGetProp bool) {
// "bytes,49,opt,def=hello!"
p.Name = name
p.OrigName = name
if tag == "" {
return
}
p.Parse(tag)
p.setFieldProps(typ, f, lockGetProp)
if typ != nil && typ.Kind() == reflect.Map {
p.MapKeyProp = new(Properties)
p.MapKeyProp.Init(nil, "Key", f.Tag.Get("protobuf_key"), nil)
p.MapValProp = new(Properties)
p.MapValProp.Init(nil, "Value", f.Tag.Get("protobuf_val"), nil)
}
}
var (
propertiesMu sync.RWMutex
propertiesMap = make(map[reflect.Type]*StructProperties)
)
var propertiesCache sync.Map // map[reflect.Type]*StructProperties
// GetProperties returns the list of properties for the type represented by t.
// t must represent a generated struct type of a protocol message.
// GetProperties returns the list of properties for the type represented by t,
// which must be a generated protocol buffer message in the open-struct API,
// where protobuf message fields are represented by exported Go struct fields.
//
// Deprecated: Use protobuf reflection instead.
func GetProperties(t reflect.Type) *StructProperties {
if t.Kind() != reflect.Struct {
panic("proto: type must have kind struct")
if p, ok := propertiesCache.Load(t); ok {
return p.(*StructProperties)
}
// Most calls to GetProperties in a long-running program will be
// retrieving details for types we have seen before.
propertiesMu.RLock()
sprop, ok := propertiesMap[t]
propertiesMu.RUnlock()
if ok {
return sprop
}
propertiesMu.Lock()
sprop = getPropertiesLocked(t)
propertiesMu.Unlock()
return sprop
p, _ := propertiesCache.LoadOrStore(t, newProperties(t))
return p.(*StructProperties)
}
type (
oneofFuncsIface interface {
XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
}
oneofWrappersIface interface {
XXX_OneofWrappers() []interface{}
}
)
// getPropertiesLocked requires that propertiesMu is held.
func getPropertiesLocked(t reflect.Type) *StructProperties {
if prop, ok := propertiesMap[t]; ok {
return prop
func newProperties(t reflect.Type) *StructProperties {
if t.Kind() != reflect.Struct {
panic(fmt.Sprintf("%v is not a generated message in the open-struct API", t))
}
var hasOneof bool
prop := new(StructProperties)
// in case of recursive protos, fill this in now.
propertiesMap[t] = prop
// build properties
prop.Prop = make([]*Properties, t.NumField())
prop.order = make([]int, t.NumField())
// Construct a list of properties for each field in the struct.
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
p := new(Properties)
name := f.Name
p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false)
f := t.Field(i)
tagField := f.Tag.Get("protobuf")
p.Init(f.Type, f.Name, tagField, &f)
oneof := f.Tag.Get("protobuf_oneof") // special case
if oneof != "" {
// Oneof fields don't use the traditional protobuf tag.
p.OrigName = oneof
tagOneof := f.Tag.Get("protobuf_oneof")
if tagOneof != "" {
hasOneof = true
p.OrigName = tagOneof
}
prop.Prop[i] = p
prop.order[i] = i
if debug {
print(i, " ", f.Name, " ", t.String(), " ")
if p.Tag > 0 {
print(p.String())
// Rename unrelated struct fields with the "XXX_" prefix since so much
// user code simply checks for this to exclude special fields.
if tagField == "" && tagOneof == "" && !strings.HasPrefix(p.Name, "XXX_") {
p.Name = "XXX_" + p.Name
p.OrigName = "XXX_" + p.OrigName
} else if p.Weak != "" {
p.Name = p.OrigName // avoid possible "XXX_" prefix on weak field
}
prop.Prop = append(prop.Prop, p)
}
// Construct a mapping of oneof field names to properties.
if hasOneof {
var oneofWrappers []interface{}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofFuncs"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[3].Interface().([]interface{})
}
if fn, ok := reflect.PtrTo(t).MethodByName("XXX_OneofWrappers"); ok {
oneofWrappers = fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0].Interface().([]interface{})
}
if m, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(protoreflect.ProtoMessage); ok {
if m, ok := m.ProtoReflect().(interface{ ProtoMessageInfo() *protoimpl.MessageInfo }); ok {
oneofWrappers = m.ProtoMessageInfo().OneofWrappers
}
print("\n")
}
}
// Re-order prop.order.
sort.Sort(prop)
var oots []interface{}
switch m := reflect.Zero(reflect.PtrTo(t)).Interface().(type) {
case oneofFuncsIface:
_, _, _, oots = m.XXX_OneofFuncs()
case oneofWrappersIface:
oots = m.XXX_OneofWrappers()
}
if len(oots) > 0 {
// Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties)
for _, oot := range oots {
oop := &OneofProperties{
Type: reflect.ValueOf(oot).Type(), // *T
for _, wrapper := range oneofWrappers {
p := &OneofProperties{
Type: reflect.ValueOf(wrapper).Type(), // *T
Prop: new(Properties),
}
sft := oop.Type.Elem().Field(0)
oop.Prop.Name = sft.Name
oop.Prop.Parse(sft.Tag.Get("protobuf"))
// There will be exactly one interface field that
// this new value is assignable to.
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
if f.Type.Kind() != reflect.Interface {
continue
}
if !oop.Type.AssignableTo(f.Type) {
continue
}
oop.Field = i
break
}
prop.OneofTypes[oop.Prop.OrigName] = oop
}
}
f := p.Type.Elem().Field(0)
p.Prop.Name = f.Name
p.Prop.Parse(f.Tag.Get("protobuf"))
// build required counts
// build tags
reqCount := 0
prop.decoderOrigNames = make(map[string]int)
for i, p := range prop.Prop {
if strings.HasPrefix(p.Name, "XXX_") {
// Internal fields should not appear in tags/origNames maps.
// They are handled specially when encoding and decoding.
continue
// Determine the struct field that contains this oneof.
// Each wrapper is assignable to exactly one parent field.
var foundOneof bool
for i := 0; i < t.NumField() && !foundOneof; i++ {
if p.Type.AssignableTo(t.Field(i).Type) {
p.Field = i
foundOneof = true
}
}
if !foundOneof {
panic(fmt.Sprintf("%v is not a generated message in the open-struct API", t))
}
prop.OneofTypes[p.Prop.OrigName] = p
}
if p.Required {
reqCount++
}
prop.decoderTags.put(p.Tag, i)
prop.decoderOrigNames[p.OrigName] = i
}
prop.reqCount = reqCount
return prop
}
// A global registry of enum types.
// The generated code will register the generated maps by calling RegisterEnum.
var enumValueMaps = make(map[string]map[string]int32)
// RegisterEnum is called from the generated code to install the enum descriptor
// maps into the global table to aid parsing text format protocol buffers.
func RegisterEnum(typeName string, unusedNameMap map[int32]string, valueMap map[string]int32) {
if _, ok := enumValueMaps[typeName]; ok {
panic("proto: duplicate enum registered: " + typeName)
}
enumValueMaps[typeName] = valueMap
}
// EnumValueMap returns the mapping from names to integers of the
// enum type enumType, or a nil if not found.
func EnumValueMap(enumType string) map[string]int32 {
return enumValueMaps[enumType]
}
// A registry of all linked message types.
// The string is a fully-qualified proto name ("pkg.Message").
var (
protoTypedNils = make(map[string]Message) // a map from proto names to typed nil pointers
protoMapTypes = make(map[string]reflect.Type) // a map from proto names to map types
revProtoTypes = make(map[reflect.Type]string)
)
// RegisterType is called from generated code and maps from the fully qualified
// proto name to the type (pointer to struct) of the protocol buffer.
func RegisterType(x Message, name string) {
if _, ok := protoTypedNils[name]; ok {
// TODO: Some day, make this a panic.
log.Printf("proto: duplicate proto type registered: %s", name)
return
}
t := reflect.TypeOf(x)
if v := reflect.ValueOf(x); v.Kind() == reflect.Ptr && v.Pointer() == 0 {
// Generated code always calls RegisterType with nil x.
// This check is just for extra safety.
protoTypedNils[name] = x
} else {
protoTypedNils[name] = reflect.Zero(t).Interface().(Message)
}
revProtoTypes[t] = name
}
// RegisterMapType is called from generated code and maps from the fully qualified
// proto name to the native map type of the proto map definition.
func RegisterMapType(x interface{}, name string) {
if reflect.TypeOf(x).Kind() != reflect.Map {
panic(fmt.Sprintf("RegisterMapType(%T, %q); want map", x, name))
}
if _, ok := protoMapTypes[name]; ok {
log.Printf("proto: duplicate proto type registered: %s", name)
return
}
t := reflect.TypeOf(x)
protoMapTypes[name] = t
revProtoTypes[t] = name
}
// MessageName returns the fully-qualified proto name for the given message type.
func MessageName(x Message) string {
type xname interface {
XXX_MessageName() string
}
if m, ok := x.(xname); ok {
return m.XXX_MessageName()
}
return revProtoTypes[reflect.TypeOf(x)]
}
// MessageType returns the message type (pointer to struct) for a named message.
// The type is not guaranteed to implement proto.Message if the name refers to a
// map entry.
func MessageType(name string) reflect.Type {
if t, ok := protoTypedNils[name]; ok {
return reflect.TypeOf(t)
}
return protoMapTypes[name]
}
// A registry of all linked proto files.
var (
protoFiles = make(map[string][]byte) // file name => fileDescriptor
)
// RegisterFile is called from generated code and maps from the
// full file name of a .proto file to its compressed FileDescriptorProto.
func RegisterFile(filename string, fileDescriptor []byte) {
protoFiles[filename] = fileDescriptor
}
// FileDescriptor returns the compressed FileDescriptorProto for a .proto file.
func FileDescriptor(filename string) []byte { return protoFiles[filename] }
func (sp *StructProperties) Len() int { return len(sp.Prop) }
func (sp *StructProperties) Less(i, j int) bool { return false }
func (sp *StructProperties) Swap(i, j int) { return }

167
vendor/github.com/golang/protobuf/proto/proto.go generated vendored Normal file
View File

@ -0,0 +1,167 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package proto provides functionality for handling protocol buffer messages.
// In particular, it provides marshaling and unmarshaling between a protobuf
// message and the binary wire format.
//
// See https://developers.google.com/protocol-buffers/docs/gotutorial for
// more information.
//
// Deprecated: Use the "google.golang.org/protobuf/proto" package instead.
package proto
import (
protoV2 "google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/runtime/protoiface"
"google.golang.org/protobuf/runtime/protoimpl"
)
const (
ProtoPackageIsVersion1 = true
ProtoPackageIsVersion2 = true
ProtoPackageIsVersion3 = true
ProtoPackageIsVersion4 = true
)
// GeneratedEnum is any enum type generated by protoc-gen-go
// which is a named int32 kind.
// This type exists for documentation purposes.
type GeneratedEnum interface{}
// GeneratedMessage is any message type generated by protoc-gen-go
// which is a pointer to a named struct kind.
// This type exists for documentation purposes.
type GeneratedMessage interface{}
// Message is a protocol buffer message.
//
// This is the v1 version of the message interface and is marginally better
// than an empty interface as it lacks any method to programatically interact
// with the contents of the message.
//
// A v2 message is declared in "google.golang.org/protobuf/proto".Message and
// exposes protobuf reflection as a first-class feature of the interface.
//
// To convert a v1 message to a v2 message, use the MessageV2 function.
// To convert a v2 message to a v1 message, use the MessageV1 function.
type Message = protoiface.MessageV1
// MessageV1 converts either a v1 or v2 message to a v1 message.
// It returns nil if m is nil.
func MessageV1(m GeneratedMessage) protoiface.MessageV1 {
return protoimpl.X.ProtoMessageV1Of(m)
}
// MessageV2 converts either a v1 or v2 message to a v2 message.
// It returns nil if m is nil.
func MessageV2(m GeneratedMessage) protoV2.Message {
return protoimpl.X.ProtoMessageV2Of(m)
}
// MessageReflect returns a reflective view for a message.
// It returns nil if m is nil.
func MessageReflect(m Message) protoreflect.Message {
return protoimpl.X.MessageOf(m)
}
// Marshaler is implemented by messages that can marshal themselves.
// This interface is used by the following functions: Size, Marshal,
// Buffer.Marshal, and Buffer.EncodeMessage.
//
// Deprecated: Do not implement.
type Marshaler interface {
// Marshal formats the encoded bytes of the message.
// It should be deterministic and emit valid protobuf wire data.
// The caller takes ownership of the returned buffer.
Marshal() ([]byte, error)
}
// Unmarshaler is implemented by messages that can unmarshal themselves.
// This interface is used by the following functions: Unmarshal, UnmarshalMerge,
// Buffer.Unmarshal, Buffer.DecodeMessage, and Buffer.DecodeGroup.
//
// Deprecated: Do not implement.
type Unmarshaler interface {
// Unmarshal parses the encoded bytes of the protobuf wire input.
// The provided buffer is only valid for during method call.
// It should not reset the receiver message.
Unmarshal([]byte) error
}
// Merger is implemented by messages that can merge themselves.
// This interface is used by the following functions: Clone and Merge.
//
// Deprecated: Do not implement.
type Merger interface {
// Merge merges the contents of src into the receiver message.
// It clones all data structures in src such that it aliases no mutable
// memory referenced by src.
Merge(src Message)
}
// RequiredNotSetError is an error type returned when
// marshaling or unmarshaling a message with missing required fields.
type RequiredNotSetError struct {
err error
}
func (e *RequiredNotSetError) Error() string {
if e.err != nil {
return e.err.Error()
}
return "proto: required field not set"
}
func (e *RequiredNotSetError) RequiredNotSet() bool {
return true
}
func checkRequiredNotSet(m protoV2.Message) error {
if err := protoV2.CheckInitialized(m); err != nil {
return &RequiredNotSetError{err: err}
}
return nil
}
// Clone returns a deep copy of src.
func Clone(src Message) Message {
return MessageV1(protoV2.Clone(MessageV2(src)))
}
// Merge merges src into dst, which must be messages of the same type.
//
// Populated scalar fields in src are copied to dst, while populated
// singular messages in src are merged into dst by recursively calling Merge.
// The elements of every list field in src is appended to the corresponded
// list fields in dst. The entries of every map field in src is copied into
// the corresponding map field in dst, possibly replacing existing entries.
// The unknown fields of src are appended to the unknown fields of dst.
func Merge(dst, src Message) {
protoV2.Merge(MessageV2(dst), MessageV2(src))
}
// Equal reports whether two messages are equal.
// If two messages marshal to the same bytes under deterministic serialization,
// then Equal is guaranteed to report true.
//
// Two messages are equal if they are the same protobuf message type,
// have the same set of populated known and extension field values,
// and the same set of unknown fields values.
//
// Scalar values are compared with the equivalent of the == operator in Go,
// except bytes values which are compared using bytes.Equal and
// floating point values which specially treat NaNs as equal.
// Message values are compared by recursively calling Equal.
// Lists are equal if each element value is also equal.
// Maps are equal if they have the same set of keys, where the pair of values
// for each key is also equal.
func Equal(x, y Message) bool {
return protoV2.Equal(MessageV2(x), MessageV2(y))
}
func isMessageSet(md protoreflect.MessageDescriptor) bool {
ms, ok := md.(interface{ IsMessageSet() bool })
return ok && ms.IsMessageSet()
}

317
vendor/github.com/golang/protobuf/proto/registry.go generated vendored Normal file
View File

@ -0,0 +1,317 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import (
"bytes"
"compress/gzip"
"fmt"
"io/ioutil"
"reflect"
"strings"
"sync"
"google.golang.org/protobuf/reflect/protodesc"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
"google.golang.org/protobuf/runtime/protoimpl"
)
// filePath is the path to the proto source file.
type filePath = string // e.g., "google/protobuf/descriptor.proto"
// fileDescGZIP is the compressed contents of the encoded FileDescriptorProto.
type fileDescGZIP = []byte
var fileCache sync.Map // map[filePath]fileDescGZIP
// RegisterFile is called from generated code to register the compressed
// FileDescriptorProto with the file path for a proto source file.
//
// Deprecated: Use protoregistry.GlobalFiles.RegisterFile instead.
func RegisterFile(s filePath, d fileDescGZIP) {
// Decompress the descriptor.
zr, err := gzip.NewReader(bytes.NewReader(d))
if err != nil {
panic(fmt.Sprintf("proto: invalid compressed file descriptor: %v", err))
}
b, err := ioutil.ReadAll(zr)
if err != nil {
panic(fmt.Sprintf("proto: invalid compressed file descriptor: %v", err))
}
// Construct a protoreflect.FileDescriptor from the raw descriptor.
// Note that DescBuilder.Build automatically registers the constructed
// file descriptor with the v2 registry.
protoimpl.DescBuilder{RawDescriptor: b}.Build()
// Locally cache the raw descriptor form for the file.
fileCache.Store(s, d)
}
// FileDescriptor returns the compressed FileDescriptorProto given the file path
// for a proto source file. It returns nil if not found.
//
// Deprecated: Use protoregistry.GlobalFiles.FindFileByPath instead.
func FileDescriptor(s filePath) fileDescGZIP {
if v, ok := fileCache.Load(s); ok {
return v.(fileDescGZIP)
}
// Find the descriptor in the v2 registry.
var b []byte
if fd, _ := protoregistry.GlobalFiles.FindFileByPath(s); fd != nil {
b, _ = Marshal(protodesc.ToFileDescriptorProto(fd))
}
// Locally cache the raw descriptor form for the file.
if len(b) > 0 {
v, _ := fileCache.LoadOrStore(s, protoimpl.X.CompressGZIP(b))
return v.(fileDescGZIP)
}
return nil
}
// enumName is the name of an enum. For historical reasons, the enum name is
// neither the full Go name nor the full protobuf name of the enum.
// The name is the dot-separated combination of just the proto package that the
// enum is declared within followed by the Go type name of the generated enum.
type enumName = string // e.g., "my.proto.package.GoMessage_GoEnum"
// enumsByName maps enum values by name to their numeric counterpart.
type enumsByName = map[string]int32
// enumsByNumber maps enum values by number to their name counterpart.
type enumsByNumber = map[int32]string
var enumCache sync.Map // map[enumName]enumsByName
var numFilesCache sync.Map // map[protoreflect.FullName]int
// RegisterEnum is called from the generated code to register the mapping of
// enum value names to enum numbers for the enum identified by s.
//
// Deprecated: Use protoregistry.GlobalTypes.RegisterEnum instead.
func RegisterEnum(s enumName, _ enumsByNumber, m enumsByName) {
if _, ok := enumCache.Load(s); ok {
panic("proto: duplicate enum registered: " + s)
}
enumCache.Store(s, m)
// This does not forward registration to the v2 registry since this API
// lacks sufficient information to construct a complete v2 enum descriptor.
}
// EnumValueMap returns the mapping from enum value names to enum numbers for
// the enum of the given name. It returns nil if not found.
//
// Deprecated: Use protoregistry.GlobalTypes.FindEnumByName instead.
func EnumValueMap(s enumName) enumsByName {
if v, ok := enumCache.Load(s); ok {
return v.(enumsByName)
}
// Check whether the cache is stale. If the number of files in the current
// package differs, then it means that some enums may have been recently
// registered upstream that we do not know about.
var protoPkg protoreflect.FullName
if i := strings.LastIndexByte(s, '.'); i >= 0 {
protoPkg = protoreflect.FullName(s[:i])
}
v, _ := numFilesCache.Load(protoPkg)
numFiles, _ := v.(int)
if protoregistry.GlobalFiles.NumFilesByPackage(protoPkg) == numFiles {
return nil // cache is up-to-date; was not found earlier
}
// Update the enum cache for all enums declared in the given proto package.
numFiles = 0
protoregistry.GlobalFiles.RangeFilesByPackage(protoPkg, func(fd protoreflect.FileDescriptor) bool {
walkEnums(fd, func(ed protoreflect.EnumDescriptor) {
name := protoimpl.X.LegacyEnumName(ed)
if _, ok := enumCache.Load(name); !ok {
m := make(enumsByName)
evs := ed.Values()
for i := evs.Len() - 1; i >= 0; i-- {
ev := evs.Get(i)
m[string(ev.Name())] = int32(ev.Number())
}
enumCache.LoadOrStore(name, m)
}
})
numFiles++
return true
})
numFilesCache.Store(protoPkg, numFiles)
// Check cache again for enum map.
if v, ok := enumCache.Load(s); ok {
return v.(enumsByName)
}
return nil
}
// walkEnums recursively walks all enums declared in d.
func walkEnums(d interface {
Enums() protoreflect.EnumDescriptors
Messages() protoreflect.MessageDescriptors
}, f func(protoreflect.EnumDescriptor)) {
eds := d.Enums()
for i := eds.Len() - 1; i >= 0; i-- {
f(eds.Get(i))
}
mds := d.Messages()
for i := mds.Len() - 1; i >= 0; i-- {
walkEnums(mds.Get(i), f)
}
}
// messageName is the full name of protobuf message.
type messageName = string
var messageTypeCache sync.Map // map[messageName]reflect.Type
// RegisterType is called from generated code to register the message Go type
// for a message of the given name.
//
// Deprecated: Use protoregistry.GlobalTypes.RegisterMessage instead.
func RegisterType(m Message, s messageName) {
mt := protoimpl.X.LegacyMessageTypeOf(m, protoreflect.FullName(s))
if err := protoregistry.GlobalTypes.RegisterMessage(mt); err != nil {
panic(err)
}
messageTypeCache.Store(s, reflect.TypeOf(m))
}
// RegisterMapType is called from generated code to register the Go map type
// for a protobuf message representing a map entry.
//
// Deprecated: Do not use.
func RegisterMapType(m interface{}, s messageName) {
t := reflect.TypeOf(m)
if t.Kind() != reflect.Map {
panic(fmt.Sprintf("invalid map kind: %v", t))
}
if _, ok := messageTypeCache.Load(s); ok {
panic(fmt.Errorf("proto: duplicate proto message registered: %s", s))
}
messageTypeCache.Store(s, t)
}
// MessageType returns the message type for a named message.
// It returns nil if not found.
//
// Deprecated: Use protoregistry.GlobalTypes.FindMessageByName instead.
func MessageType(s messageName) reflect.Type {
if v, ok := messageTypeCache.Load(s); ok {
return v.(reflect.Type)
}
// Derive the message type from the v2 registry.
var t reflect.Type
if mt, _ := protoregistry.GlobalTypes.FindMessageByName(protoreflect.FullName(s)); mt != nil {
t = messageGoType(mt)
}
// If we could not get a concrete type, it is possible that it is a
// pseudo-message for a map entry.
if t == nil {
d, _ := protoregistry.GlobalFiles.FindDescriptorByName(protoreflect.FullName(s))
if md, _ := d.(protoreflect.MessageDescriptor); md != nil && md.IsMapEntry() {
kt := goTypeForField(md.Fields().ByNumber(1))
vt := goTypeForField(md.Fields().ByNumber(2))
t = reflect.MapOf(kt, vt)
}
}
// Locally cache the message type for the given name.
if t != nil {
v, _ := messageTypeCache.LoadOrStore(s, t)
return v.(reflect.Type)
}
return nil
}
func goTypeForField(fd protoreflect.FieldDescriptor) reflect.Type {
switch k := fd.Kind(); k {
case protoreflect.EnumKind:
if et, _ := protoregistry.GlobalTypes.FindEnumByName(fd.Enum().FullName()); et != nil {
return enumGoType(et)
}
return reflect.TypeOf(protoreflect.EnumNumber(0))
case protoreflect.MessageKind, protoreflect.GroupKind:
if mt, _ := protoregistry.GlobalTypes.FindMessageByName(fd.Message().FullName()); mt != nil {
return messageGoType(mt)
}
return reflect.TypeOf((*protoreflect.Message)(nil)).Elem()
default:
return reflect.TypeOf(fd.Default().Interface())
}
}
func enumGoType(et protoreflect.EnumType) reflect.Type {
return reflect.TypeOf(et.New(0))
}
func messageGoType(mt protoreflect.MessageType) reflect.Type {
return reflect.TypeOf(MessageV1(mt.Zero().Interface()))
}
// MessageName returns the full protobuf name for the given message type.
//
// Deprecated: Use protoreflect.MessageDescriptor.FullName instead.
func MessageName(m Message) messageName {
if m == nil {
return ""
}
if m, ok := m.(interface{ XXX_MessageName() messageName }); ok {
return m.XXX_MessageName()
}
return messageName(protoimpl.X.MessageDescriptorOf(m).FullName())
}
// RegisterExtension is called from the generated code to register
// the extension descriptor.
//
// Deprecated: Use protoregistry.GlobalTypes.RegisterExtension instead.
func RegisterExtension(d *ExtensionDesc) {
if err := protoregistry.GlobalTypes.RegisterExtension(d); err != nil {
panic(err)
}
}
type extensionsByNumber = map[int32]*ExtensionDesc
var extensionCache sync.Map // map[messageName]extensionsByNumber
// RegisteredExtensions returns a map of the registered extensions for the
// provided protobuf message, indexed by the extension field number.
//
// Deprecated: Use protoregistry.GlobalTypes.RangeExtensionsByMessage instead.
func RegisteredExtensions(m Message) extensionsByNumber {
// Check whether the cache is stale. If the number of extensions for
// the given message differs, then it means that some extensions were
// recently registered upstream that we do not know about.
s := MessageName(m)
v, _ := extensionCache.Load(s)
xs, _ := v.(extensionsByNumber)
if protoregistry.GlobalTypes.NumExtensionsByMessage(protoreflect.FullName(s)) == len(xs) {
return xs // cache is up-to-date
}
// Cache is stale, re-compute the extensions map.
xs = make(extensionsByNumber)
protoregistry.GlobalTypes.RangeExtensionsByMessage(protoreflect.FullName(s), func(xt protoreflect.ExtensionType) bool {
if xd, ok := xt.(*ExtensionDesc); ok {
xs[int32(xt.TypeDescriptor().Number())] = xd
} else {
// TODO: This implies that the protoreflect.ExtensionType is a
// custom type not generated by protoc-gen-go. We could try and
// convert the type to an ExtensionDesc.
}
return true
})
extensionCache.Store(s, xs)
return xs
}

File diff suppressed because it is too large Load Diff

View File

@ -1,654 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
)
// Merge merges the src message into dst.
// This assumes that dst and src of the same type and are non-nil.
func (a *InternalMessageInfo) Merge(dst, src Message) {
mi := atomicLoadMergeInfo(&a.merge)
if mi == nil {
mi = getMergeInfo(reflect.TypeOf(dst).Elem())
atomicStoreMergeInfo(&a.merge, mi)
}
mi.merge(toPointer(&dst), toPointer(&src))
}
type mergeInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []mergeFieldInfo
unrecognized field // Offset of XXX_unrecognized
}
type mergeFieldInfo struct {
field field // Offset of field, guaranteed to be valid
// isPointer reports whether the value in the field is a pointer.
// This is true for the following situations:
// * Pointer to struct
// * Pointer to basic type (proto2 only)
// * Slice (first value in slice header is a pointer)
// * String (first value in string header is a pointer)
isPointer bool
// basicWidth reports the width of the field assuming that it is directly
// embedded in the struct (as is the case for basic types in proto3).
// The possible values are:
// 0: invalid
// 1: bool
// 4: int32, uint32, float32
// 8: int64, uint64, float64
basicWidth int
// Where dst and src are pointers to the types being merged.
merge func(dst, src pointer)
}
var (
mergeInfoMap = map[reflect.Type]*mergeInfo{}
mergeInfoLock sync.Mutex
)
func getMergeInfo(t reflect.Type) *mergeInfo {
mergeInfoLock.Lock()
defer mergeInfoLock.Unlock()
mi := mergeInfoMap[t]
if mi == nil {
mi = &mergeInfo{typ: t}
mergeInfoMap[t] = mi
}
return mi
}
// merge merges src into dst assuming they are both of type *mi.typ.
func (mi *mergeInfo) merge(dst, src pointer) {
if dst.isNil() {
panic("proto: nil destination")
}
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&mi.initialized) == 0 {
mi.computeMergeInfo()
}
for _, fi := range mi.fields {
sfp := src.offset(fi.field)
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
if fi.isPointer && sfp.getPointer().isNil() { // Could be slice or string
continue
}
if fi.basicWidth > 0 {
switch {
case fi.basicWidth == 1 && !*sfp.toBool():
continue
case fi.basicWidth == 4 && *sfp.toUint32() == 0:
continue
case fi.basicWidth == 8 && *sfp.toUint64() == 0:
continue
}
}
}
dfp := dst.offset(fi.field)
fi.merge(dfp, sfp)
}
// TODO: Make this faster?
out := dst.asPointerTo(mi.typ).Elem()
in := src.asPointerTo(mi.typ).Elem()
if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead()
if mIn != nil {
mOut := emOut.extensionsWrite()
muIn.Lock()
mergeExtension(mOut, mIn)
muIn.Unlock()
}
}
if mi.unrecognized.IsValid() {
if b := *src.offset(mi.unrecognized).toBytes(); len(b) > 0 {
*dst.offset(mi.unrecognized).toBytes() = append([]byte(nil), b...)
}
}
}
func (mi *mergeInfo) computeMergeInfo() {
mi.lock.Lock()
defer mi.lock.Unlock()
if mi.initialized != 0 {
return
}
t := mi.typ
n := t.NumField()
props := GetProperties(t)
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
mfi := mergeFieldInfo{field: toField(&f)}
tf := f.Type
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
switch tf.Kind() {
case reflect.Ptr, reflect.Slice, reflect.String:
// As a special case, we assume slices and strings are pointers
// since we know that the first field in the SliceSlice or
// StringHeader is a data pointer.
mfi.isPointer = true
case reflect.Bool:
mfi.basicWidth = 1
case reflect.Int32, reflect.Uint32, reflect.Float32:
mfi.basicWidth = 4
case reflect.Int64, reflect.Uint64, reflect.Float64:
mfi.basicWidth = 8
}
}
// Unwrap tf to get at its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic("both pointer and slice for basic type in " + tf.Name())
}
switch tf.Kind() {
case reflect.Int32:
switch {
case isSlice: // E.g., []int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Slice is not defined (see pointer_reflect.go).
/*
sfsp := src.toInt32Slice()
if *sfsp != nil {
dfsp := dst.toInt32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
*/
sfs := src.getInt32Slice()
if sfs != nil {
dfs := dst.getInt32Slice()
dfs = append(dfs, sfs...)
if dfs == nil {
dfs = []int32{}
}
dst.setInt32Slice(dfs)
}
}
case isPointer: // E.g., *int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Ptr is not defined (see pointer_reflect.go).
/*
sfpp := src.toInt32Ptr()
if *sfpp != nil {
dfpp := dst.toInt32Ptr()
if *dfpp == nil {
*dfpp = Int32(**sfpp)
} else {
**dfpp = **sfpp
}
}
*/
sfp := src.getInt32Ptr()
if sfp != nil {
dfp := dst.getInt32Ptr()
if dfp == nil {
dst.setInt32Ptr(*sfp)
} else {
*dfp = *sfp
}
}
}
default: // E.g., int32
mfi.merge = func(dst, src pointer) {
if v := *src.toInt32(); v != 0 {
*dst.toInt32() = v
}
}
}
case reflect.Int64:
switch {
case isSlice: // E.g., []int64
mfi.merge = func(dst, src pointer) {
sfsp := src.toInt64Slice()
if *sfsp != nil {
dfsp := dst.toInt64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
}
case isPointer: // E.g., *int64
mfi.merge = func(dst, src pointer) {
sfpp := src.toInt64Ptr()
if *sfpp != nil {
dfpp := dst.toInt64Ptr()
if *dfpp == nil {
*dfpp = Int64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., int64
mfi.merge = func(dst, src pointer) {
if v := *src.toInt64(); v != 0 {
*dst.toInt64() = v
}
}
}
case reflect.Uint32:
switch {
case isSlice: // E.g., []uint32
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint32Slice()
if *sfsp != nil {
dfsp := dst.toUint32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint32{}
}
}
}
case isPointer: // E.g., *uint32
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint32Ptr()
if *sfpp != nil {
dfpp := dst.toUint32Ptr()
if *dfpp == nil {
*dfpp = Uint32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint32
mfi.merge = func(dst, src pointer) {
if v := *src.toUint32(); v != 0 {
*dst.toUint32() = v
}
}
}
case reflect.Uint64:
switch {
case isSlice: // E.g., []uint64
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint64Slice()
if *sfsp != nil {
dfsp := dst.toUint64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint64{}
}
}
}
case isPointer: // E.g., *uint64
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint64Ptr()
if *sfpp != nil {
dfpp := dst.toUint64Ptr()
if *dfpp == nil {
*dfpp = Uint64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint64
mfi.merge = func(dst, src pointer) {
if v := *src.toUint64(); v != 0 {
*dst.toUint64() = v
}
}
}
case reflect.Float32:
switch {
case isSlice: // E.g., []float32
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat32Slice()
if *sfsp != nil {
dfsp := dst.toFloat32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float32{}
}
}
}
case isPointer: // E.g., *float32
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat32Ptr()
if *sfpp != nil {
dfpp := dst.toFloat32Ptr()
if *dfpp == nil {
*dfpp = Float32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float32
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat32(); v != 0 {
*dst.toFloat32() = v
}
}
}
case reflect.Float64:
switch {
case isSlice: // E.g., []float64
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat64Slice()
if *sfsp != nil {
dfsp := dst.toFloat64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float64{}
}
}
}
case isPointer: // E.g., *float64
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat64Ptr()
if *sfpp != nil {
dfpp := dst.toFloat64Ptr()
if *dfpp == nil {
*dfpp = Float64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float64
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat64(); v != 0 {
*dst.toFloat64() = v
}
}
}
case reflect.Bool:
switch {
case isSlice: // E.g., []bool
mfi.merge = func(dst, src pointer) {
sfsp := src.toBoolSlice()
if *sfsp != nil {
dfsp := dst.toBoolSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []bool{}
}
}
}
case isPointer: // E.g., *bool
mfi.merge = func(dst, src pointer) {
sfpp := src.toBoolPtr()
if *sfpp != nil {
dfpp := dst.toBoolPtr()
if *dfpp == nil {
*dfpp = Bool(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., bool
mfi.merge = func(dst, src pointer) {
if v := *src.toBool(); v {
*dst.toBool() = v
}
}
}
case reflect.String:
switch {
case isSlice: // E.g., []string
mfi.merge = func(dst, src pointer) {
sfsp := src.toStringSlice()
if *sfsp != nil {
dfsp := dst.toStringSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []string{}
}
}
}
case isPointer: // E.g., *string
mfi.merge = func(dst, src pointer) {
sfpp := src.toStringPtr()
if *sfpp != nil {
dfpp := dst.toStringPtr()
if *dfpp == nil {
*dfpp = String(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., string
mfi.merge = func(dst, src pointer) {
if v := *src.toString(); v != "" {
*dst.toString() = v
}
}
}
case reflect.Slice:
isProto3 := props.Prop[i].proto3
switch {
case isPointer:
panic("bad pointer in byte slice case in " + tf.Name())
case tf.Elem().Kind() != reflect.Uint8:
panic("bad element kind in byte slice case in " + tf.Name())
case isSlice: // E.g., [][]byte
mfi.merge = func(dst, src pointer) {
sbsp := src.toBytesSlice()
if *sbsp != nil {
dbsp := dst.toBytesSlice()
for _, sb := range *sbsp {
if sb == nil {
*dbsp = append(*dbsp, nil)
} else {
*dbsp = append(*dbsp, append([]byte{}, sb...))
}
}
if *dbsp == nil {
*dbsp = [][]byte{}
}
}
}
default: // E.g., []byte
mfi.merge = func(dst, src pointer) {
sbp := src.toBytes()
if *sbp != nil {
dbp := dst.toBytes()
if !isProto3 || len(*sbp) > 0 {
*dbp = append([]byte{}, *sbp...)
}
}
}
}
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("message field %s without pointer", tf))
case isSlice: // E.g., []*pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sps := src.getPointerSlice()
if sps != nil {
dps := dst.getPointerSlice()
for _, sp := range sps {
var dp pointer
if !sp.isNil() {
dp = valToPointer(reflect.New(tf))
mi.merge(dp, sp)
}
dps = append(dps, dp)
}
if dps == nil {
dps = []pointer{}
}
dst.setPointerSlice(dps)
}
}
default: // E.g., *pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sp := src.getPointer()
if !sp.isNil() {
dp := dst.getPointer()
if dp.isNil() {
dp = valToPointer(reflect.New(tf))
dst.setPointer(dp)
}
mi.merge(dp, sp)
}
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic("bad pointer or slice in map case in " + tf.Name())
default: // E.g., map[K]V
mfi.merge = func(dst, src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
dm := dst.asPointerTo(tf).Elem()
if dm.IsNil() {
dm.Set(reflect.MakeMap(tf))
}
switch tf.Elem().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(Clone(val.Interface().(Message)))
dm.SetMapIndex(key, val)
}
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(append([]byte{}, val.Bytes()...))
dm.SetMapIndex(key, val)
}
default: // Basic type (e.g., string)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
dm.SetMapIndex(key, val)
}
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic("bad pointer or slice in interface case in " + tf.Name())
default: // E.g., interface{}
// TODO: Make this faster?
mfi.merge = func(dst, src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
du := dst.asPointerTo(tf).Elem()
typ := su.Elem().Type()
if du.IsNil() || du.Elem().Type() != typ {
du.Set(reflect.New(typ.Elem())) // Initialize interface if empty
}
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
dv := du.Elem().Elem().Field(0)
if dv.Kind() == reflect.Ptr && dv.IsNil() {
dv.Set(reflect.New(sv.Type().Elem())) // Initialize proto message if empty
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
Merge(dv.Interface().(Message), sv.Interface().(Message))
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
dv.Set(reflect.ValueOf(append([]byte{}, sv.Bytes()...)))
default: // Basic type (e.g., string)
dv.Set(sv)
}
}
}
}
default:
panic(fmt.Sprintf("merger not found for type:%s", tf))
}
mi.fields = append(mi.fields, mfi)
}
mi.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
mi.unrecognized = toField(&f)
}
atomic.StoreInt32(&mi.initialized, 1)
}

File diff suppressed because it is too large Load Diff

View File

@ -1,845 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
// Functions for writing the text protocol buffer format.
import (
"bufio"
"bytes"
"encoding"
"errors"
"fmt"
"io"
"log"
"math"
"reflect"
"sort"
"strings"
)
var (
newline = []byte("\n")
spaces = []byte(" ")
endBraceNewline = []byte("}\n")
backslashN = []byte{'\\', 'n'}
backslashR = []byte{'\\', 'r'}
backslashT = []byte{'\\', 't'}
backslashDQ = []byte{'\\', '"'}
backslashBS = []byte{'\\', '\\'}
posInf = []byte("inf")
negInf = []byte("-inf")
nan = []byte("nan")
)
type writer interface {
io.Writer
WriteByte(byte) error
}
// textWriter is an io.Writer that tracks its indentation level.
type textWriter struct {
ind int
complete bool // if the current position is a complete line
compact bool // whether to write out as a one-liner
w writer
}
func (w *textWriter) WriteString(s string) (n int, err error) {
if !strings.Contains(s, "\n") {
if !w.compact && w.complete {
w.writeIndent()
}
w.complete = false
return io.WriteString(w.w, s)
}
// WriteString is typically called without newlines, so this
// codepath and its copy are rare. We copy to avoid
// duplicating all of Write's logic here.
return w.Write([]byte(s))
}
func (w *textWriter) Write(p []byte) (n int, err error) {
newlines := bytes.Count(p, newline)
if newlines == 0 {
if !w.compact && w.complete {
w.writeIndent()
}
n, err = w.w.Write(p)
w.complete = false
return n, err
}
frags := bytes.SplitN(p, newline, newlines+1)
if w.compact {
for i, frag := range frags {
if i > 0 {
if err := w.w.WriteByte(' '); err != nil {
return n, err
}
n++
}
nn, err := w.w.Write(frag)
n += nn
if err != nil {
return n, err
}
}
return n, nil
}
for i, frag := range frags {
if w.complete {
w.writeIndent()
}
nn, err := w.w.Write(frag)
n += nn
if err != nil {
return n, err
}
if i+1 < len(frags) {
if err := w.w.WriteByte('\n'); err != nil {
return n, err
}
n++
}
}
w.complete = len(frags[len(frags)-1]) == 0
return n, nil
}
func (w *textWriter) WriteByte(c byte) error {
if w.compact && c == '\n' {
c = ' '
}
if !w.compact && w.complete {
w.writeIndent()
}
err := w.w.WriteByte(c)
w.complete = c == '\n'
return err
}
func (w *textWriter) indent() { w.ind++ }
func (w *textWriter) unindent() {
if w.ind == 0 {
log.Print("proto: textWriter unindented too far")
return
}
w.ind--
}
func writeName(w *textWriter, props *Properties) error {
if _, err := w.WriteString(props.OrigName); err != nil {
return err
}
if props.Wire != "group" {
return w.WriteByte(':')
}
return nil
}
func requiresQuotes(u string) bool {
// When type URL contains any characters except [0-9A-Za-z./\-]*, it must be quoted.
for _, ch := range u {
switch {
case ch == '.' || ch == '/' || ch == '_':
continue
case '0' <= ch && ch <= '9':
continue
case 'A' <= ch && ch <= 'Z':
continue
case 'a' <= ch && ch <= 'z':
continue
default:
return true
}
}
return false
}
// isAny reports whether sv is a google.protobuf.Any message
func isAny(sv reflect.Value) bool {
type wkt interface {
XXX_WellKnownType() string
}
t, ok := sv.Addr().Interface().(wkt)
return ok && t.XXX_WellKnownType() == "Any"
}
// writeProto3Any writes an expanded google.protobuf.Any message.
//
// It returns (false, nil) if sv value can't be unmarshaled (e.g. because
// required messages are not linked in).
//
// It returns (true, error) when sv was written in expanded format or an error
// was encountered.
func (tm *TextMarshaler) writeProto3Any(w *textWriter, sv reflect.Value) (bool, error) {
turl := sv.FieldByName("TypeUrl")
val := sv.FieldByName("Value")
if !turl.IsValid() || !val.IsValid() {
return true, errors.New("proto: invalid google.protobuf.Any message")
}
b, ok := val.Interface().([]byte)
if !ok {
return true, errors.New("proto: invalid google.protobuf.Any message")
}
parts := strings.Split(turl.String(), "/")
mt := MessageType(parts[len(parts)-1])
if mt == nil {
return false, nil
}
m := reflect.New(mt.Elem())
if err := Unmarshal(b, m.Interface().(Message)); err != nil {
return false, nil
}
w.Write([]byte("["))
u := turl.String()
if requiresQuotes(u) {
writeString(w, u)
} else {
w.Write([]byte(u))
}
if w.compact {
w.Write([]byte("]:<"))
} else {
w.Write([]byte("]: <\n"))
w.ind++
}
if err := tm.writeStruct(w, m.Elem()); err != nil {
return true, err
}
if w.compact {
w.Write([]byte("> "))
} else {
w.ind--
w.Write([]byte(">\n"))
}
return true, nil
}
func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
if tm.ExpandAny && isAny(sv) {
if canExpand, err := tm.writeProto3Any(w, sv); canExpand {
return err
}
}
st := sv.Type()
sprops := GetProperties(st)
for i := 0; i < sv.NumField(); i++ {
fv := sv.Field(i)
props := sprops.Prop[i]
name := st.Field(i).Name
if name == "XXX_NoUnkeyedLiteral" {
continue
}
if strings.HasPrefix(name, "XXX_") {
// There are two XXX_ fields:
// XXX_unrecognized []byte
// XXX_extensions map[int32]proto.Extension
// The first is handled here;
// the second is handled at the bottom of this function.
if name == "XXX_unrecognized" && !fv.IsNil() {
if err := writeUnknownStruct(w, fv.Interface().([]byte)); err != nil {
return err
}
}
continue
}
if fv.Kind() == reflect.Ptr && fv.IsNil() {
// Field not filled in. This could be an optional field or
// a required field that wasn't filled in. Either way, there
// isn't anything we can show for it.
continue
}
if fv.Kind() == reflect.Slice && fv.IsNil() {
// Repeated field that is empty, or a bytes field that is unused.
continue
}
if props.Repeated && fv.Kind() == reflect.Slice {
// Repeated field.
for j := 0; j < fv.Len(); j++ {
if err := writeName(w, props); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
v := fv.Index(j)
if v.Kind() == reflect.Ptr && v.IsNil() {
// A nil message in a repeated field is not valid,
// but we can handle that more gracefully than panicking.
if _, err := w.Write([]byte("<nil>\n")); err != nil {
return err
}
continue
}
if err := tm.writeAny(w, v, props); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
}
continue
}
if fv.Kind() == reflect.Map {
// Map fields are rendered as a repeated struct with key/value fields.
keys := fv.MapKeys()
sort.Sort(mapKeys(keys))
for _, key := range keys {
val := fv.MapIndex(key)
if err := writeName(w, props); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
// open struct
if err := w.WriteByte('<'); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte('\n'); err != nil {
return err
}
}
w.indent()
// key
if _, err := w.WriteString("key:"); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
if err := tm.writeAny(w, key, props.MapKeyProp); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
// nil values aren't legal, but we can avoid panicking because of them.
if val.Kind() != reflect.Ptr || !val.IsNil() {
// value
if _, err := w.WriteString("value:"); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
if err := tm.writeAny(w, val, props.MapValProp); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
}
// close struct
w.unindent()
if err := w.WriteByte('>'); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
}
continue
}
if props.proto3 && fv.Kind() == reflect.Slice && fv.Len() == 0 {
// empty bytes field
continue
}
if fv.Kind() != reflect.Ptr && fv.Kind() != reflect.Slice {
// proto3 non-repeated scalar field; skip if zero value
if isProto3Zero(fv) {
continue
}
}
if fv.Kind() == reflect.Interface {
// Check if it is a oneof.
if st.Field(i).Tag.Get("protobuf_oneof") != "" {
// fv is nil, or holds a pointer to generated struct.
// That generated struct has exactly one field,
// which has a protobuf struct tag.
if fv.IsNil() {
continue
}
inner := fv.Elem().Elem() // interface -> *T -> T
tag := inner.Type().Field(0).Tag.Get("protobuf")
props = new(Properties) // Overwrite the outer props var, but not its pointee.
props.Parse(tag)
// Write the value in the oneof, not the oneof itself.
fv = inner.Field(0)
// Special case to cope with malformed messages gracefully:
// If the value in the oneof is a nil pointer, don't panic
// in writeAny.
if fv.Kind() == reflect.Ptr && fv.IsNil() {
// Use errors.New so writeAny won't render quotes.
msg := errors.New("/* nil */")
fv = reflect.ValueOf(&msg).Elem()
}
}
}
if err := writeName(w, props); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
// Enums have a String method, so writeAny will work fine.
if err := tm.writeAny(w, fv, props); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
}
// Extensions (the XXX_extensions field).
pv := sv.Addr()
if _, err := extendable(pv.Interface()); err == nil {
if err := tm.writeExtensions(w, pv); err != nil {
return err
}
}
return nil
}
var textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
// writeAny writes an arbitrary field.
func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Properties) error {
v = reflect.Indirect(v)
// Floats have special cases.
if v.Kind() == reflect.Float32 || v.Kind() == reflect.Float64 {
x := v.Float()
var b []byte
switch {
case math.IsInf(x, 1):
b = posInf
case math.IsInf(x, -1):
b = negInf
case math.IsNaN(x):
b = nan
}
if b != nil {
_, err := w.Write(b)
return err
}
// Other values are handled below.
}
// We don't attempt to serialise every possible value type; only those
// that can occur in protocol buffers.
switch v.Kind() {
case reflect.Slice:
// Should only be a []byte; repeated fields are handled in writeStruct.
if err := writeString(w, string(v.Bytes())); err != nil {
return err
}
case reflect.String:
if err := writeString(w, v.String()); err != nil {
return err
}
case reflect.Struct:
// Required/optional group/message.
var bra, ket byte = '<', '>'
if props != nil && props.Wire == "group" {
bra, ket = '{', '}'
}
if err := w.WriteByte(bra); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte('\n'); err != nil {
return err
}
}
w.indent()
if v.CanAddr() {
// Calling v.Interface on a struct causes the reflect package to
// copy the entire struct. This is racy with the new Marshaler
// since we atomically update the XXX_sizecache.
//
// Thus, we retrieve a pointer to the struct if possible to avoid
// a race since v.Interface on the pointer doesn't copy the struct.
//
// If v is not addressable, then we are not worried about a race
// since it implies that the binary Marshaler cannot possibly be
// mutating this value.
v = v.Addr()
}
if v.Type().Implements(textMarshalerType) {
text, err := v.Interface().(encoding.TextMarshaler).MarshalText()
if err != nil {
return err
}
if _, err = w.Write(text); err != nil {
return err
}
} else {
if v.Kind() == reflect.Ptr {
v = v.Elem()
}
if err := tm.writeStruct(w, v); err != nil {
return err
}
}
w.unindent()
if err := w.WriteByte(ket); err != nil {
return err
}
default:
_, err := fmt.Fprint(w, v.Interface())
return err
}
return nil
}
// equivalent to C's isprint.
func isprint(c byte) bool {
return c >= 0x20 && c < 0x7f
}
// writeString writes a string in the protocol buffer text format.
// It is similar to strconv.Quote except we don't use Go escape sequences,
// we treat the string as a byte sequence, and we use octal escapes.
// These differences are to maintain interoperability with the other
// languages' implementations of the text format.
func writeString(w *textWriter, s string) error {
// use WriteByte here to get any needed indent
if err := w.WriteByte('"'); err != nil {
return err
}
// Loop over the bytes, not the runes.
for i := 0; i < len(s); i++ {
var err error
// Divergence from C++: we don't escape apostrophes.
// There's no need to escape them, and the C++ parser
// copes with a naked apostrophe.
switch c := s[i]; c {
case '\n':
_, err = w.w.Write(backslashN)
case '\r':
_, err = w.w.Write(backslashR)
case '\t':
_, err = w.w.Write(backslashT)
case '"':
_, err = w.w.Write(backslashDQ)
case '\\':
_, err = w.w.Write(backslashBS)
default:
if isprint(c) {
err = w.w.WriteByte(c)
} else {
_, err = fmt.Fprintf(w.w, "\\%03o", c)
}
}
if err != nil {
return err
}
}
return w.WriteByte('"')
}
func writeUnknownStruct(w *textWriter, data []byte) (err error) {
if !w.compact {
if _, err := fmt.Fprintf(w, "/* %d unknown bytes */\n", len(data)); err != nil {
return err
}
}
b := NewBuffer(data)
for b.index < len(b.buf) {
x, err := b.DecodeVarint()
if err != nil {
_, err := fmt.Fprintf(w, "/* %v */\n", err)
return err
}
wire, tag := x&7, x>>3
if wire == WireEndGroup {
w.unindent()
if _, err := w.Write(endBraceNewline); err != nil {
return err
}
continue
}
if _, err := fmt.Fprint(w, tag); err != nil {
return err
}
if wire != WireStartGroup {
if err := w.WriteByte(':'); err != nil {
return err
}
}
if !w.compact || wire == WireStartGroup {
if err := w.WriteByte(' '); err != nil {
return err
}
}
switch wire {
case WireBytes:
buf, e := b.DecodeRawBytes(false)
if e == nil {
_, err = fmt.Fprintf(w, "%q", buf)
} else {
_, err = fmt.Fprintf(w, "/* %v */", e)
}
case WireFixed32:
x, err = b.DecodeFixed32()
err = writeUnknownInt(w, x, err)
case WireFixed64:
x, err = b.DecodeFixed64()
err = writeUnknownInt(w, x, err)
case WireStartGroup:
err = w.WriteByte('{')
w.indent()
case WireVarint:
x, err = b.DecodeVarint()
err = writeUnknownInt(w, x, err)
default:
_, err = fmt.Fprintf(w, "/* unknown wire type %d */", wire)
}
if err != nil {
return err
}
if err = w.WriteByte('\n'); err != nil {
return err
}
}
return nil
}
func writeUnknownInt(w *textWriter, x uint64, err error) error {
if err == nil {
_, err = fmt.Fprint(w, x)
} else {
_, err = fmt.Fprintf(w, "/* %v */", err)
}
return err
}
type int32Slice []int32
func (s int32Slice) Len() int { return len(s) }
func (s int32Slice) Less(i, j int) bool { return s[i] < s[j] }
func (s int32Slice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// writeExtensions writes all the extensions in pv.
// pv is assumed to be a pointer to a protocol message struct that is extendable.
func (tm *TextMarshaler) writeExtensions(w *textWriter, pv reflect.Value) error {
emap := extensionMaps[pv.Type().Elem()]
ep, _ := extendable(pv.Interface())
// Order the extensions by ID.
// This isn't strictly necessary, but it will give us
// canonical output, which will also make testing easier.
m, mu := ep.extensionsRead()
if m == nil {
return nil
}
mu.Lock()
ids := make([]int32, 0, len(m))
for id := range m {
ids = append(ids, id)
}
sort.Sort(int32Slice(ids))
mu.Unlock()
for _, extNum := range ids {
ext := m[extNum]
var desc *ExtensionDesc
if emap != nil {
desc = emap[extNum]
}
if desc == nil {
// Unknown extension.
if err := writeUnknownStruct(w, ext.enc); err != nil {
return err
}
continue
}
pb, err := GetExtension(ep, desc)
if err != nil {
return fmt.Errorf("failed getting extension: %v", err)
}
// Repeated extensions will appear as a slice.
if !desc.repeated() {
if err := tm.writeExtension(w, desc.Name, pb); err != nil {
return err
}
} else {
v := reflect.ValueOf(pb)
for i := 0; i < v.Len(); i++ {
if err := tm.writeExtension(w, desc.Name, v.Index(i).Interface()); err != nil {
return err
}
}
}
}
return nil
}
func (tm *TextMarshaler) writeExtension(w *textWriter, name string, pb interface{}) error {
if _, err := fmt.Fprintf(w, "[%s]:", name); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
if err := tm.writeAny(w, reflect.ValueOf(pb), nil); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
return nil
}
func (w *textWriter) writeIndent() {
if !w.complete {
return
}
remain := w.ind * 2
for remain > 0 {
n := remain
if n > len(spaces) {
n = len(spaces)
}
w.w.Write(spaces[:n])
remain -= n
}
w.complete = false
}
// TextMarshaler is a configurable text format marshaler.
type TextMarshaler struct {
Compact bool // use compact text format (one line).
ExpandAny bool // expand google.protobuf.Any messages of known types
}
// Marshal writes a given protocol buffer in text format.
// The only errors returned are from w.
func (tm *TextMarshaler) Marshal(w io.Writer, pb Message) error {
val := reflect.ValueOf(pb)
if pb == nil || val.IsNil() {
w.Write([]byte("<nil>"))
return nil
}
var bw *bufio.Writer
ww, ok := w.(writer)
if !ok {
bw = bufio.NewWriter(w)
ww = bw
}
aw := &textWriter{
w: ww,
complete: true,
compact: tm.Compact,
}
if etm, ok := pb.(encoding.TextMarshaler); ok {
text, err := etm.MarshalText()
if err != nil {
return err
}
if _, err = aw.Write(text); err != nil {
return err
}
if bw != nil {
return bw.Flush()
}
return nil
}
// Dereference the received pointer so we don't have outer < and >.
v := reflect.Indirect(val)
if err := tm.writeStruct(aw, v); err != nil {
return err
}
if bw != nil {
return bw.Flush()
}
return nil
}
// Text is the same as Marshal, but returns the string directly.
func (tm *TextMarshaler) Text(pb Message) string {
var buf bytes.Buffer
tm.Marshal(&buf, pb)
return buf.String()
}
var (
defaultTextMarshaler = TextMarshaler{}
compactTextMarshaler = TextMarshaler{Compact: true}
)
// TODO: consider removing some of the Marshal functions below.
// MarshalText writes a given protocol buffer in text format.
// The only errors returned are from w.
func MarshalText(w io.Writer, pb Message) error { return defaultTextMarshaler.Marshal(w, pb) }
// MarshalTextString is the same as MarshalText, but returns the string directly.
func MarshalTextString(pb Message) string { return defaultTextMarshaler.Text(pb) }
// CompactText writes a given protocol buffer in compact text format (one line).
func CompactText(w io.Writer, pb Message) error { return compactTextMarshaler.Marshal(w, pb) }
// CompactTextString is the same as CompactText, but returns the string directly.
func CompactTextString(pb Message) string { return compactTextMarshaler.Text(pb) }

801
vendor/github.com/golang/protobuf/proto/text_decode.go generated vendored Normal file
View File

@ -0,0 +1,801 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import (
"encoding"
"errors"
"fmt"
"reflect"
"strconv"
"strings"
"unicode/utf8"
"google.golang.org/protobuf/encoding/prototext"
protoV2 "google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
const wrapTextUnmarshalV2 = false
// ParseError is returned by UnmarshalText.
type ParseError struct {
Message string
// Deprecated: Do not use.
Line, Offset int
}
func (e *ParseError) Error() string {
if wrapTextUnmarshalV2 {
return e.Message
}
if e.Line == 1 {
return fmt.Sprintf("line 1.%d: %v", e.Offset, e.Message)
}
return fmt.Sprintf("line %d: %v", e.Line, e.Message)
}
// UnmarshalText parses a proto text formatted string into m.
func UnmarshalText(s string, m Message) error {
if u, ok := m.(encoding.TextUnmarshaler); ok {
return u.UnmarshalText([]byte(s))
}
m.Reset()
mi := MessageV2(m)
if wrapTextUnmarshalV2 {
err := prototext.UnmarshalOptions{
AllowPartial: true,
}.Unmarshal([]byte(s), mi)
if err != nil {
return &ParseError{Message: err.Error()}
}
return checkRequiredNotSet(mi)
} else {
if err := newTextParser(s).unmarshalMessage(mi.ProtoReflect(), ""); err != nil {
return err
}
return checkRequiredNotSet(mi)
}
}
type textParser struct {
s string // remaining input
done bool // whether the parsing is finished (success or error)
backed bool // whether back() was called
offset, line int
cur token
}
type token struct {
value string
err *ParseError
line int // line number
offset int // byte number from start of input, not start of line
unquoted string // the unquoted version of value, if it was a quoted string
}
func newTextParser(s string) *textParser {
p := new(textParser)
p.s = s
p.line = 1
p.cur.line = 1
return p
}
func (p *textParser) unmarshalMessage(m protoreflect.Message, terminator string) (err error) {
md := m.Descriptor()
fds := md.Fields()
// A struct is a sequence of "name: value", terminated by one of
// '>' or '}', or the end of the input. A name may also be
// "[extension]" or "[type/url]".
//
// The whole struct can also be an expanded Any message, like:
// [type/url] < ... struct contents ... >
seen := make(map[protoreflect.FieldNumber]bool)
for {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == terminator {
break
}
if tok.value == "[" {
if err := p.unmarshalExtensionOrAny(m, seen); err != nil {
return err
}
continue
}
// This is a normal, non-extension field.
name := protoreflect.Name(tok.value)
fd := fds.ByName(name)
switch {
case fd == nil:
gd := fds.ByName(protoreflect.Name(strings.ToLower(string(name))))
if gd != nil && gd.Kind() == protoreflect.GroupKind && gd.Message().Name() == name {
fd = gd
}
case fd.Kind() == protoreflect.GroupKind && fd.Message().Name() != name:
fd = nil
case fd.IsWeak() && fd.Message().IsPlaceholder():
fd = nil
}
if fd == nil {
typeName := string(md.FullName())
if m, ok := m.Interface().(Message); ok {
t := reflect.TypeOf(m)
if t.Kind() == reflect.Ptr {
typeName = t.Elem().String()
}
}
return p.errorf("unknown field name %q in %v", name, typeName)
}
if od := fd.ContainingOneof(); od != nil && m.WhichOneof(od) != nil {
return p.errorf("field '%s' would overwrite already parsed oneof '%s'", name, od.Name())
}
if fd.Cardinality() != protoreflect.Repeated && seen[fd.Number()] {
return p.errorf("non-repeated field %q was repeated", fd.Name())
}
seen[fd.Number()] = true
// Consume any colon.
if err := p.checkForColon(fd); err != nil {
return err
}
// Parse into the field.
v := m.Get(fd)
if !m.Has(fd) && (fd.IsList() || fd.IsMap() || fd.Message() != nil) {
v = m.Mutable(fd)
}
if v, err = p.unmarshalValue(v, fd); err != nil {
return err
}
m.Set(fd, v)
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
}
return nil
}
func (p *textParser) unmarshalExtensionOrAny(m protoreflect.Message, seen map[protoreflect.FieldNumber]bool) error {
name, err := p.consumeExtensionOrAnyName()
if err != nil {
return err
}
// If it contains a slash, it's an Any type URL.
if slashIdx := strings.LastIndex(name, "/"); slashIdx >= 0 {
tok := p.next()
if tok.err != nil {
return tok.err
}
// consume an optional colon
if tok.value == ":" {
tok = p.next()
if tok.err != nil {
return tok.err
}
}
var terminator string
switch tok.value {
case "<":
terminator = ">"
case "{":
terminator = "}"
default:
return p.errorf("expected '{' or '<', found %q", tok.value)
}
mt, err := protoregistry.GlobalTypes.FindMessageByURL(name)
if err != nil {
return p.errorf("unrecognized message %q in google.protobuf.Any", name[slashIdx+len("/"):])
}
m2 := mt.New()
if err := p.unmarshalMessage(m2, terminator); err != nil {
return err
}
b, err := protoV2.Marshal(m2.Interface())
if err != nil {
return p.errorf("failed to marshal message of type %q: %v", name[slashIdx+len("/"):], err)
}
urlFD := m.Descriptor().Fields().ByName("type_url")
valFD := m.Descriptor().Fields().ByName("value")
if seen[urlFD.Number()] {
return p.errorf("Any message unpacked multiple times, or %q already set", urlFD.Name())
}
if seen[valFD.Number()] {
return p.errorf("Any message unpacked multiple times, or %q already set", valFD.Name())
}
m.Set(urlFD, protoreflect.ValueOfString(name))
m.Set(valFD, protoreflect.ValueOfBytes(b))
seen[urlFD.Number()] = true
seen[valFD.Number()] = true
return nil
}
xname := protoreflect.FullName(name)
xt, _ := protoregistry.GlobalTypes.FindExtensionByName(xname)
if xt == nil && isMessageSet(m.Descriptor()) {
xt, _ = protoregistry.GlobalTypes.FindExtensionByName(xname.Append("message_set_extension"))
}
if xt == nil {
return p.errorf("unrecognized extension %q", name)
}
fd := xt.TypeDescriptor()
if fd.ContainingMessage().FullName() != m.Descriptor().FullName() {
return p.errorf("extension field %q does not extend message %q", name, m.Descriptor().FullName())
}
if err := p.checkForColon(fd); err != nil {
return err
}
v := m.Get(fd)
if !m.Has(fd) && (fd.IsList() || fd.IsMap() || fd.Message() != nil) {
v = m.Mutable(fd)
}
v, err = p.unmarshalValue(v, fd)
if err != nil {
return err
}
m.Set(fd, v)
return p.consumeOptionalSeparator()
}
func (p *textParser) unmarshalValue(v protoreflect.Value, fd protoreflect.FieldDescriptor) (protoreflect.Value, error) {
tok := p.next()
if tok.err != nil {
return v, tok.err
}
if tok.value == "" {
return v, p.errorf("unexpected EOF")
}
switch {
case fd.IsList():
lv := v.List()
var err error
if tok.value == "[" {
// Repeated field with list notation, like [1,2,3].
for {
vv := lv.NewElement()
vv, err = p.unmarshalSingularValue(vv, fd)
if err != nil {
return v, err
}
lv.Append(vv)
tok := p.next()
if tok.err != nil {
return v, tok.err
}
if tok.value == "]" {
break
}
if tok.value != "," {
return v, p.errorf("Expected ']' or ',' found %q", tok.value)
}
}
return v, nil
}
// One value of the repeated field.
p.back()
vv := lv.NewElement()
vv, err = p.unmarshalSingularValue(vv, fd)
if err != nil {
return v, err
}
lv.Append(vv)
return v, nil
case fd.IsMap():
// The map entry should be this sequence of tokens:
// < key : KEY value : VALUE >
// However, implementations may omit key or value, and technically
// we should support them in any order.
var terminator string
switch tok.value {
case "<":
terminator = ">"
case "{":
terminator = "}"
default:
return v, p.errorf("expected '{' or '<', found %q", tok.value)
}
keyFD := fd.MapKey()
valFD := fd.MapValue()
mv := v.Map()
kv := keyFD.Default()
vv := mv.NewValue()
for {
tok := p.next()
if tok.err != nil {
return v, tok.err
}
if tok.value == terminator {
break
}
var err error
switch tok.value {
case "key":
if err := p.consumeToken(":"); err != nil {
return v, err
}
if kv, err = p.unmarshalSingularValue(kv, keyFD); err != nil {
return v, err
}
if err := p.consumeOptionalSeparator(); err != nil {
return v, err
}
case "value":
if err := p.checkForColon(valFD); err != nil {
return v, err
}
if vv, err = p.unmarshalSingularValue(vv, valFD); err != nil {
return v, err
}
if err := p.consumeOptionalSeparator(); err != nil {
return v, err
}
default:
p.back()
return v, p.errorf(`expected "key", "value", or %q, found %q`, terminator, tok.value)
}
}
mv.Set(kv.MapKey(), vv)
return v, nil
default:
p.back()
return p.unmarshalSingularValue(v, fd)
}
}
func (p *textParser) unmarshalSingularValue(v protoreflect.Value, fd protoreflect.FieldDescriptor) (protoreflect.Value, error) {
tok := p.next()
if tok.err != nil {
return v, tok.err
}
if tok.value == "" {
return v, p.errorf("unexpected EOF")
}
switch fd.Kind() {
case protoreflect.BoolKind:
switch tok.value {
case "true", "1", "t", "True":
return protoreflect.ValueOfBool(true), nil
case "false", "0", "f", "False":
return protoreflect.ValueOfBool(false), nil
}
case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Sfixed32Kind:
if x, err := strconv.ParseInt(tok.value, 0, 32); err == nil {
return protoreflect.ValueOfInt32(int32(x)), nil
}
// The C++ parser accepts large positive hex numbers that uses
// two's complement arithmetic to represent negative numbers.
// This feature is here for backwards compatibility with C++.
if strings.HasPrefix(tok.value, "0x") {
if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil {
return protoreflect.ValueOfInt32(int32(-(int64(^x) + 1))), nil
}
}
case protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed64Kind:
if x, err := strconv.ParseInt(tok.value, 0, 64); err == nil {
return protoreflect.ValueOfInt64(int64(x)), nil
}
// The C++ parser accepts large positive hex numbers that uses
// two's complement arithmetic to represent negative numbers.
// This feature is here for backwards compatibility with C++.
if strings.HasPrefix(tok.value, "0x") {
if x, err := strconv.ParseUint(tok.value, 0, 64); err == nil {
return protoreflect.ValueOfInt64(int64(-(int64(^x) + 1))), nil
}
}
case protoreflect.Uint32Kind, protoreflect.Fixed32Kind:
if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil {
return protoreflect.ValueOfUint32(uint32(x)), nil
}
case protoreflect.Uint64Kind, protoreflect.Fixed64Kind:
if x, err := strconv.ParseUint(tok.value, 0, 64); err == nil {
return protoreflect.ValueOfUint64(uint64(x)), nil
}
case protoreflect.FloatKind:
// Ignore 'f' for compatibility with output generated by C++,
// but don't remove 'f' when the value is "-inf" or "inf".
v := tok.value
if strings.HasSuffix(v, "f") && v != "-inf" && v != "inf" {
v = v[:len(v)-len("f")]
}
if x, err := strconv.ParseFloat(v, 32); err == nil {
return protoreflect.ValueOfFloat32(float32(x)), nil
}
case protoreflect.DoubleKind:
// Ignore 'f' for compatibility with output generated by C++,
// but don't remove 'f' when the value is "-inf" or "inf".
v := tok.value
if strings.HasSuffix(v, "f") && v != "-inf" && v != "inf" {
v = v[:len(v)-len("f")]
}
if x, err := strconv.ParseFloat(v, 64); err == nil {
return protoreflect.ValueOfFloat64(float64(x)), nil
}
case protoreflect.StringKind:
if isQuote(tok.value[0]) {
return protoreflect.ValueOfString(tok.unquoted), nil
}
case protoreflect.BytesKind:
if isQuote(tok.value[0]) {
return protoreflect.ValueOfBytes([]byte(tok.unquoted)), nil
}
case protoreflect.EnumKind:
if x, err := strconv.ParseInt(tok.value, 0, 32); err == nil {
return protoreflect.ValueOfEnum(protoreflect.EnumNumber(x)), nil
}
vd := fd.Enum().Values().ByName(protoreflect.Name(tok.value))
if vd != nil {
return protoreflect.ValueOfEnum(vd.Number()), nil
}
case protoreflect.MessageKind, protoreflect.GroupKind:
var terminator string
switch tok.value {
case "{":
terminator = "}"
case "<":
terminator = ">"
default:
return v, p.errorf("expected '{' or '<', found %q", tok.value)
}
err := p.unmarshalMessage(v.Message(), terminator)
return v, err
default:
panic(fmt.Sprintf("invalid kind %v", fd.Kind()))
}
return v, p.errorf("invalid %v: %v", fd.Kind(), tok.value)
}
// Consume a ':' from the input stream (if the next token is a colon),
// returning an error if a colon is needed but not present.
func (p *textParser) checkForColon(fd protoreflect.FieldDescriptor) *ParseError {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value != ":" {
if fd.Message() == nil {
return p.errorf("expected ':', found %q", tok.value)
}
p.back()
}
return nil
}
// consumeExtensionOrAnyName consumes an extension name or an Any type URL and
// the following ']'. It returns the name or URL consumed.
func (p *textParser) consumeExtensionOrAnyName() (string, error) {
tok := p.next()
if tok.err != nil {
return "", tok.err
}
// If extension name or type url is quoted, it's a single token.
if len(tok.value) > 2 && isQuote(tok.value[0]) && tok.value[len(tok.value)-1] == tok.value[0] {
name, err := unquoteC(tok.value[1:len(tok.value)-1], rune(tok.value[0]))
if err != nil {
return "", err
}
return name, p.consumeToken("]")
}
// Consume everything up to "]"
var parts []string
for tok.value != "]" {
parts = append(parts, tok.value)
tok = p.next()
if tok.err != nil {
return "", p.errorf("unrecognized type_url or extension name: %s", tok.err)
}
if p.done && tok.value != "]" {
return "", p.errorf("unclosed type_url or extension name")
}
}
return strings.Join(parts, ""), nil
}
// consumeOptionalSeparator consumes an optional semicolon or comma.
// It is used in unmarshalMessage to provide backward compatibility.
func (p *textParser) consumeOptionalSeparator() error {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value != ";" && tok.value != "," {
p.back()
}
return nil
}
func (p *textParser) errorf(format string, a ...interface{}) *ParseError {
pe := &ParseError{fmt.Sprintf(format, a...), p.cur.line, p.cur.offset}
p.cur.err = pe
p.done = true
return pe
}
func (p *textParser) skipWhitespace() {
i := 0
for i < len(p.s) && (isWhitespace(p.s[i]) || p.s[i] == '#') {
if p.s[i] == '#' {
// comment; skip to end of line or input
for i < len(p.s) && p.s[i] != '\n' {
i++
}
if i == len(p.s) {
break
}
}
if p.s[i] == '\n' {
p.line++
}
i++
}
p.offset += i
p.s = p.s[i:len(p.s)]
if len(p.s) == 0 {
p.done = true
}
}
func (p *textParser) advance() {
// Skip whitespace
p.skipWhitespace()
if p.done {
return
}
// Start of non-whitespace
p.cur.err = nil
p.cur.offset, p.cur.line = p.offset, p.line
p.cur.unquoted = ""
switch p.s[0] {
case '<', '>', '{', '}', ':', '[', ']', ';', ',', '/':
// Single symbol
p.cur.value, p.s = p.s[0:1], p.s[1:len(p.s)]
case '"', '\'':
// Quoted string
i := 1
for i < len(p.s) && p.s[i] != p.s[0] && p.s[i] != '\n' {
if p.s[i] == '\\' && i+1 < len(p.s) {
// skip escaped char
i++
}
i++
}
if i >= len(p.s) || p.s[i] != p.s[0] {
p.errorf("unmatched quote")
return
}
unq, err := unquoteC(p.s[1:i], rune(p.s[0]))
if err != nil {
p.errorf("invalid quoted string %s: %v", p.s[0:i+1], err)
return
}
p.cur.value, p.s = p.s[0:i+1], p.s[i+1:len(p.s)]
p.cur.unquoted = unq
default:
i := 0
for i < len(p.s) && isIdentOrNumberChar(p.s[i]) {
i++
}
if i == 0 {
p.errorf("unexpected byte %#x", p.s[0])
return
}
p.cur.value, p.s = p.s[0:i], p.s[i:len(p.s)]
}
p.offset += len(p.cur.value)
}
// Back off the parser by one token. Can only be done between calls to next().
// It makes the next advance() a no-op.
func (p *textParser) back() { p.backed = true }
// Advances the parser and returns the new current token.
func (p *textParser) next() *token {
if p.backed || p.done {
p.backed = false
return &p.cur
}
p.advance()
if p.done {
p.cur.value = ""
} else if len(p.cur.value) > 0 && isQuote(p.cur.value[0]) {
// Look for multiple quoted strings separated by whitespace,
// and concatenate them.
cat := p.cur
for {
p.skipWhitespace()
if p.done || !isQuote(p.s[0]) {
break
}
p.advance()
if p.cur.err != nil {
return &p.cur
}
cat.value += " " + p.cur.value
cat.unquoted += p.cur.unquoted
}
p.done = false // parser may have seen EOF, but we want to return cat
p.cur = cat
}
return &p.cur
}
func (p *textParser) consumeToken(s string) error {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value != s {
p.back()
return p.errorf("expected %q, found %q", s, tok.value)
}
return nil
}
var errBadUTF8 = errors.New("proto: bad UTF-8")
func unquoteC(s string, quote rune) (string, error) {
// This is based on C++'s tokenizer.cc.
// Despite its name, this is *not* parsing C syntax.
// For instance, "\0" is an invalid quoted string.
// Avoid allocation in trivial cases.
simple := true
for _, r := range s {
if r == '\\' || r == quote {
simple = false
break
}
}
if simple {
return s, nil
}
buf := make([]byte, 0, 3*len(s)/2)
for len(s) > 0 {
r, n := utf8.DecodeRuneInString(s)
if r == utf8.RuneError && n == 1 {
return "", errBadUTF8
}
s = s[n:]
if r != '\\' {
if r < utf8.RuneSelf {
buf = append(buf, byte(r))
} else {
buf = append(buf, string(r)...)
}
continue
}
ch, tail, err := unescape(s)
if err != nil {
return "", err
}
buf = append(buf, ch...)
s = tail
}
return string(buf), nil
}
func unescape(s string) (ch string, tail string, err error) {
r, n := utf8.DecodeRuneInString(s)
if r == utf8.RuneError && n == 1 {
return "", "", errBadUTF8
}
s = s[n:]
switch r {
case 'a':
return "\a", s, nil
case 'b':
return "\b", s, nil
case 'f':
return "\f", s, nil
case 'n':
return "\n", s, nil
case 'r':
return "\r", s, nil
case 't':
return "\t", s, nil
case 'v':
return "\v", s, nil
case '?':
return "?", s, nil // trigraph workaround
case '\'', '"', '\\':
return string(r), s, nil
case '0', '1', '2', '3', '4', '5', '6', '7':
if len(s) < 2 {
return "", "", fmt.Errorf(`\%c requires 2 following digits`, r)
}
ss := string(r) + s[:2]
s = s[2:]
i, err := strconv.ParseUint(ss, 8, 8)
if err != nil {
return "", "", fmt.Errorf(`\%s contains non-octal digits`, ss)
}
return string([]byte{byte(i)}), s, nil
case 'x', 'X', 'u', 'U':
var n int
switch r {
case 'x', 'X':
n = 2
case 'u':
n = 4
case 'U':
n = 8
}
if len(s) < n {
return "", "", fmt.Errorf(`\%c requires %d following digits`, r, n)
}
ss := s[:n]
s = s[n:]
i, err := strconv.ParseUint(ss, 16, 64)
if err != nil {
return "", "", fmt.Errorf(`\%c%s contains non-hexadecimal digits`, r, ss)
}
if r == 'x' || r == 'X' {
return string([]byte{byte(i)}), s, nil
}
if i > utf8.MaxRune {
return "", "", fmt.Errorf(`\%c%s is not a valid Unicode code point`, r, ss)
}
return string(rune(i)), s, nil
}
return "", "", fmt.Errorf(`unknown escape \%c`, r)
}
func isIdentOrNumberChar(c byte) bool {
switch {
case 'A' <= c && c <= 'Z', 'a' <= c && c <= 'z':
return true
case '0' <= c && c <= '9':
return true
}
switch c {
case '-', '+', '.', '_':
return true
}
return false
}
func isWhitespace(c byte) bool {
switch c {
case ' ', '\t', '\n', '\r':
return true
}
return false
}
func isQuote(c byte) bool {
switch c {
case '"', '\'':
return true
}
return false
}

560
vendor/github.com/golang/protobuf/proto/text_encode.go generated vendored Normal file
View File

@ -0,0 +1,560 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import (
"bytes"
"encoding"
"fmt"
"io"
"math"
"sort"
"strings"
"google.golang.org/protobuf/encoding/prototext"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
const wrapTextMarshalV2 = false
// TextMarshaler is a configurable text format marshaler.
type TextMarshaler struct {
Compact bool // use compact text format (one line)
ExpandAny bool // expand google.protobuf.Any messages of known types
}
// Marshal writes the proto text format of m to w.
func (tm *TextMarshaler) Marshal(w io.Writer, m Message) error {
b, err := tm.marshal(m)
if len(b) > 0 {
if _, err := w.Write(b); err != nil {
return err
}
}
return err
}
// Text returns a proto text formatted string of m.
func (tm *TextMarshaler) Text(m Message) string {
b, _ := tm.marshal(m)
return string(b)
}
func (tm *TextMarshaler) marshal(m Message) ([]byte, error) {
mr := MessageReflect(m)
if mr == nil || !mr.IsValid() {
return []byte("<nil>"), nil
}
if wrapTextMarshalV2 {
if m, ok := m.(encoding.TextMarshaler); ok {
return m.MarshalText()
}
opts := prototext.MarshalOptions{
AllowPartial: true,
EmitUnknown: true,
}
if !tm.Compact {
opts.Indent = " "
}
if !tm.ExpandAny {
opts.Resolver = (*protoregistry.Types)(nil)
}
return opts.Marshal(mr.Interface())
} else {
w := &textWriter{
compact: tm.Compact,
expandAny: tm.ExpandAny,
complete: true,
}
if m, ok := m.(encoding.TextMarshaler); ok {
b, err := m.MarshalText()
if err != nil {
return nil, err
}
w.Write(b)
return w.buf, nil
}
err := w.writeMessage(mr)
return w.buf, err
}
}
var (
defaultTextMarshaler = TextMarshaler{}
compactTextMarshaler = TextMarshaler{Compact: true}
)
// MarshalText writes the proto text format of m to w.
func MarshalText(w io.Writer, m Message) error { return defaultTextMarshaler.Marshal(w, m) }
// MarshalTextString returns a proto text formatted string of m.
func MarshalTextString(m Message) string { return defaultTextMarshaler.Text(m) }
// CompactText writes the compact proto text format of m to w.
func CompactText(w io.Writer, m Message) error { return compactTextMarshaler.Marshal(w, m) }
// CompactTextString returns a compact proto text formatted string of m.
func CompactTextString(m Message) string { return compactTextMarshaler.Text(m) }
var (
newline = []byte("\n")
endBraceNewline = []byte("}\n")
posInf = []byte("inf")
negInf = []byte("-inf")
nan = []byte("nan")
)
// textWriter is an io.Writer that tracks its indentation level.
type textWriter struct {
compact bool // same as TextMarshaler.Compact
expandAny bool // same as TextMarshaler.ExpandAny
complete bool // whether the current position is a complete line
indent int // indentation level; never negative
buf []byte
}
func (w *textWriter) Write(p []byte) (n int, _ error) {
newlines := bytes.Count(p, newline)
if newlines == 0 {
if !w.compact && w.complete {
w.writeIndent()
}
w.buf = append(w.buf, p...)
w.complete = false
return len(p), nil
}
frags := bytes.SplitN(p, newline, newlines+1)
if w.compact {
for i, frag := range frags {
if i > 0 {
w.buf = append(w.buf, ' ')
n++
}
w.buf = append(w.buf, frag...)
n += len(frag)
}
return n, nil
}
for i, frag := range frags {
if w.complete {
w.writeIndent()
}
w.buf = append(w.buf, frag...)
n += len(frag)
if i+1 < len(frags) {
w.buf = append(w.buf, '\n')
n++
}
}
w.complete = len(frags[len(frags)-1]) == 0
return n, nil
}
func (w *textWriter) WriteByte(c byte) error {
if w.compact && c == '\n' {
c = ' '
}
if !w.compact && w.complete {
w.writeIndent()
}
w.buf = append(w.buf, c)
w.complete = c == '\n'
return nil
}
func (w *textWriter) writeName(fd protoreflect.FieldDescriptor) {
if !w.compact && w.complete {
w.writeIndent()
}
w.complete = false
if fd.Kind() != protoreflect.GroupKind {
w.buf = append(w.buf, fd.Name()...)
w.WriteByte(':')
} else {
// Use message type name for group field name.
w.buf = append(w.buf, fd.Message().Name()...)
}
if !w.compact {
w.WriteByte(' ')
}
}
func requiresQuotes(u string) bool {
// When type URL contains any characters except [0-9A-Za-z./\-]*, it must be quoted.
for _, ch := range u {
switch {
case ch == '.' || ch == '/' || ch == '_':
continue
case '0' <= ch && ch <= '9':
continue
case 'A' <= ch && ch <= 'Z':
continue
case 'a' <= ch && ch <= 'z':
continue
default:
return true
}
}
return false
}
// writeProto3Any writes an expanded google.protobuf.Any message.
//
// It returns (false, nil) if sv value can't be unmarshaled (e.g. because
// required messages are not linked in).
//
// It returns (true, error) when sv was written in expanded format or an error
// was encountered.
func (w *textWriter) writeProto3Any(m protoreflect.Message) (bool, error) {
md := m.Descriptor()
fdURL := md.Fields().ByName("type_url")
fdVal := md.Fields().ByName("value")
url := m.Get(fdURL).String()
mt, err := protoregistry.GlobalTypes.FindMessageByURL(url)
if err != nil {
return false, nil
}
b := m.Get(fdVal).Bytes()
m2 := mt.New()
if err := proto.Unmarshal(b, m2.Interface()); err != nil {
return false, nil
}
w.Write([]byte("["))
if requiresQuotes(url) {
w.writeQuotedString(url)
} else {
w.Write([]byte(url))
}
if w.compact {
w.Write([]byte("]:<"))
} else {
w.Write([]byte("]: <\n"))
w.indent++
}
if err := w.writeMessage(m2); err != nil {
return true, err
}
if w.compact {
w.Write([]byte("> "))
} else {
w.indent--
w.Write([]byte(">\n"))
}
return true, nil
}
func (w *textWriter) writeMessage(m protoreflect.Message) error {
md := m.Descriptor()
if w.expandAny && md.FullName() == "google.protobuf.Any" {
if canExpand, err := w.writeProto3Any(m); canExpand {
return err
}
}
fds := md.Fields()
for i := 0; i < fds.Len(); {
fd := fds.Get(i)
if od := fd.ContainingOneof(); od != nil {
fd = m.WhichOneof(od)
i += od.Fields().Len()
} else {
i++
}
if fd == nil || !m.Has(fd) {
continue
}
switch {
case fd.IsList():
lv := m.Get(fd).List()
for j := 0; j < lv.Len(); j++ {
w.writeName(fd)
v := lv.Get(j)
if err := w.writeSingularValue(v, fd); err != nil {
return err
}
w.WriteByte('\n')
}
case fd.IsMap():
kfd := fd.MapKey()
vfd := fd.MapValue()
mv := m.Get(fd).Map()
type entry struct{ key, val protoreflect.Value }
var entries []entry
mv.Range(func(k protoreflect.MapKey, v protoreflect.Value) bool {
entries = append(entries, entry{k.Value(), v})
return true
})
sort.Slice(entries, func(i, j int) bool {
switch kfd.Kind() {
case protoreflect.BoolKind:
return !entries[i].key.Bool() && entries[j].key.Bool()
case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Sfixed32Kind, protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed64Kind:
return entries[i].key.Int() < entries[j].key.Int()
case protoreflect.Uint32Kind, protoreflect.Fixed32Kind, protoreflect.Uint64Kind, protoreflect.Fixed64Kind:
return entries[i].key.Uint() < entries[j].key.Uint()
case protoreflect.StringKind:
return entries[i].key.String() < entries[j].key.String()
default:
panic("invalid kind")
}
})
for _, entry := range entries {
w.writeName(fd)
w.WriteByte('<')
if !w.compact {
w.WriteByte('\n')
}
w.indent++
w.writeName(kfd)
if err := w.writeSingularValue(entry.key, kfd); err != nil {
return err
}
w.WriteByte('\n')
w.writeName(vfd)
if err := w.writeSingularValue(entry.val, vfd); err != nil {
return err
}
w.WriteByte('\n')
w.indent--
w.WriteByte('>')
w.WriteByte('\n')
}
default:
w.writeName(fd)
if err := w.writeSingularValue(m.Get(fd), fd); err != nil {
return err
}
w.WriteByte('\n')
}
}
if b := m.GetUnknown(); len(b) > 0 {
w.writeUnknownFields(b)
}
return w.writeExtensions(m)
}
func (w *textWriter) writeSingularValue(v protoreflect.Value, fd protoreflect.FieldDescriptor) error {
switch fd.Kind() {
case protoreflect.FloatKind, protoreflect.DoubleKind:
switch vf := v.Float(); {
case math.IsInf(vf, +1):
w.Write(posInf)
case math.IsInf(vf, -1):
w.Write(negInf)
case math.IsNaN(vf):
w.Write(nan)
default:
fmt.Fprint(w, v.Interface())
}
case protoreflect.StringKind:
// NOTE: This does not validate UTF-8 for historical reasons.
w.writeQuotedString(string(v.String()))
case protoreflect.BytesKind:
w.writeQuotedString(string(v.Bytes()))
case protoreflect.MessageKind, protoreflect.GroupKind:
var bra, ket byte = '<', '>'
if fd.Kind() == protoreflect.GroupKind {
bra, ket = '{', '}'
}
w.WriteByte(bra)
if !w.compact {
w.WriteByte('\n')
}
w.indent++
m := v.Message()
if m2, ok := m.Interface().(encoding.TextMarshaler); ok {
b, err := m2.MarshalText()
if err != nil {
return err
}
w.Write(b)
} else {
w.writeMessage(m)
}
w.indent--
w.WriteByte(ket)
case protoreflect.EnumKind:
if ev := fd.Enum().Values().ByNumber(v.Enum()); ev != nil {
fmt.Fprint(w, ev.Name())
} else {
fmt.Fprint(w, v.Enum())
}
default:
fmt.Fprint(w, v.Interface())
}
return nil
}
// writeQuotedString writes a quoted string in the protocol buffer text format.
func (w *textWriter) writeQuotedString(s string) {
w.WriteByte('"')
for i := 0; i < len(s); i++ {
switch c := s[i]; c {
case '\n':
w.buf = append(w.buf, `\n`...)
case '\r':
w.buf = append(w.buf, `\r`...)
case '\t':
w.buf = append(w.buf, `\t`...)
case '"':
w.buf = append(w.buf, `\"`...)
case '\\':
w.buf = append(w.buf, `\\`...)
default:
if isPrint := c >= 0x20 && c < 0x7f; isPrint {
w.buf = append(w.buf, c)
} else {
w.buf = append(w.buf, fmt.Sprintf(`\%03o`, c)...)
}
}
}
w.WriteByte('"')
}
func (w *textWriter) writeUnknownFields(b []byte) {
if !w.compact {
fmt.Fprintf(w, "/* %d unknown bytes */\n", len(b))
}
for len(b) > 0 {
num, wtyp, n := protowire.ConsumeTag(b)
if n < 0 {
return
}
b = b[n:]
if wtyp == protowire.EndGroupType {
w.indent--
w.Write(endBraceNewline)
continue
}
fmt.Fprint(w, num)
if wtyp != protowire.StartGroupType {
w.WriteByte(':')
}
if !w.compact || wtyp == protowire.StartGroupType {
w.WriteByte(' ')
}
switch wtyp {
case protowire.VarintType:
v, n := protowire.ConsumeVarint(b)
if n < 0 {
return
}
b = b[n:]
fmt.Fprint(w, v)
case protowire.Fixed32Type:
v, n := protowire.ConsumeFixed32(b)
if n < 0 {
return
}
b = b[n:]
fmt.Fprint(w, v)
case protowire.Fixed64Type:
v, n := protowire.ConsumeFixed64(b)
if n < 0 {
return
}
b = b[n:]
fmt.Fprint(w, v)
case protowire.BytesType:
v, n := protowire.ConsumeBytes(b)
if n < 0 {
return
}
b = b[n:]
fmt.Fprintf(w, "%q", v)
case protowire.StartGroupType:
w.WriteByte('{')
w.indent++
default:
fmt.Fprintf(w, "/* unknown wire type %d */", wtyp)
}
w.WriteByte('\n')
}
}
// writeExtensions writes all the extensions in m.
func (w *textWriter) writeExtensions(m protoreflect.Message) error {
md := m.Descriptor()
if md.ExtensionRanges().Len() == 0 {
return nil
}
type ext struct {
desc protoreflect.FieldDescriptor
val protoreflect.Value
}
var exts []ext
m.Range(func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
if fd.IsExtension() {
exts = append(exts, ext{fd, v})
}
return true
})
sort.Slice(exts, func(i, j int) bool {
return exts[i].desc.Number() < exts[j].desc.Number()
})
for _, ext := range exts {
// For message set, use the name of the message as the extension name.
name := string(ext.desc.FullName())
if isMessageSet(ext.desc.ContainingMessage()) {
name = strings.TrimSuffix(name, ".message_set_extension")
}
if !ext.desc.IsList() {
if err := w.writeSingularExtension(name, ext.val, ext.desc); err != nil {
return err
}
} else {
lv := ext.val.List()
for i := 0; i < lv.Len(); i++ {
if err := w.writeSingularExtension(name, lv.Get(i), ext.desc); err != nil {
return err
}
}
}
}
return nil
}
func (w *textWriter) writeSingularExtension(name string, v protoreflect.Value, fd protoreflect.FieldDescriptor) error {
fmt.Fprintf(w, "[%s]:", name)
if !w.compact {
w.WriteByte(' ')
}
if err := w.writeSingularValue(v, fd); err != nil {
return err
}
w.WriteByte('\n')
return nil
}
func (w *textWriter) writeIndent() {
if !w.complete {
return
}
for i := 0; i < w.indent*2; i++ {
w.buf = append(w.buf, ' ')
}
w.complete = false
}

View File

@ -1,880 +0,0 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
// Functions for parsing the Text protocol buffer format.
// TODO: message sets.
import (
"encoding"
"errors"
"fmt"
"reflect"
"strconv"
"strings"
"unicode/utf8"
)
// Error string emitted when deserializing Any and fields are already set
const anyRepeatedlyUnpacked = "Any message unpacked multiple times, or %q already set"
type ParseError struct {
Message string
Line int // 1-based line number
Offset int // 0-based byte offset from start of input
}
func (p *ParseError) Error() string {
if p.Line == 1 {
// show offset only for first line
return fmt.Sprintf("line 1.%d: %v", p.Offset, p.Message)
}
return fmt.Sprintf("line %d: %v", p.Line, p.Message)
}
type token struct {
value string
err *ParseError
line int // line number
offset int // byte number from start of input, not start of line
unquoted string // the unquoted version of value, if it was a quoted string
}
func (t *token) String() string {
if t.err == nil {
return fmt.Sprintf("%q (line=%d, offset=%d)", t.value, t.line, t.offset)
}
return fmt.Sprintf("parse error: %v", t.err)
}
type textParser struct {
s string // remaining input
done bool // whether the parsing is finished (success or error)
backed bool // whether back() was called
offset, line int
cur token
}
func newTextParser(s string) *textParser {
p := new(textParser)
p.s = s
p.line = 1
p.cur.line = 1
return p
}
func (p *textParser) errorf(format string, a ...interface{}) *ParseError {
pe := &ParseError{fmt.Sprintf(format, a...), p.cur.line, p.cur.offset}
p.cur.err = pe
p.done = true
return pe
}
// Numbers and identifiers are matched by [-+._A-Za-z0-9]
func isIdentOrNumberChar(c byte) bool {
switch {
case 'A' <= c && c <= 'Z', 'a' <= c && c <= 'z':
return true
case '0' <= c && c <= '9':
return true
}
switch c {
case '-', '+', '.', '_':
return true
}
return false
}
func isWhitespace(c byte) bool {
switch c {
case ' ', '\t', '\n', '\r':
return true
}
return false
}
func isQuote(c byte) bool {
switch c {
case '"', '\'':
return true
}
return false
}
func (p *textParser) skipWhitespace() {
i := 0
for i < len(p.s) && (isWhitespace(p.s[i]) || p.s[i] == '#') {
if p.s[i] == '#' {
// comment; skip to end of line or input
for i < len(p.s) && p.s[i] != '\n' {
i++
}
if i == len(p.s) {
break
}
}
if p.s[i] == '\n' {
p.line++
}
i++
}
p.offset += i
p.s = p.s[i:len(p.s)]
if len(p.s) == 0 {
p.done = true
}
}
func (p *textParser) advance() {
// Skip whitespace
p.skipWhitespace()
if p.done {
return
}
// Start of non-whitespace
p.cur.err = nil
p.cur.offset, p.cur.line = p.offset, p.line
p.cur.unquoted = ""
switch p.s[0] {
case '<', '>', '{', '}', ':', '[', ']', ';', ',', '/':
// Single symbol
p.cur.value, p.s = p.s[0:1], p.s[1:len(p.s)]
case '"', '\'':
// Quoted string
i := 1
for i < len(p.s) && p.s[i] != p.s[0] && p.s[i] != '\n' {
if p.s[i] == '\\' && i+1 < len(p.s) {
// skip escaped char
i++
}
i++
}
if i >= len(p.s) || p.s[i] != p.s[0] {
p.errorf("unmatched quote")
return
}
unq, err := unquoteC(p.s[1:i], rune(p.s[0]))
if err != nil {
p.errorf("invalid quoted string %s: %v", p.s[0:i+1], err)
return
}
p.cur.value, p.s = p.s[0:i+1], p.s[i+1:len(p.s)]
p.cur.unquoted = unq
default:
i := 0
for i < len(p.s) && isIdentOrNumberChar(p.s[i]) {
i++
}
if i == 0 {
p.errorf("unexpected byte %#x", p.s[0])
return
}
p.cur.value, p.s = p.s[0:i], p.s[i:len(p.s)]
}
p.offset += len(p.cur.value)
}
var (
errBadUTF8 = errors.New("proto: bad UTF-8")
)
func unquoteC(s string, quote rune) (string, error) {
// This is based on C++'s tokenizer.cc.
// Despite its name, this is *not* parsing C syntax.
// For instance, "\0" is an invalid quoted string.
// Avoid allocation in trivial cases.
simple := true
for _, r := range s {
if r == '\\' || r == quote {
simple = false
break
}
}
if simple {
return s, nil
}
buf := make([]byte, 0, 3*len(s)/2)
for len(s) > 0 {
r, n := utf8.DecodeRuneInString(s)
if r == utf8.RuneError && n == 1 {
return "", errBadUTF8
}
s = s[n:]
if r != '\\' {
if r < utf8.RuneSelf {
buf = append(buf, byte(r))
} else {
buf = append(buf, string(r)...)
}
continue
}
ch, tail, err := unescape(s)
if err != nil {
return "", err
}
buf = append(buf, ch...)
s = tail
}
return string(buf), nil
}
func unescape(s string) (ch string, tail string, err error) {
r, n := utf8.DecodeRuneInString(s)
if r == utf8.RuneError && n == 1 {
return "", "", errBadUTF8
}
s = s[n:]
switch r {
case 'a':
return "\a", s, nil
case 'b':
return "\b", s, nil
case 'f':
return "\f", s, nil
case 'n':
return "\n", s, nil
case 'r':
return "\r", s, nil
case 't':
return "\t", s, nil
case 'v':
return "\v", s, nil
case '?':
return "?", s, nil // trigraph workaround
case '\'', '"', '\\':
return string(r), s, nil
case '0', '1', '2', '3', '4', '5', '6', '7':
if len(s) < 2 {
return "", "", fmt.Errorf(`\%c requires 2 following digits`, r)
}
ss := string(r) + s[:2]
s = s[2:]
i, err := strconv.ParseUint(ss, 8, 8)
if err != nil {
return "", "", fmt.Errorf(`\%s contains non-octal digits`, ss)
}
return string([]byte{byte(i)}), s, nil
case 'x', 'X', 'u', 'U':
var n int
switch r {
case 'x', 'X':
n = 2
case 'u':
n = 4
case 'U':
n = 8
}
if len(s) < n {
return "", "", fmt.Errorf(`\%c requires %d following digits`, r, n)
}
ss := s[:n]
s = s[n:]
i, err := strconv.ParseUint(ss, 16, 64)
if err != nil {
return "", "", fmt.Errorf(`\%c%s contains non-hexadecimal digits`, r, ss)
}
if r == 'x' || r == 'X' {
return string([]byte{byte(i)}), s, nil
}
if i > utf8.MaxRune {
return "", "", fmt.Errorf(`\%c%s is not a valid Unicode code point`, r, ss)
}
return string(i), s, nil
}
return "", "", fmt.Errorf(`unknown escape \%c`, r)
}
// Back off the parser by one token. Can only be done between calls to next().
// It makes the next advance() a no-op.
func (p *textParser) back() { p.backed = true }
// Advances the parser and returns the new current token.
func (p *textParser) next() *token {
if p.backed || p.done {
p.backed = false
return &p.cur
}
p.advance()
if p.done {
p.cur.value = ""
} else if len(p.cur.value) > 0 && isQuote(p.cur.value[0]) {
// Look for multiple quoted strings separated by whitespace,
// and concatenate them.
cat := p.cur
for {
p.skipWhitespace()
if p.done || !isQuote(p.s[0]) {
break
}
p.advance()
if p.cur.err != nil {
return &p.cur
}
cat.value += " " + p.cur.value
cat.unquoted += p.cur.unquoted
}
p.done = false // parser may have seen EOF, but we want to return cat
p.cur = cat
}
return &p.cur
}
func (p *textParser) consumeToken(s string) error {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value != s {
p.back()
return p.errorf("expected %q, found %q", s, tok.value)
}
return nil
}
// Return a RequiredNotSetError indicating which required field was not set.
func (p *textParser) missingRequiredFieldError(sv reflect.Value) *RequiredNotSetError {
st := sv.Type()
sprops := GetProperties(st)
for i := 0; i < st.NumField(); i++ {
if !isNil(sv.Field(i)) {
continue
}
props := sprops.Prop[i]
if props.Required {
return &RequiredNotSetError{fmt.Sprintf("%v.%v", st, props.OrigName)}
}
}
return &RequiredNotSetError{fmt.Sprintf("%v.<unknown field name>", st)} // should not happen
}
// Returns the index in the struct for the named field, as well as the parsed tag properties.
func structFieldByName(sprops *StructProperties, name string) (int, *Properties, bool) {
i, ok := sprops.decoderOrigNames[name]
if ok {
return i, sprops.Prop[i], true
}
return -1, nil, false
}
// Consume a ':' from the input stream (if the next token is a colon),
// returning an error if a colon is needed but not present.
func (p *textParser) checkForColon(props *Properties, typ reflect.Type) *ParseError {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value != ":" {
// Colon is optional when the field is a group or message.
needColon := true
switch props.Wire {
case "group":
needColon = false
case "bytes":
// A "bytes" field is either a message, a string, or a repeated field;
// those three become *T, *string and []T respectively, so we can check for
// this field being a pointer to a non-string.
if typ.Kind() == reflect.Ptr {
// *T or *string
if typ.Elem().Kind() == reflect.String {
break
}
} else if typ.Kind() == reflect.Slice {
// []T or []*T
if typ.Elem().Kind() != reflect.Ptr {
break
}
} else if typ.Kind() == reflect.String {
// The proto3 exception is for a string field,
// which requires a colon.
break
}
needColon = false
}
if needColon {
return p.errorf("expected ':', found %q", tok.value)
}
p.back()
}
return nil
}
func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
st := sv.Type()
sprops := GetProperties(st)
reqCount := sprops.reqCount
var reqFieldErr error
fieldSet := make(map[string]bool)
// A struct is a sequence of "name: value", terminated by one of
// '>' or '}', or the end of the input. A name may also be
// "[extension]" or "[type/url]".
//
// The whole struct can also be an expanded Any message, like:
// [type/url] < ... struct contents ... >
for {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == terminator {
break
}
if tok.value == "[" {
// Looks like an extension or an Any.
//
// TODO: Check whether we need to handle
// namespace rooted names (e.g. ".something.Foo").
extName, err := p.consumeExtName()
if err != nil {
return err
}
if s := strings.LastIndex(extName, "/"); s >= 0 {
// If it contains a slash, it's an Any type URL.
messageName := extName[s+1:]
mt := MessageType(messageName)
if mt == nil {
return p.errorf("unrecognized message %q in google.protobuf.Any", messageName)
}
tok = p.next()
if tok.err != nil {
return tok.err
}
// consume an optional colon
if tok.value == ":" {
tok = p.next()
if tok.err != nil {
return tok.err
}
}
var terminator string
switch tok.value {
case "<":
terminator = ">"
case "{":
terminator = "}"
default:
return p.errorf("expected '{' or '<', found %q", tok.value)
}
v := reflect.New(mt.Elem())
if pe := p.readStruct(v.Elem(), terminator); pe != nil {
return pe
}
b, err := Marshal(v.Interface().(Message))
if err != nil {
return p.errorf("failed to marshal message of type %q: %v", messageName, err)
}
if fieldSet["type_url"] {
return p.errorf(anyRepeatedlyUnpacked, "type_url")
}
if fieldSet["value"] {
return p.errorf(anyRepeatedlyUnpacked, "value")
}
sv.FieldByName("TypeUrl").SetString(extName)
sv.FieldByName("Value").SetBytes(b)
fieldSet["type_url"] = true
fieldSet["value"] = true
continue
}
var desc *ExtensionDesc
// This could be faster, but it's functional.
// TODO: Do something smarter than a linear scan.
for _, d := range RegisteredExtensions(reflect.New(st).Interface().(Message)) {
if d.Name == extName {
desc = d
break
}
}
if desc == nil {
return p.errorf("unrecognized extension %q", extName)
}
props := &Properties{}
props.Parse(desc.Tag)
typ := reflect.TypeOf(desc.ExtensionType)
if err := p.checkForColon(props, typ); err != nil {
return err
}
rep := desc.repeated()
// Read the extension structure, and set it in
// the value we're constructing.
var ext reflect.Value
if !rep {
ext = reflect.New(typ).Elem()
} else {
ext = reflect.New(typ.Elem()).Elem()
}
if err := p.readAny(ext, props); err != nil {
if _, ok := err.(*RequiredNotSetError); !ok {
return err
}
reqFieldErr = err
}
ep := sv.Addr().Interface().(Message)
if !rep {
SetExtension(ep, desc, ext.Interface())
} else {
old, err := GetExtension(ep, desc)
var sl reflect.Value
if err == nil {
sl = reflect.ValueOf(old) // existing slice
} else {
sl = reflect.MakeSlice(typ, 0, 1)
}
sl = reflect.Append(sl, ext)
SetExtension(ep, desc, sl.Interface())
}
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
continue
}
// This is a normal, non-extension field.
name := tok.value
var dst reflect.Value
fi, props, ok := structFieldByName(sprops, name)
if ok {
dst = sv.Field(fi)
} else if oop, ok := sprops.OneofTypes[name]; ok {
// It is a oneof.
props = oop.Prop
nv := reflect.New(oop.Type.Elem())
dst = nv.Elem().Field(0)
field := sv.Field(oop.Field)
if !field.IsNil() {
return p.errorf("field '%s' would overwrite already parsed oneof '%s'", name, sv.Type().Field(oop.Field).Name)
}
field.Set(nv)
}
if !dst.IsValid() {
return p.errorf("unknown field name %q in %v", name, st)
}
if dst.Kind() == reflect.Map {
// Consume any colon.
if err := p.checkForColon(props, dst.Type()); err != nil {
return err
}
// Construct the map if it doesn't already exist.
if dst.IsNil() {
dst.Set(reflect.MakeMap(dst.Type()))
}
key := reflect.New(dst.Type().Key()).Elem()
val := reflect.New(dst.Type().Elem()).Elem()
// The map entry should be this sequence of tokens:
// < key : KEY value : VALUE >
// However, implementations may omit key or value, and technically
// we should support them in any order. See b/28924776 for a time
// this went wrong.
tok := p.next()
var terminator string
switch tok.value {
case "<":
terminator = ">"
case "{":
terminator = "}"
default:
return p.errorf("expected '{' or '<', found %q", tok.value)
}
for {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == terminator {
break
}
switch tok.value {
case "key":
if err := p.consumeToken(":"); err != nil {
return err
}
if err := p.readAny(key, props.MapKeyProp); err != nil {
return err
}
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
case "value":
if err := p.checkForColon(props.MapValProp, dst.Type().Elem()); err != nil {
return err
}
if err := p.readAny(val, props.MapValProp); err != nil {
return err
}
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
default:
p.back()
return p.errorf(`expected "key", "value", or %q, found %q`, terminator, tok.value)
}
}
dst.SetMapIndex(key, val)
continue
}
// Check that it's not already set if it's not a repeated field.
if !props.Repeated && fieldSet[name] {
return p.errorf("non-repeated field %q was repeated", name)
}
if err := p.checkForColon(props, dst.Type()); err != nil {
return err
}
// Parse into the field.
fieldSet[name] = true
if err := p.readAny(dst, props); err != nil {
if _, ok := err.(*RequiredNotSetError); !ok {
return err
}
reqFieldErr = err
}
if props.Required {
reqCount--
}
if err := p.consumeOptionalSeparator(); err != nil {
return err
}
}
if reqCount > 0 {
return p.missingRequiredFieldError(sv)
}
return reqFieldErr
}
// consumeExtName consumes extension name or expanded Any type URL and the
// following ']'. It returns the name or URL consumed.
func (p *textParser) consumeExtName() (string, error) {
tok := p.next()
if tok.err != nil {
return "", tok.err
}
// If extension name or type url is quoted, it's a single token.
if len(tok.value) > 2 && isQuote(tok.value[0]) && tok.value[len(tok.value)-1] == tok.value[0] {
name, err := unquoteC(tok.value[1:len(tok.value)-1], rune(tok.value[0]))
if err != nil {
return "", err
}
return name, p.consumeToken("]")
}
// Consume everything up to "]"
var parts []string
for tok.value != "]" {
parts = append(parts, tok.value)
tok = p.next()
if tok.err != nil {
return "", p.errorf("unrecognized type_url or extension name: %s", tok.err)
}
if p.done && tok.value != "]" {
return "", p.errorf("unclosed type_url or extension name")
}
}
return strings.Join(parts, ""), nil
}
// consumeOptionalSeparator consumes an optional semicolon or comma.
// It is used in readStruct to provide backward compatibility.
func (p *textParser) consumeOptionalSeparator() error {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value != ";" && tok.value != "," {
p.back()
}
return nil
}
func (p *textParser) readAny(v reflect.Value, props *Properties) error {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == "" {
return p.errorf("unexpected EOF")
}
switch fv := v; fv.Kind() {
case reflect.Slice:
at := v.Type()
if at.Elem().Kind() == reflect.Uint8 {
// Special case for []byte
if tok.value[0] != '"' && tok.value[0] != '\'' {
// Deliberately written out here, as the error after
// this switch statement would write "invalid []byte: ...",
// which is not as user-friendly.
return p.errorf("invalid string: %v", tok.value)
}
bytes := []byte(tok.unquoted)
fv.Set(reflect.ValueOf(bytes))
return nil
}
// Repeated field.
if tok.value == "[" {
// Repeated field with list notation, like [1,2,3].
for {
fv.Set(reflect.Append(fv, reflect.New(at.Elem()).Elem()))
err := p.readAny(fv.Index(fv.Len()-1), props)
if err != nil {
return err
}
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == "]" {
break
}
if tok.value != "," {
return p.errorf("Expected ']' or ',' found %q", tok.value)
}
}
return nil
}
// One value of the repeated field.
p.back()
fv.Set(reflect.Append(fv, reflect.New(at.Elem()).Elem()))
return p.readAny(fv.Index(fv.Len()-1), props)
case reflect.Bool:
// true/1/t/True or false/f/0/False.
switch tok.value {
case "true", "1", "t", "True":
fv.SetBool(true)
return nil
case "false", "0", "f", "False":
fv.SetBool(false)
return nil
}
case reflect.Float32, reflect.Float64:
v := tok.value
// Ignore 'f' for compatibility with output generated by C++, but don't
// remove 'f' when the value is "-inf" or "inf".
if strings.HasSuffix(v, "f") && tok.value != "-inf" && tok.value != "inf" {
v = v[:len(v)-1]
}
if f, err := strconv.ParseFloat(v, fv.Type().Bits()); err == nil {
fv.SetFloat(f)
return nil
}
case reflect.Int32:
if x, err := strconv.ParseInt(tok.value, 0, 32); err == nil {
fv.SetInt(x)
return nil
}
if len(props.Enum) == 0 {
break
}
m, ok := enumValueMaps[props.Enum]
if !ok {
break
}
x, ok := m[tok.value]
if !ok {
break
}
fv.SetInt(int64(x))
return nil
case reflect.Int64:
if x, err := strconv.ParseInt(tok.value, 0, 64); err == nil {
fv.SetInt(x)
return nil
}
case reflect.Ptr:
// A basic field (indirected through pointer), or a repeated message/group
p.back()
fv.Set(reflect.New(fv.Type().Elem()))
return p.readAny(fv.Elem(), props)
case reflect.String:
if tok.value[0] == '"' || tok.value[0] == '\'' {
fv.SetString(tok.unquoted)
return nil
}
case reflect.Struct:
var terminator string
switch tok.value {
case "{":
terminator = "}"
case "<":
terminator = ">"
default:
return p.errorf("expected '{' or '<', found %q", tok.value)
}
// TODO: Handle nested messages which implement encoding.TextUnmarshaler.
return p.readStruct(fv, terminator)
case reflect.Uint32:
if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil {
fv.SetUint(uint64(x))
return nil
}
case reflect.Uint64:
if x, err := strconv.ParseUint(tok.value, 0, 64); err == nil {
fv.SetUint(x)
return nil
}
}
return p.errorf("invalid %v: %v", v.Type(), tok.value)
}
// UnmarshalText reads a protocol buffer in Text format. UnmarshalText resets pb
// before starting to unmarshal, so any existing data in pb is always removed.
// If a required field is not set and no other error occurs,
// UnmarshalText returns *RequiredNotSetError.
func UnmarshalText(s string, pb Message) error {
if um, ok := pb.(encoding.TextUnmarshaler); ok {
return um.UnmarshalText([]byte(s))
}
pb.Reset()
v := reflect.ValueOf(pb)
return newTextParser(s).readStruct(v.Elem(), "")
}

78
vendor/github.com/golang/protobuf/proto/wire.go generated vendored Normal file
View File

@ -0,0 +1,78 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
import (
protoV2 "google.golang.org/protobuf/proto"
"google.golang.org/protobuf/runtime/protoiface"
)
// Size returns the size in bytes of the wire-format encoding of m.
func Size(m Message) int {
if m == nil {
return 0
}
mi := MessageV2(m)
return protoV2.Size(mi)
}
// Marshal returns the wire-format encoding of m.
func Marshal(m Message) ([]byte, error) {
b, err := marshalAppend(nil, m, false)
if b == nil {
b = zeroBytes
}
return b, err
}
var zeroBytes = make([]byte, 0, 0)
func marshalAppend(buf []byte, m Message, deterministic bool) ([]byte, error) {
if m == nil {
return nil, ErrNil
}
mi := MessageV2(m)
nbuf, err := protoV2.MarshalOptions{
Deterministic: deterministic,
AllowPartial: true,
}.MarshalAppend(buf, mi)
if err != nil {
return buf, err
}
if len(buf) == len(nbuf) {
if !mi.ProtoReflect().IsValid() {
return buf, ErrNil
}
}
return nbuf, checkRequiredNotSet(mi)
}
// Unmarshal parses a wire-format message in b and places the decoded results in m.
//
// Unmarshal resets m before starting to unmarshal, so any existing data in m is always
// removed. Use UnmarshalMerge to preserve and append to existing data.
func Unmarshal(b []byte, m Message) error {
m.Reset()
return UnmarshalMerge(b, m)
}
// UnmarshalMerge parses a wire-format message in b and places the decoded results in m.
func UnmarshalMerge(b []byte, m Message) error {
mi := MessageV2(m)
out, err := protoV2.UnmarshalOptions{
AllowPartial: true,
Merge: true,
}.UnmarshalState(protoiface.UnmarshalInput{
Buf: b,
Message: mi.ProtoReflect(),
})
if err != nil {
return err
}
if out.Flags&protoiface.UnmarshalInitialized > 0 {
return nil
}
return checkRequiredNotSet(mi)
}

34
vendor/github.com/golang/protobuf/proto/wrappers.go generated vendored Normal file
View File

@ -0,0 +1,34 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package proto
// Bool stores v in a new bool value and returns a pointer to it.
func Bool(v bool) *bool { return &v }
// Int stores v in a new int32 value and returns a pointer to it.
//
// Deprecated: Use Int32 instead.
func Int(v int) *int32 { return Int32(int32(v)) }
// Int32 stores v in a new int32 value and returns a pointer to it.
func Int32(v int32) *int32 { return &v }
// Int64 stores v in a new int64 value and returns a pointer to it.
func Int64(v int64) *int64 { return &v }
// Uint32 stores v in a new uint32 value and returns a pointer to it.
func Uint32(v uint32) *uint32 { return &v }
// Uint64 stores v in a new uint64 value and returns a pointer to it.
func Uint64(v uint64) *uint64 { return &v }
// Float32 stores v in a new float32 value and returns a pointer to it.
func Float32(v float32) *float32 { return &v }
// Float64 stores v in a new float64 value and returns a pointer to it.
func Float64(v float64) *float64 { return &v }
// String stores v in a new string value and returns a pointer to it.
func String(v string) *string { return &v }

View File

@ -1,141 +1,179 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ptypes
// This file implements functions to marshal proto.Message to/from
// google.protobuf.Any message.
import (
"fmt"
"reflect"
"strings"
"github.com/golang/protobuf/proto"
"github.com/golang/protobuf/ptypes/any"
"google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
anypb "github.com/golang/protobuf/ptypes/any"
)
const googleApis = "type.googleapis.com/"
const urlPrefix = "type.googleapis.com/"
// AnyMessageName returns the name of the message contained in a google.protobuf.Any message.
// AnyMessageName returns the message name contained in an anypb.Any message.
// Most type assertions should use the Is function instead.
//
// Note that regular type assertions should be done using the Is
// function. AnyMessageName is provided for less common use cases like filtering a
// sequence of Any messages based on a set of allowed message type names.
func AnyMessageName(any *any.Any) (string, error) {
// Deprecated: Call the any.MessageName method instead.
func AnyMessageName(any *anypb.Any) (string, error) {
name, err := anyMessageName(any)
return string(name), err
}
func anyMessageName(any *anypb.Any) (protoreflect.FullName, error) {
if any == nil {
return "", fmt.Errorf("message is nil")
}
slash := strings.LastIndex(any.TypeUrl, "/")
if slash < 0 {
name := protoreflect.FullName(any.TypeUrl)
if i := strings.LastIndex(any.TypeUrl, "/"); i >= 0 {
name = name[i+len("/"):]
}
if !name.IsValid() {
return "", fmt.Errorf("message type url %q is invalid", any.TypeUrl)
}
return any.TypeUrl[slash+1:], nil
return name, nil
}
// MarshalAny takes the protocol buffer and encodes it into google.protobuf.Any.
func MarshalAny(pb proto.Message) (*any.Any, error) {
value, err := proto.Marshal(pb)
// MarshalAny marshals the given message m into an anypb.Any message.
//
// Deprecated: Call the anypb.New function instead.
func MarshalAny(m proto.Message) (*anypb.Any, error) {
switch dm := m.(type) {
case DynamicAny:
m = dm.Message
case *DynamicAny:
if dm == nil {
return nil, proto.ErrNil
}
m = dm.Message
}
b, err := proto.Marshal(m)
if err != nil {
return nil, err
}
return &any.Any{TypeUrl: googleApis + proto.MessageName(pb), Value: value}, nil
return &anypb.Any{TypeUrl: urlPrefix + proto.MessageName(m), Value: b}, nil
}
// DynamicAny is a value that can be passed to UnmarshalAny to automatically
// allocate a proto.Message for the type specified in a google.protobuf.Any
// message. The allocated message is stored in the embedded proto.Message.
// Empty returns a new message of the type specified in an anypb.Any message.
// It returns protoregistry.NotFound if the corresponding message type could not
// be resolved in the global registry.
//
// Example:
//
// var x ptypes.DynamicAny
// if err := ptypes.UnmarshalAny(a, &x); err != nil { ... }
// fmt.Printf("unmarshaled message: %v", x.Message)
type DynamicAny struct {
proto.Message
}
// Empty returns a new proto.Message of the type specified in a
// google.protobuf.Any message. It returns an error if corresponding message
// type isn't linked in.
func Empty(any *any.Any) (proto.Message, error) {
aname, err := AnyMessageName(any)
// Deprecated: Use protoregistry.GlobalTypes.FindMessageByName instead
// to resolve the message name and create a new instance of it.
func Empty(any *anypb.Any) (proto.Message, error) {
name, err := anyMessageName(any)
if err != nil {
return nil, err
}
t := proto.MessageType(aname)
if t == nil {
return nil, fmt.Errorf("any: message type %q isn't linked in", aname)
mt, err := protoregistry.GlobalTypes.FindMessageByName(name)
if err != nil {
return nil, err
}
return reflect.New(t.Elem()).Interface().(proto.Message), nil
return proto.MessageV1(mt.New().Interface()), nil
}
// UnmarshalAny parses the protocol buffer representation in a google.protobuf.Any
// message and places the decoded result in pb. It returns an error if type of
// contents of Any message does not match type of pb message.
// UnmarshalAny unmarshals the encoded value contained in the anypb.Any message
// into the provided message m. It returns an error if the target message
// does not match the type in the Any message or if an unmarshal error occurs.
//
// pb can be a proto.Message, or a *DynamicAny.
func UnmarshalAny(any *any.Any, pb proto.Message) error {
if d, ok := pb.(*DynamicAny); ok {
if d.Message == nil {
// The target message m may be a *DynamicAny message. If the underlying message
// type could not be resolved, then this returns protoregistry.NotFound.
//
// Deprecated: Call the any.UnmarshalTo method instead.
func UnmarshalAny(any *anypb.Any, m proto.Message) error {
if dm, ok := m.(*DynamicAny); ok {
if dm.Message == nil {
var err error
d.Message, err = Empty(any)
dm.Message, err = Empty(any)
if err != nil {
return err
}
}
return UnmarshalAny(any, d.Message)
m = dm.Message
}
aname, err := AnyMessageName(any)
anyName, err := AnyMessageName(any)
if err != nil {
return err
}
mname := proto.MessageName(pb)
if aname != mname {
return fmt.Errorf("mismatched message type: got %q want %q", aname, mname)
msgName := proto.MessageName(m)
if anyName != msgName {
return fmt.Errorf("mismatched message type: got %q want %q", anyName, msgName)
}
return proto.Unmarshal(any.Value, pb)
return proto.Unmarshal(any.Value, m)
}
// Is returns true if any value contains a given message type.
func Is(any *any.Any, pb proto.Message) bool {
// The following is equivalent to AnyMessageName(any) == proto.MessageName(pb),
// but it avoids scanning TypeUrl for the slash.
if any == nil {
// Is reports whether the Any message contains a message of the specified type.
//
// Deprecated: Call the any.MessageIs method instead.
func Is(any *anypb.Any, m proto.Message) bool {
if any == nil || m == nil {
return false
}
name := proto.MessageName(pb)
prefix := len(any.TypeUrl) - len(name)
return prefix >= 1 && any.TypeUrl[prefix-1] == '/' && any.TypeUrl[prefix:] == name
name := proto.MessageName(m)
if !strings.HasSuffix(any.TypeUrl, name) {
return false
}
return len(any.TypeUrl) == len(name) || any.TypeUrl[len(any.TypeUrl)-len(name)-1] == '/'
}
// DynamicAny is a value that can be passed to UnmarshalAny to automatically
// allocate a proto.Message for the type specified in an anypb.Any message.
// The allocated message is stored in the embedded proto.Message.
//
// Example:
// var x ptypes.DynamicAny
// if err := ptypes.UnmarshalAny(a, &x); err != nil { ... }
// fmt.Printf("unmarshaled message: %v", x.Message)
//
// Deprecated: Use the any.UnmarshalNew method instead to unmarshal
// the any message contents into a new instance of the underlying message.
type DynamicAny struct{ proto.Message }
func (m DynamicAny) String() string {
if m.Message == nil {
return "<nil>"
}
return m.Message.String()
}
func (m DynamicAny) Reset() {
if m.Message == nil {
return
}
m.Message.Reset()
}
func (m DynamicAny) ProtoMessage() {
return
}
func (m DynamicAny) ProtoReflect() protoreflect.Message {
if m.Message == nil {
return nil
}
return dynamicAny{proto.MessageReflect(m.Message)}
}
type dynamicAny struct{ protoreflect.Message }
func (m dynamicAny) Type() protoreflect.MessageType {
return dynamicAnyType{m.Message.Type()}
}
func (m dynamicAny) New() protoreflect.Message {
return dynamicAnyType{m.Message.Type()}.New()
}
func (m dynamicAny) Interface() protoreflect.ProtoMessage {
return DynamicAny{proto.MessageV1(m.Message.Interface())}
}
type dynamicAnyType struct{ protoreflect.MessageType }
func (t dynamicAnyType) New() protoreflect.Message {
return dynamicAny{t.MessageType.New()}
}
func (t dynamicAnyType) Zero() protoreflect.Message {
return dynamicAny{t.MessageType.Zero()}
}

View File

@ -1,203 +1,62 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: google/protobuf/any.proto
// source: github.com/golang/protobuf/ptypes/any/any.proto
package any
import (
fmt "fmt"
proto "github.com/golang/protobuf/proto"
math "math"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
anypb "google.golang.org/protobuf/types/known/anypb"
reflect "reflect"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// Symbols defined in public import of google/protobuf/any.proto.
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
type Any = anypb.Any
// `Any` contains an arbitrary serialized protocol buffer message along with a
// URL that describes the type of the serialized message.
//
// Protobuf library provides support to pack/unpack Any values in the form
// of utility functions or additional generated methods of the Any type.
//
// Example 1: Pack and unpack a message in C++.
//
// Foo foo = ...;
// Any any;
// any.PackFrom(foo);
// ...
// if (any.UnpackTo(&foo)) {
// ...
// }
//
// Example 2: Pack and unpack a message in Java.
//
// Foo foo = ...;
// Any any = Any.pack(foo);
// ...
// if (any.is(Foo.class)) {
// foo = any.unpack(Foo.class);
// }
//
// Example 3: Pack and unpack a message in Python.
//
// foo = Foo(...)
// any = Any()
// any.Pack(foo)
// ...
// if any.Is(Foo.DESCRIPTOR):
// any.Unpack(foo)
// ...
//
// Example 4: Pack and unpack a message in Go
//
// foo := &pb.Foo{...}
// any, err := ptypes.MarshalAny(foo)
// ...
// foo := &pb.Foo{}
// if err := ptypes.UnmarshalAny(any, foo); err != nil {
// ...
// }
//
// The pack methods provided by protobuf library will by default use
// 'type.googleapis.com/full.type.name' as the type URL and the unpack
// methods only use the fully qualified type name after the last '/'
// in the type URL, for example "foo.bar.com/x/y.z" will yield type
// name "y.z".
//
//
// JSON
// ====
// The JSON representation of an `Any` value uses the regular
// representation of the deserialized, embedded message, with an
// additional field `@type` which contains the type URL. Example:
//
// package google.profile;
// message Person {
// string first_name = 1;
// string last_name = 2;
// }
//
// {
// "@type": "type.googleapis.com/google.profile.Person",
// "firstName": <string>,
// "lastName": <string>
// }
//
// If the embedded message type is well-known and has a custom JSON
// representation, that representation will be embedded adding a field
// `value` which holds the custom JSON in addition to the `@type`
// field. Example (for message [google.protobuf.Duration][]):
//
// {
// "@type": "type.googleapis.com/google.protobuf.Duration",
// "value": "1.212s"
// }
//
type Any struct {
// A URL/resource name that uniquely identifies the type of the serialized
// protocol buffer message. This string must contain at least
// one "/" character. The last segment of the URL's path must represent
// the fully qualified name of the type (as in
// `path/google.protobuf.Duration`). The name should be in a canonical form
// (e.g., leading "." is not accepted).
//
// In practice, teams usually precompile into the binary all types that they
// expect it to use in the context of Any. However, for URLs which use the
// scheme `http`, `https`, or no scheme, one can optionally set up a type
// server that maps type URLs to message definitions as follows:
//
// * If no scheme is provided, `https` is assumed.
// * An HTTP GET on the URL must yield a [google.protobuf.Type][]
// value in binary format, or produce an error.
// * Applications are allowed to cache lookup results based on the
// URL, or have them precompiled into a binary to avoid any
// lookup. Therefore, binary compatibility needs to be preserved
// on changes to types. (Use versioned type names to manage
// breaking changes.)
//
// Note: this functionality is not currently available in the official
// protobuf release, and it is not used for type URLs beginning with
// type.googleapis.com.
//
// Schemes other than `http`, `https` (or the empty scheme) might be
// used with implementation specific semantics.
//
TypeUrl string `protobuf:"bytes,1,opt,name=type_url,json=typeUrl,proto3" json:"type_url,omitempty"`
// Must be a valid serialized protocol buffer of the above specified type.
Value []byte `protobuf:"bytes,2,opt,name=value,proto3" json:"value,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
var File_github_com_golang_protobuf_ptypes_any_any_proto protoreflect.FileDescriptor
var file_github_com_golang_protobuf_ptypes_any_any_proto_rawDesc = []byte{
0x0a, 0x2f, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x6c,
0x61, 0x6e, 0x67, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x70, 0x74, 0x79,
0x70, 0x65, 0x73, 0x2f, 0x61, 0x6e, 0x79, 0x2f, 0x61, 0x6e, 0x79, 0x2e, 0x70, 0x72, 0x6f, 0x74,
0x6f, 0x1a, 0x19, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62,
0x75, 0x66, 0x2f, 0x61, 0x6e, 0x79, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x42, 0x2b, 0x5a, 0x29,
0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x6c, 0x61, 0x6e,
0x67, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x70, 0x74, 0x79, 0x70, 0x65,
0x73, 0x2f, 0x61, 0x6e, 0x79, 0x3b, 0x61, 0x6e, 0x79, 0x50, 0x00, 0x62, 0x06, 0x70, 0x72, 0x6f,
0x74, 0x6f, 0x33,
}
func (m *Any) Reset() { *m = Any{} }
func (m *Any) String() string { return proto.CompactTextString(m) }
func (*Any) ProtoMessage() {}
func (*Any) Descriptor() ([]byte, []int) {
return fileDescriptor_b53526c13ae22eb4, []int{0}
var file_github_com_golang_protobuf_ptypes_any_any_proto_goTypes = []interface{}{}
var file_github_com_golang_protobuf_ptypes_any_any_proto_depIdxs = []int32{
0, // [0:0] is the sub-list for method output_type
0, // [0:0] is the sub-list for method input_type
0, // [0:0] is the sub-list for extension type_name
0, // [0:0] is the sub-list for extension extendee
0, // [0:0] is the sub-list for field type_name
}
func (*Any) XXX_WellKnownType() string { return "Any" }
func (m *Any) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Any.Unmarshal(m, b)
}
func (m *Any) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Any.Marshal(b, m, deterministic)
}
func (m *Any) XXX_Merge(src proto.Message) {
xxx_messageInfo_Any.Merge(m, src)
}
func (m *Any) XXX_Size() int {
return xxx_messageInfo_Any.Size(m)
}
func (m *Any) XXX_DiscardUnknown() {
xxx_messageInfo_Any.DiscardUnknown(m)
}
var xxx_messageInfo_Any proto.InternalMessageInfo
func (m *Any) GetTypeUrl() string {
if m != nil {
return m.TypeUrl
func init() { file_github_com_golang_protobuf_ptypes_any_any_proto_init() }
func file_github_com_golang_protobuf_ptypes_any_any_proto_init() {
if File_github_com_golang_protobuf_ptypes_any_any_proto != nil {
return
}
return ""
}
func (m *Any) GetValue() []byte {
if m != nil {
return m.Value
}
return nil
}
func init() {
proto.RegisterType((*Any)(nil), "google.protobuf.Any")
}
func init() {
proto.RegisterFile("google/protobuf/any.proto", fileDescriptor_b53526c13ae22eb4)
}
var fileDescriptor_b53526c13ae22eb4 = []byte{
// 185 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0x92, 0x4c, 0xcf, 0xcf, 0x4f,
0xcf, 0x49, 0xd5, 0x2f, 0x28, 0xca, 0x2f, 0xc9, 0x4f, 0x2a, 0x4d, 0xd3, 0x4f, 0xcc, 0xab, 0xd4,
0x03, 0x73, 0x84, 0xf8, 0x21, 0x52, 0x7a, 0x30, 0x29, 0x25, 0x33, 0x2e, 0x66, 0xc7, 0xbc, 0x4a,
0x21, 0x49, 0x2e, 0x8e, 0x92, 0xca, 0x82, 0xd4, 0xf8, 0xd2, 0xa2, 0x1c, 0x09, 0x46, 0x05, 0x46,
0x0d, 0xce, 0x20, 0x76, 0x10, 0x3f, 0xb4, 0x28, 0x47, 0x48, 0x84, 0x8b, 0xb5, 0x2c, 0x31, 0xa7,
0x34, 0x55, 0x82, 0x49, 0x81, 0x51, 0x83, 0x27, 0x08, 0xc2, 0x71, 0xca, 0xe7, 0x12, 0x4e, 0xce,
0xcf, 0xd5, 0x43, 0x33, 0xce, 0x89, 0xc3, 0x31, 0xaf, 0x32, 0x00, 0xc4, 0x09, 0x60, 0x8c, 0x52,
0x4d, 0xcf, 0x2c, 0xc9, 0x28, 0x4d, 0xd2, 0x4b, 0xce, 0xcf, 0xd5, 0x4f, 0xcf, 0xcf, 0x49, 0xcc,
0x4b, 0x47, 0xb8, 0xa8, 0x00, 0x64, 0x7a, 0x31, 0xc8, 0x61, 0x8b, 0x98, 0x98, 0xdd, 0x03, 0x9c,
0x56, 0x31, 0xc9, 0xb9, 0x43, 0x8c, 0x0a, 0x80, 0x2a, 0xd1, 0x0b, 0x4f, 0xcd, 0xc9, 0xf1, 0xce,
0xcb, 0x2f, 0xcf, 0x0b, 0x01, 0x29, 0x4d, 0x62, 0x03, 0xeb, 0x35, 0x06, 0x04, 0x00, 0x00, 0xff,
0xff, 0x13, 0xf8, 0xe8, 0x42, 0xdd, 0x00, 0x00, 0x00,
type x struct{}
out := protoimpl.TypeBuilder{
File: protoimpl.DescBuilder{
GoPackagePath: reflect.TypeOf(x{}).PkgPath(),
RawDescriptor: file_github_com_golang_protobuf_ptypes_any_any_proto_rawDesc,
NumEnums: 0,
NumMessages: 0,
NumExtensions: 0,
NumServices: 0,
},
GoTypes: file_github_com_golang_protobuf_ptypes_any_any_proto_goTypes,
DependencyIndexes: file_github_com_golang_protobuf_ptypes_any_any_proto_depIdxs,
}.Build()
File_github_com_golang_protobuf_ptypes_any_any_proto = out.File
file_github_com_golang_protobuf_ptypes_any_any_proto_rawDesc = nil
file_github_com_golang_protobuf_ptypes_any_any_proto_goTypes = nil
file_github_com_golang_protobuf_ptypes_any_any_proto_depIdxs = nil
}

View File

@ -1,155 +0,0 @@
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
syntax = "proto3";
package google.protobuf;
option csharp_namespace = "Google.Protobuf.WellKnownTypes";
option go_package = "github.com/golang/protobuf/ptypes/any";
option java_package = "com.google.protobuf";
option java_outer_classname = "AnyProto";
option java_multiple_files = true;
option objc_class_prefix = "GPB";
// `Any` contains an arbitrary serialized protocol buffer message along with a
// URL that describes the type of the serialized message.
//
// Protobuf library provides support to pack/unpack Any values in the form
// of utility functions or additional generated methods of the Any type.
//
// Example 1: Pack and unpack a message in C++.
//
// Foo foo = ...;
// Any any;
// any.PackFrom(foo);
// ...
// if (any.UnpackTo(&foo)) {
// ...
// }
//
// Example 2: Pack and unpack a message in Java.
//
// Foo foo = ...;
// Any any = Any.pack(foo);
// ...
// if (any.is(Foo.class)) {
// foo = any.unpack(Foo.class);
// }
//
// Example 3: Pack and unpack a message in Python.
//
// foo = Foo(...)
// any = Any()
// any.Pack(foo)
// ...
// if any.Is(Foo.DESCRIPTOR):
// any.Unpack(foo)
// ...
//
// Example 4: Pack and unpack a message in Go
//
// foo := &pb.Foo{...}
// any, err := ptypes.MarshalAny(foo)
// ...
// foo := &pb.Foo{}
// if err := ptypes.UnmarshalAny(any, foo); err != nil {
// ...
// }
//
// The pack methods provided by protobuf library will by default use
// 'type.googleapis.com/full.type.name' as the type URL and the unpack
// methods only use the fully qualified type name after the last '/'
// in the type URL, for example "foo.bar.com/x/y.z" will yield type
// name "y.z".
//
//
// JSON
// ====
// The JSON representation of an `Any` value uses the regular
// representation of the deserialized, embedded message, with an
// additional field `@type` which contains the type URL. Example:
//
// package google.profile;
// message Person {
// string first_name = 1;
// string last_name = 2;
// }
//
// {
// "@type": "type.googleapis.com/google.profile.Person",
// "firstName": <string>,
// "lastName": <string>
// }
//
// If the embedded message type is well-known and has a custom JSON
// representation, that representation will be embedded adding a field
// `value` which holds the custom JSON in addition to the `@type`
// field. Example (for message [google.protobuf.Duration][]):
//
// {
// "@type": "type.googleapis.com/google.protobuf.Duration",
// "value": "1.212s"
// }
//
message Any {
// A URL/resource name that uniquely identifies the type of the serialized
// protocol buffer message. This string must contain at least
// one "/" character. The last segment of the URL's path must represent
// the fully qualified name of the type (as in
// `path/google.protobuf.Duration`). The name should be in a canonical form
// (e.g., leading "." is not accepted).
//
// In practice, teams usually precompile into the binary all types that they
// expect it to use in the context of Any. However, for URLs which use the
// scheme `http`, `https`, or no scheme, one can optionally set up a type
// server that maps type URLs to message definitions as follows:
//
// * If no scheme is provided, `https` is assumed.
// * An HTTP GET on the URL must yield a [google.protobuf.Type][]
// value in binary format, or produce an error.
// * Applications are allowed to cache lookup results based on the
// URL, or have them precompiled into a binary to avoid any
// lookup. Therefore, binary compatibility needs to be preserved
// on changes to types. (Use versioned type names to manage
// breaking changes.)
//
// Note: this functionality is not currently available in the official
// protobuf release, and it is not used for type URLs beginning with
// type.googleapis.com.
//
// Schemes other than `http`, `https` (or the empty scheme) might be
// used with implementation specific semantics.
//
string type_url = 1;
// Must be a valid serialized protocol buffer of the above specified type.
bytes value = 2;
}

View File

@ -1,35 +1,10 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package ptypes contains code for interacting with well-known types.
*/
// Package ptypes provides functionality for interacting with well-known types.
//
// Deprecated: Well-known types have specialized functionality directly
// injected into the generated packages for each message type.
// See the deprecation notice for each function for the suggested alternative.
package ptypes

View File

@ -1,102 +1,76 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ptypes
// This file implements conversions between google.protobuf.Duration
// and time.Duration.
import (
"errors"
"fmt"
"time"
durpb "github.com/golang/protobuf/ptypes/duration"
durationpb "github.com/golang/protobuf/ptypes/duration"
)
// Range of google.protobuf.Duration as specified in duration.proto.
// This is about 10,000 years in seconds.
const (
// Range of a durpb.Duration in seconds, as specified in
// google/protobuf/duration.proto. This is about 10,000 years in seconds.
maxSeconds = int64(10000 * 365.25 * 24 * 60 * 60)
minSeconds = -maxSeconds
)
// validateDuration determines whether the durpb.Duration is valid according to the
// definition in google/protobuf/duration.proto. A valid durpb.Duration
// may still be too large to fit into a time.Duration (the range of durpb.Duration
// is about 10,000 years, and the range of time.Duration is about 290).
func validateDuration(d *durpb.Duration) error {
if d == nil {
return errors.New("duration: nil Duration")
}
if d.Seconds < minSeconds || d.Seconds > maxSeconds {
return fmt.Errorf("duration: %v: seconds out of range", d)
}
if d.Nanos <= -1e9 || d.Nanos >= 1e9 {
return fmt.Errorf("duration: %v: nanos out of range", d)
}
// Seconds and Nanos must have the same sign, unless d.Nanos is zero.
if (d.Seconds < 0 && d.Nanos > 0) || (d.Seconds > 0 && d.Nanos < 0) {
return fmt.Errorf("duration: %v: seconds and nanos have different signs", d)
}
return nil
}
// Duration converts a durpb.Duration to a time.Duration. Duration
// returns an error if the durpb.Duration is invalid or is too large to be
// represented in a time.Duration.
func Duration(p *durpb.Duration) (time.Duration, error) {
if err := validateDuration(p); err != nil {
// Duration converts a durationpb.Duration to a time.Duration.
// Duration returns an error if dur is invalid or overflows a time.Duration.
//
// Deprecated: Call the dur.AsDuration and dur.CheckValid methods instead.
func Duration(dur *durationpb.Duration) (time.Duration, error) {
if err := validateDuration(dur); err != nil {
return 0, err
}
d := time.Duration(p.Seconds) * time.Second
if int64(d/time.Second) != p.Seconds {
return 0, fmt.Errorf("duration: %v is out of range for time.Duration", p)
d := time.Duration(dur.Seconds) * time.Second
if int64(d/time.Second) != dur.Seconds {
return 0, fmt.Errorf("duration: %v is out of range for time.Duration", dur)
}
if p.Nanos != 0 {
d += time.Duration(p.Nanos) * time.Nanosecond
if (d < 0) != (p.Nanos < 0) {
return 0, fmt.Errorf("duration: %v is out of range for time.Duration", p)
if dur.Nanos != 0 {
d += time.Duration(dur.Nanos) * time.Nanosecond
if (d < 0) != (dur.Nanos < 0) {
return 0, fmt.Errorf("duration: %v is out of range for time.Duration", dur)
}
}
return d, nil
}
// DurationProto converts a time.Duration to a durpb.Duration.
func DurationProto(d time.Duration) *durpb.Duration {
// DurationProto converts a time.Duration to a durationpb.Duration.
//
// Deprecated: Call the durationpb.New function instead.
func DurationProto(d time.Duration) *durationpb.Duration {
nanos := d.Nanoseconds()
secs := nanos / 1e9
nanos -= secs * 1e9
return &durpb.Duration{
Seconds: secs,
return &durationpb.Duration{
Seconds: int64(secs),
Nanos: int32(nanos),
}
}
// validateDuration determines whether the durationpb.Duration is valid
// according to the definition in google/protobuf/duration.proto.
// A valid durpb.Duration may still be too large to fit into a time.Duration
// Note that the range of durationpb.Duration is about 10,000 years,
// while the range of time.Duration is about 290 years.
func validateDuration(dur *durationpb.Duration) error {
if dur == nil {
return errors.New("duration: nil Duration")
}
if dur.Seconds < minSeconds || dur.Seconds > maxSeconds {
return fmt.Errorf("duration: %v: seconds out of range", dur)
}
if dur.Nanos <= -1e9 || dur.Nanos >= 1e9 {
return fmt.Errorf("duration: %v: nanos out of range", dur)
}
// Seconds and Nanos must have the same sign, unless d.Nanos is zero.
if (dur.Seconds < 0 && dur.Nanos > 0) || (dur.Seconds > 0 && dur.Nanos < 0) {
return fmt.Errorf("duration: %v: seconds and nanos have different signs", dur)
}
return nil
}

View File

@ -1,163 +1,63 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: google/protobuf/duration.proto
// source: github.com/golang/protobuf/ptypes/duration/duration.proto
package duration
import (
fmt "fmt"
proto "github.com/golang/protobuf/proto"
math "math"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
durationpb "google.golang.org/protobuf/types/known/durationpb"
reflect "reflect"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// Symbols defined in public import of google/protobuf/duration.proto.
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
type Duration = durationpb.Duration
// A Duration represents a signed, fixed-length span of time represented
// as a count of seconds and fractions of seconds at nanosecond
// resolution. It is independent of any calendar and concepts like "day"
// or "month". It is related to Timestamp in that the difference between
// two Timestamp values is a Duration and it can be added or subtracted
// from a Timestamp. Range is approximately +-10,000 years.
//
// # Examples
//
// Example 1: Compute Duration from two Timestamps in pseudo code.
//
// Timestamp start = ...;
// Timestamp end = ...;
// Duration duration = ...;
//
// duration.seconds = end.seconds - start.seconds;
// duration.nanos = end.nanos - start.nanos;
//
// if (duration.seconds < 0 && duration.nanos > 0) {
// duration.seconds += 1;
// duration.nanos -= 1000000000;
// } else if (duration.seconds > 0 && duration.nanos < 0) {
// duration.seconds -= 1;
// duration.nanos += 1000000000;
// }
//
// Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
//
// Timestamp start = ...;
// Duration duration = ...;
// Timestamp end = ...;
//
// end.seconds = start.seconds + duration.seconds;
// end.nanos = start.nanos + duration.nanos;
//
// if (end.nanos < 0) {
// end.seconds -= 1;
// end.nanos += 1000000000;
// } else if (end.nanos >= 1000000000) {
// end.seconds += 1;
// end.nanos -= 1000000000;
// }
//
// Example 3: Compute Duration from datetime.timedelta in Python.
//
// td = datetime.timedelta(days=3, minutes=10)
// duration = Duration()
// duration.FromTimedelta(td)
//
// # JSON Mapping
//
// In JSON format, the Duration type is encoded as a string rather than an
// object, where the string ends in the suffix "s" (indicating seconds) and
// is preceded by the number of seconds, with nanoseconds expressed as
// fractional seconds. For example, 3 seconds with 0 nanoseconds should be
// encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
// be expressed in JSON format as "3.000000001s", and 3 seconds and 1
// microsecond should be expressed in JSON format as "3.000001s".
//
//
type Duration struct {
// Signed seconds of the span of time. Must be from -315,576,000,000
// to +315,576,000,000 inclusive. Note: these bounds are computed from:
// 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
Seconds int64 `protobuf:"varint,1,opt,name=seconds,proto3" json:"seconds,omitempty"`
// Signed fractions of a second at nanosecond resolution of the span
// of time. Durations less than one second are represented with a 0
// `seconds` field and a positive or negative `nanos` field. For durations
// of one second or more, a non-zero value for the `nanos` field must be
// of the same sign as the `seconds` field. Must be from -999,999,999
// to +999,999,999 inclusive.
Nanos int32 `protobuf:"varint,2,opt,name=nanos,proto3" json:"nanos,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
var File_github_com_golang_protobuf_ptypes_duration_duration_proto protoreflect.FileDescriptor
var file_github_com_golang_protobuf_ptypes_duration_duration_proto_rawDesc = []byte{
0x0a, 0x39, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x6c,
0x61, 0x6e, 0x67, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x70, 0x74, 0x79,
0x70, 0x65, 0x73, 0x2f, 0x64, 0x75, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x64, 0x75, 0x72,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x1a, 0x1e, 0x67, 0x6f, 0x6f,
0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x64, 0x75, 0x72,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x42, 0x35, 0x5a, 0x33, 0x67,
0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x6c, 0x61, 0x6e, 0x67,
0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x70, 0x74, 0x79, 0x70, 0x65, 0x73,
0x2f, 0x64, 0x75, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x3b, 0x64, 0x75, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x50, 0x00, 0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x33,
}
func (m *Duration) Reset() { *m = Duration{} }
func (m *Duration) String() string { return proto.CompactTextString(m) }
func (*Duration) ProtoMessage() {}
func (*Duration) Descriptor() ([]byte, []int) {
return fileDescriptor_23597b2ebd7ac6c5, []int{0}
var file_github_com_golang_protobuf_ptypes_duration_duration_proto_goTypes = []interface{}{}
var file_github_com_golang_protobuf_ptypes_duration_duration_proto_depIdxs = []int32{
0, // [0:0] is the sub-list for method output_type
0, // [0:0] is the sub-list for method input_type
0, // [0:0] is the sub-list for extension type_name
0, // [0:0] is the sub-list for extension extendee
0, // [0:0] is the sub-list for field type_name
}
func (*Duration) XXX_WellKnownType() string { return "Duration" }
func (m *Duration) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Duration.Unmarshal(m, b)
}
func (m *Duration) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Duration.Marshal(b, m, deterministic)
}
func (m *Duration) XXX_Merge(src proto.Message) {
xxx_messageInfo_Duration.Merge(m, src)
}
func (m *Duration) XXX_Size() int {
return xxx_messageInfo_Duration.Size(m)
}
func (m *Duration) XXX_DiscardUnknown() {
xxx_messageInfo_Duration.DiscardUnknown(m)
}
var xxx_messageInfo_Duration proto.InternalMessageInfo
func (m *Duration) GetSeconds() int64 {
if m != nil {
return m.Seconds
func init() { file_github_com_golang_protobuf_ptypes_duration_duration_proto_init() }
func file_github_com_golang_protobuf_ptypes_duration_duration_proto_init() {
if File_github_com_golang_protobuf_ptypes_duration_duration_proto != nil {
return
}
return 0
}
func (m *Duration) GetNanos() int32 {
if m != nil {
return m.Nanos
}
return 0
}
func init() {
proto.RegisterType((*Duration)(nil), "google.protobuf.Duration")
}
func init() {
proto.RegisterFile("google/protobuf/duration.proto", fileDescriptor_23597b2ebd7ac6c5)
}
var fileDescriptor_23597b2ebd7ac6c5 = []byte{
// 190 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0x92, 0x4b, 0xcf, 0xcf, 0x4f,
0xcf, 0x49, 0xd5, 0x2f, 0x28, 0xca, 0x2f, 0xc9, 0x4f, 0x2a, 0x4d, 0xd3, 0x4f, 0x29, 0x2d, 0x4a,
0x2c, 0xc9, 0xcc, 0xcf, 0xd3, 0x03, 0x8b, 0x08, 0xf1, 0x43, 0xe4, 0xf5, 0x60, 0xf2, 0x4a, 0x56,
0x5c, 0x1c, 0x2e, 0x50, 0x25, 0x42, 0x12, 0x5c, 0xec, 0xc5, 0xa9, 0xc9, 0xf9, 0x79, 0x29, 0xc5,
0x12, 0x8c, 0x0a, 0x8c, 0x1a, 0xcc, 0x41, 0x30, 0xae, 0x90, 0x08, 0x17, 0x6b, 0x5e, 0x62, 0x5e,
0x7e, 0xb1, 0x04, 0x93, 0x02, 0xa3, 0x06, 0x6b, 0x10, 0x84, 0xe3, 0x54, 0xc3, 0x25, 0x9c, 0x9c,
0x9f, 0xab, 0x87, 0x66, 0xa4, 0x13, 0x2f, 0xcc, 0xc0, 0x00, 0x90, 0x48, 0x00, 0x63, 0x94, 0x56,
0x7a, 0x66, 0x49, 0x46, 0x69, 0x92, 0x5e, 0x72, 0x7e, 0xae, 0x7e, 0x7a, 0x7e, 0x4e, 0x62, 0x5e,
0x3a, 0xc2, 0x7d, 0x05, 0x25, 0x95, 0x05, 0xa9, 0xc5, 0x70, 0x67, 0xfe, 0x60, 0x64, 0x5c, 0xc4,
0xc4, 0xec, 0x1e, 0xe0, 0xb4, 0x8a, 0x49, 0xce, 0x1d, 0x62, 0x6e, 0x00, 0x54, 0xa9, 0x5e, 0x78,
0x6a, 0x4e, 0x8e, 0x77, 0x5e, 0x7e, 0x79, 0x5e, 0x08, 0x48, 0x4b, 0x12, 0x1b, 0xd8, 0x0c, 0x63,
0x40, 0x00, 0x00, 0x00, 0xff, 0xff, 0xdc, 0x84, 0x30, 0xff, 0xf3, 0x00, 0x00, 0x00,
type x struct{}
out := protoimpl.TypeBuilder{
File: protoimpl.DescBuilder{
GoPackagePath: reflect.TypeOf(x{}).PkgPath(),
RawDescriptor: file_github_com_golang_protobuf_ptypes_duration_duration_proto_rawDesc,
NumEnums: 0,
NumMessages: 0,
NumExtensions: 0,
NumServices: 0,
},
GoTypes: file_github_com_golang_protobuf_ptypes_duration_duration_proto_goTypes,
DependencyIndexes: file_github_com_golang_protobuf_ptypes_duration_duration_proto_depIdxs,
}.Build()
File_github_com_golang_protobuf_ptypes_duration_duration_proto = out.File
file_github_com_golang_protobuf_ptypes_duration_duration_proto_rawDesc = nil
file_github_com_golang_protobuf_ptypes_duration_duration_proto_goTypes = nil
file_github_com_golang_protobuf_ptypes_duration_duration_proto_depIdxs = nil
}

View File

@ -1,116 +0,0 @@
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
syntax = "proto3";
package google.protobuf;
option csharp_namespace = "Google.Protobuf.WellKnownTypes";
option cc_enable_arenas = true;
option go_package = "github.com/golang/protobuf/ptypes/duration";
option java_package = "com.google.protobuf";
option java_outer_classname = "DurationProto";
option java_multiple_files = true;
option objc_class_prefix = "GPB";
// A Duration represents a signed, fixed-length span of time represented
// as a count of seconds and fractions of seconds at nanosecond
// resolution. It is independent of any calendar and concepts like "day"
// or "month". It is related to Timestamp in that the difference between
// two Timestamp values is a Duration and it can be added or subtracted
// from a Timestamp. Range is approximately +-10,000 years.
//
// # Examples
//
// Example 1: Compute Duration from two Timestamps in pseudo code.
//
// Timestamp start = ...;
// Timestamp end = ...;
// Duration duration = ...;
//
// duration.seconds = end.seconds - start.seconds;
// duration.nanos = end.nanos - start.nanos;
//
// if (duration.seconds < 0 && duration.nanos > 0) {
// duration.seconds += 1;
// duration.nanos -= 1000000000;
// } else if (duration.seconds > 0 && duration.nanos < 0) {
// duration.seconds -= 1;
// duration.nanos += 1000000000;
// }
//
// Example 2: Compute Timestamp from Timestamp + Duration in pseudo code.
//
// Timestamp start = ...;
// Duration duration = ...;
// Timestamp end = ...;
//
// end.seconds = start.seconds + duration.seconds;
// end.nanos = start.nanos + duration.nanos;
//
// if (end.nanos < 0) {
// end.seconds -= 1;
// end.nanos += 1000000000;
// } else if (end.nanos >= 1000000000) {
// end.seconds += 1;
// end.nanos -= 1000000000;
// }
//
// Example 3: Compute Duration from datetime.timedelta in Python.
//
// td = datetime.timedelta(days=3, minutes=10)
// duration = Duration()
// duration.FromTimedelta(td)
//
// # JSON Mapping
//
// In JSON format, the Duration type is encoded as a string rather than an
// object, where the string ends in the suffix "s" (indicating seconds) and
// is preceded by the number of seconds, with nanoseconds expressed as
// fractional seconds. For example, 3 seconds with 0 nanoseconds should be
// encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should
// be expressed in JSON format as "3.000000001s", and 3 seconds and 1
// microsecond should be expressed in JSON format as "3.000001s".
//
//
message Duration {
// Signed seconds of the span of time. Must be from -315,576,000,000
// to +315,576,000,000 inclusive. Note: these bounds are computed from:
// 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
int64 seconds = 1;
// Signed fractions of a second at nanosecond resolution of the span
// of time. Durations less than one second are represented with a 0
// `seconds` field and a positive or negative `nanos` field. For durations
// of one second or more, a non-zero value for the `nanos` field must be
// of the same sign as the `seconds` field. Must be from -999,999,999
// to +999,999,999 inclusive.
int32 nanos = 2;
}

View File

@ -1,46 +1,18 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ptypes
// This file implements operations on google.protobuf.Timestamp.
import (
"errors"
"fmt"
"time"
tspb "github.com/golang/protobuf/ptypes/timestamp"
timestamppb "github.com/golang/protobuf/ptypes/timestamp"
)
// Range of google.protobuf.Duration as specified in timestamp.proto.
const (
// Seconds field of the earliest valid Timestamp.
// This is time.Date(1, 1, 1, 0, 0, 0, 0, time.UTC).Unix().
@ -50,17 +22,80 @@ const (
maxValidSeconds = 253402300800
)
// Timestamp converts a timestamppb.Timestamp to a time.Time.
// It returns an error if the argument is invalid.
//
// Unlike most Go functions, if Timestamp returns an error, the first return
// value is not the zero time.Time. Instead, it is the value obtained from the
// time.Unix function when passed the contents of the Timestamp, in the UTC
// locale. This may or may not be a meaningful time; many invalid Timestamps
// do map to valid time.Times.
//
// A nil Timestamp returns an error. The first return value in that case is
// undefined.
//
// Deprecated: Call the ts.AsTime and ts.CheckValid methods instead.
func Timestamp(ts *timestamppb.Timestamp) (time.Time, error) {
// Don't return the zero value on error, because corresponds to a valid
// timestamp. Instead return whatever time.Unix gives us.
var t time.Time
if ts == nil {
t = time.Unix(0, 0).UTC() // treat nil like the empty Timestamp
} else {
t = time.Unix(ts.Seconds, int64(ts.Nanos)).UTC()
}
return t, validateTimestamp(ts)
}
// TimestampNow returns a google.protobuf.Timestamp for the current time.
//
// Deprecated: Call the timestamppb.Now function instead.
func TimestampNow() *timestamppb.Timestamp {
ts, err := TimestampProto(time.Now())
if err != nil {
panic("ptypes: time.Now() out of Timestamp range")
}
return ts
}
// TimestampProto converts the time.Time to a google.protobuf.Timestamp proto.
// It returns an error if the resulting Timestamp is invalid.
//
// Deprecated: Call the timestamppb.New function instead.
func TimestampProto(t time.Time) (*timestamppb.Timestamp, error) {
ts := &timestamppb.Timestamp{
Seconds: t.Unix(),
Nanos: int32(t.Nanosecond()),
}
if err := validateTimestamp(ts); err != nil {
return nil, err
}
return ts, nil
}
// TimestampString returns the RFC 3339 string for valid Timestamps.
// For invalid Timestamps, it returns an error message in parentheses.
//
// Deprecated: Call the ts.AsTime method instead,
// followed by a call to the Format method on the time.Time value.
func TimestampString(ts *timestamppb.Timestamp) string {
t, err := Timestamp(ts)
if err != nil {
return fmt.Sprintf("(%v)", err)
}
return t.Format(time.RFC3339Nano)
}
// validateTimestamp determines whether a Timestamp is valid.
// A valid timestamp represents a time in the range
// [0001-01-01, 10000-01-01) and has a Nanos field
// in the range [0, 1e9).
// A valid timestamp represents a time in the range [0001-01-01, 10000-01-01)
// and has a Nanos field in the range [0, 1e9).
//
// If the Timestamp is valid, validateTimestamp returns nil.
// Otherwise, it returns an error that describes
// the problem.
// Otherwise, it returns an error that describes the problem.
//
// Every valid Timestamp can be represented by a time.Time, but the converse is not true.
func validateTimestamp(ts *tspb.Timestamp) error {
// Every valid Timestamp can be represented by a time.Time,
// but the converse is not true.
func validateTimestamp(ts *timestamppb.Timestamp) error {
if ts == nil {
return errors.New("timestamp: nil Timestamp")
}
@ -75,58 +110,3 @@ func validateTimestamp(ts *tspb.Timestamp) error {
}
return nil
}
// Timestamp converts a google.protobuf.Timestamp proto to a time.Time.
// It returns an error if the argument is invalid.
//
// Unlike most Go functions, if Timestamp returns an error, the first return value
// is not the zero time.Time. Instead, it is the value obtained from the
// time.Unix function when passed the contents of the Timestamp, in the UTC
// locale. This may or may not be a meaningful time; many invalid Timestamps
// do map to valid time.Times.
//
// A nil Timestamp returns an error. The first return value in that case is
// undefined.
func Timestamp(ts *tspb.Timestamp) (time.Time, error) {
// Don't return the zero value on error, because corresponds to a valid
// timestamp. Instead return whatever time.Unix gives us.
var t time.Time
if ts == nil {
t = time.Unix(0, 0).UTC() // treat nil like the empty Timestamp
} else {
t = time.Unix(ts.Seconds, int64(ts.Nanos)).UTC()
}
return t, validateTimestamp(ts)
}
// TimestampNow returns a google.protobuf.Timestamp for the current time.
func TimestampNow() *tspb.Timestamp {
ts, err := TimestampProto(time.Now())
if err != nil {
panic("ptypes: time.Now() out of Timestamp range")
}
return ts
}
// TimestampProto converts the time.Time to a google.protobuf.Timestamp proto.
// It returns an error if the resulting Timestamp is invalid.
func TimestampProto(t time.Time) (*tspb.Timestamp, error) {
ts := &tspb.Timestamp{
Seconds: t.Unix(),
Nanos: int32(t.Nanosecond()),
}
if err := validateTimestamp(ts); err != nil {
return nil, err
}
return ts, nil
}
// TimestampString returns the RFC 3339 string for valid Timestamps. For invalid
// Timestamps, it returns an error message in parentheses.
func TimestampString(ts *tspb.Timestamp) string {
t, err := Timestamp(ts)
if err != nil {
return fmt.Sprintf("(%v)", err)
}
return t.Format(time.RFC3339Nano)
}

View File

@ -1,185 +1,64 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: google/protobuf/timestamp.proto
// source: github.com/golang/protobuf/ptypes/timestamp/timestamp.proto
package timestamp
import (
fmt "fmt"
proto "github.com/golang/protobuf/proto"
math "math"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
timestamppb "google.golang.org/protobuf/types/known/timestamppb"
reflect "reflect"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// Symbols defined in public import of google/protobuf/timestamp.proto.
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
type Timestamp = timestamppb.Timestamp
// A Timestamp represents a point in time independent of any time zone or local
// calendar, encoded as a count of seconds and fractions of seconds at
// nanosecond resolution. The count is relative to an epoch at UTC midnight on
// January 1, 1970, in the proleptic Gregorian calendar which extends the
// Gregorian calendar backwards to year one.
//
// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
// second table is needed for interpretation, using a [24-hour linear
// smear](https://developers.google.com/time/smear).
//
// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
// restricting to that range, we ensure that we can convert to and from [RFC
// 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.
//
// # Examples
//
// Example 1: Compute Timestamp from POSIX `time()`.
//
// Timestamp timestamp;
// timestamp.set_seconds(time(NULL));
// timestamp.set_nanos(0);
//
// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
//
// struct timeval tv;
// gettimeofday(&tv, NULL);
//
// Timestamp timestamp;
// timestamp.set_seconds(tv.tv_sec);
// timestamp.set_nanos(tv.tv_usec * 1000);
//
// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
//
// FILETIME ft;
// GetSystemTimeAsFileTime(&ft);
// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
//
// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
// Timestamp timestamp;
// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
//
// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
//
// long millis = System.currentTimeMillis();
//
// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
// .setNanos((int) ((millis % 1000) * 1000000)).build();
//
//
// Example 5: Compute Timestamp from current time in Python.
//
// timestamp = Timestamp()
// timestamp.GetCurrentTime()
//
// # JSON Mapping
//
// In JSON format, the Timestamp type is encoded as a string in the
// [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
// format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
// where {year} is always expressed using four digits while {month}, {day},
// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
// is required. A proto3 JSON serializer should always use UTC (as indicated by
// "Z") when printing the Timestamp type and a proto3 JSON parser should be
// able to accept both UTC and other timezones (as indicated by an offset).
//
// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
// 01:30 UTC on January 15, 2017.
//
// In JavaScript, one can convert a Date object to this format using the
// standard
// [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
// method. In Python, a standard `datetime.datetime` object can be converted
// to this format using
// [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
// the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
// the Joda Time's [`ISODateTimeFormat.dateTime()`](
// http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D
// ) to obtain a formatter capable of generating timestamps in this format.
//
//
type Timestamp struct {
// Represents seconds of UTC time since Unix epoch
// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
// 9999-12-31T23:59:59Z inclusive.
Seconds int64 `protobuf:"varint,1,opt,name=seconds,proto3" json:"seconds,omitempty"`
// Non-negative fractions of a second at nanosecond resolution. Negative
// second values with fractions must still have non-negative nanos values
// that count forward in time. Must be from 0 to 999,999,999
// inclusive.
Nanos int32 `protobuf:"varint,2,opt,name=nanos,proto3" json:"nanos,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
var File_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto protoreflect.FileDescriptor
var file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_rawDesc = []byte{
0x0a, 0x3b, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x6c,
0x61, 0x6e, 0x67, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x70, 0x74, 0x79,
0x70, 0x65, 0x73, 0x2f, 0x74, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x2f, 0x74, 0x69,
0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x1a, 0x1f, 0x67,
0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x74,
0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x42, 0x37,
0x5a, 0x35, 0x67, 0x69, 0x74, 0x68, 0x75, 0x62, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x67, 0x6f, 0x6c,
0x61, 0x6e, 0x67, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x70, 0x74, 0x79,
0x70, 0x65, 0x73, 0x2f, 0x74, 0x69, 0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x3b, 0x74, 0x69,
0x6d, 0x65, 0x73, 0x74, 0x61, 0x6d, 0x70, 0x50, 0x00, 0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f,
0x33,
}
func (m *Timestamp) Reset() { *m = Timestamp{} }
func (m *Timestamp) String() string { return proto.CompactTextString(m) }
func (*Timestamp) ProtoMessage() {}
func (*Timestamp) Descriptor() ([]byte, []int) {
return fileDescriptor_292007bbfe81227e, []int{0}
var file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_goTypes = []interface{}{}
var file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_depIdxs = []int32{
0, // [0:0] is the sub-list for method output_type
0, // [0:0] is the sub-list for method input_type
0, // [0:0] is the sub-list for extension type_name
0, // [0:0] is the sub-list for extension extendee
0, // [0:0] is the sub-list for field type_name
}
func (*Timestamp) XXX_WellKnownType() string { return "Timestamp" }
func (m *Timestamp) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Timestamp.Unmarshal(m, b)
}
func (m *Timestamp) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Timestamp.Marshal(b, m, deterministic)
}
func (m *Timestamp) XXX_Merge(src proto.Message) {
xxx_messageInfo_Timestamp.Merge(m, src)
}
func (m *Timestamp) XXX_Size() int {
return xxx_messageInfo_Timestamp.Size(m)
}
func (m *Timestamp) XXX_DiscardUnknown() {
xxx_messageInfo_Timestamp.DiscardUnknown(m)
}
var xxx_messageInfo_Timestamp proto.InternalMessageInfo
func (m *Timestamp) GetSeconds() int64 {
if m != nil {
return m.Seconds
func init() { file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_init() }
func file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_init() {
if File_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto != nil {
return
}
return 0
}
func (m *Timestamp) GetNanos() int32 {
if m != nil {
return m.Nanos
}
return 0
}
func init() {
proto.RegisterType((*Timestamp)(nil), "google.protobuf.Timestamp")
}
func init() {
proto.RegisterFile("google/protobuf/timestamp.proto", fileDescriptor_292007bbfe81227e)
}
var fileDescriptor_292007bbfe81227e = []byte{
// 191 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0x92, 0x4f, 0xcf, 0xcf, 0x4f,
0xcf, 0x49, 0xd5, 0x2f, 0x28, 0xca, 0x2f, 0xc9, 0x4f, 0x2a, 0x4d, 0xd3, 0x2f, 0xc9, 0xcc, 0x4d,
0x2d, 0x2e, 0x49, 0xcc, 0x2d, 0xd0, 0x03, 0x0b, 0x09, 0xf1, 0x43, 0x14, 0xe8, 0xc1, 0x14, 0x28,
0x59, 0x73, 0x71, 0x86, 0xc0, 0xd4, 0x08, 0x49, 0x70, 0xb1, 0x17, 0xa7, 0x26, 0xe7, 0xe7, 0xa5,
0x14, 0x4b, 0x30, 0x2a, 0x30, 0x6a, 0x30, 0x07, 0xc1, 0xb8, 0x42, 0x22, 0x5c, 0xac, 0x79, 0x89,
0x79, 0xf9, 0xc5, 0x12, 0x4c, 0x0a, 0x8c, 0x1a, 0xac, 0x41, 0x10, 0x8e, 0x53, 0x1d, 0x97, 0x70,
0x72, 0x7e, 0xae, 0x1e, 0x9a, 0x99, 0x4e, 0x7c, 0x70, 0x13, 0x03, 0x40, 0x42, 0x01, 0x8c, 0x51,
0xda, 0xe9, 0x99, 0x25, 0x19, 0xa5, 0x49, 0x7a, 0xc9, 0xf9, 0xb9, 0xfa, 0xe9, 0xf9, 0x39, 0x89,
0x79, 0xe9, 0x08, 0x27, 0x16, 0x94, 0x54, 0x16, 0xa4, 0x16, 0x23, 0x5c, 0xfa, 0x83, 0x91, 0x71,
0x11, 0x13, 0xb3, 0x7b, 0x80, 0xd3, 0x2a, 0x26, 0x39, 0x77, 0x88, 0xc9, 0x01, 0x50, 0xb5, 0x7a,
0xe1, 0xa9, 0x39, 0x39, 0xde, 0x79, 0xf9, 0xe5, 0x79, 0x21, 0x20, 0x3d, 0x49, 0x6c, 0x60, 0x43,
0x8c, 0x01, 0x01, 0x00, 0x00, 0xff, 0xff, 0xbc, 0x77, 0x4a, 0x07, 0xf7, 0x00, 0x00, 0x00,
type x struct{}
out := protoimpl.TypeBuilder{
File: protoimpl.DescBuilder{
GoPackagePath: reflect.TypeOf(x{}).PkgPath(),
RawDescriptor: file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_rawDesc,
NumEnums: 0,
NumMessages: 0,
NumExtensions: 0,
NumServices: 0,
},
GoTypes: file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_goTypes,
DependencyIndexes: file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_depIdxs,
}.Build()
File_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto = out.File
file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_rawDesc = nil
file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_goTypes = nil
file_github_com_golang_protobuf_ptypes_timestamp_timestamp_proto_depIdxs = nil
}

View File

@ -1,138 +0,0 @@
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
syntax = "proto3";
package google.protobuf;
option csharp_namespace = "Google.Protobuf.WellKnownTypes";
option cc_enable_arenas = true;
option go_package = "github.com/golang/protobuf/ptypes/timestamp";
option java_package = "com.google.protobuf";
option java_outer_classname = "TimestampProto";
option java_multiple_files = true;
option objc_class_prefix = "GPB";
// A Timestamp represents a point in time independent of any time zone or local
// calendar, encoded as a count of seconds and fractions of seconds at
// nanosecond resolution. The count is relative to an epoch at UTC midnight on
// January 1, 1970, in the proleptic Gregorian calendar which extends the
// Gregorian calendar backwards to year one.
//
// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
// second table is needed for interpretation, using a [24-hour linear
// smear](https://developers.google.com/time/smear).
//
// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
// restricting to that range, we ensure that we can convert to and from [RFC
// 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.
//
// # Examples
//
// Example 1: Compute Timestamp from POSIX `time()`.
//
// Timestamp timestamp;
// timestamp.set_seconds(time(NULL));
// timestamp.set_nanos(0);
//
// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
//
// struct timeval tv;
// gettimeofday(&tv, NULL);
//
// Timestamp timestamp;
// timestamp.set_seconds(tv.tv_sec);
// timestamp.set_nanos(tv.tv_usec * 1000);
//
// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
//
// FILETIME ft;
// GetSystemTimeAsFileTime(&ft);
// UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
//
// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
// Timestamp timestamp;
// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
//
// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
//
// long millis = System.currentTimeMillis();
//
// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
// .setNanos((int) ((millis % 1000) * 1000000)).build();
//
//
// Example 5: Compute Timestamp from current time in Python.
//
// timestamp = Timestamp()
// timestamp.GetCurrentTime()
//
// # JSON Mapping
//
// In JSON format, the Timestamp type is encoded as a string in the
// [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
// format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
// where {year} is always expressed using four digits while {month}, {day},
// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
// is required. A proto3 JSON serializer should always use UTC (as indicated by
// "Z") when printing the Timestamp type and a proto3 JSON parser should be
// able to accept both UTC and other timezones (as indicated by an offset).
//
// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
// 01:30 UTC on January 15, 2017.
//
// In JavaScript, one can convert a Date object to this format using the
// standard
// [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
// method. In Python, a standard `datetime.datetime` object can be converted
// to this format using
// [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
// the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
// the Joda Time's [`ISODateTimeFormat.dateTime()`](
// http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D
// ) to obtain a formatter capable of generating timestamps in this format.
//
//
message Timestamp {
// Represents seconds of UTC time since Unix epoch
// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
// 9999-12-31T23:59:59Z inclusive.
int64 seconds = 1;
// Non-negative fractions of a second at nanosecond resolution. Negative
// second values with fractions must still have non-negative nanos values
// that count forward in time. Must be from 0 to 999,999,999
// inclusive.
int32 nanos = 2;
}

View File

@ -16,16 +16,19 @@ This repository contains the generated Go packages for common protocol buffer
types, and the generated [gRPC][1] code necessary for interacting with Google's gRPC
APIs.
There are two sources for the proto files used in this repository:
The sources for the proto files used in this repository:
1. [google/protobuf][2]: the code in the `protobuf` and `ptypes` subdirectories
is derived from this repo. The messages in `protobuf` are used to describe
protocol buffer messages themselves. The messages under `ptypes` define the
common well-known types.
2. [googleapis/googleapis][3]: the code in the `googleapis` is derived from this
repo. The packages here contain types specifically for interacting with Google
APIs.
* [googleapis/googleapis][2]: the code in the `googleapis` is derived from this
repo. The packages here contain types specifically for interacting with Google
APIs.
Historically, the packages in the `protobuf` directory used to contain
generated code for certain well-known types hosted by [google/protobuf][3].
These types are now hosted by the [`google.golang.org/protobuf`][4] module
and type aliases are used to forward declarations in this module over to
declarations in the `protobuf` module.
[1]: http://grpc.io
[2]: https://github.com/google/protobuf/
[3]: https://github.com/googleapis/googleapis/
[2]: https://github.com/googleapis/googleapis/
[3]: https://github.com/google/protobuf/
[4]: https://pkg.go.dev/mod/google.golang.org/protobuf

View File

@ -3,9 +3,9 @@ module google.golang.org/genproto
go 1.11
require (
github.com/golang/protobuf v1.3.3
github.com/golang/protobuf v1.4.1
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3
golang.org/x/tools v0.0.0-20190524140312-2c0ae7006135
google.golang.org/grpc v1.27.0
honnef.co/go/tools v0.0.0-20190523083050-ea95bdfd59fc
google.golang.org/protobuf v1.24.0
)

View File

@ -1,26 +1,45 @@
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by protoc-gen-go. DO NOT EDIT.
// versions:
// protoc-gen-go v1.25.0
// protoc v3.13.0
// source: google/rpc/status.proto
package status
import (
fmt "fmt"
math "math"
reflect "reflect"
sync "sync"
proto "github.com/golang/protobuf/proto"
any "github.com/golang/protobuf/ptypes/any"
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
protoimpl "google.golang.org/protobuf/runtime/protoimpl"
anypb "google.golang.org/protobuf/types/known/anypb"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
const (
// Verify that this generated code is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(20 - protoimpl.MinVersion)
// Verify that runtime/protoimpl is sufficiently up-to-date.
_ = protoimpl.EnforceVersion(protoimpl.MaxVersion - 20)
)
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
// This is a compile-time assertion that a sufficiently up-to-date version
// of the legacy proto package is being used.
const _ = proto.ProtoPackageIsVersion4
// The `Status` type defines a logical error model that is suitable for
// different programming environments, including REST APIs and RPC APIs. It is
@ -30,6 +49,10 @@ const _ = proto.ProtoPackageIsVersion3 // please upgrade the proto package
// You can find out more about this error model and how to work with it in the
// [API Design Guide](https://cloud.google.com/apis/design/errors).
type Status struct {
state protoimpl.MessageState
sizeCache protoimpl.SizeCache
unknownFields protoimpl.UnknownFields
// The status code, which should be an enum value of [google.rpc.Code][google.rpc.Code].
Code int32 `protobuf:"varint,1,opt,name=code,proto3" json:"code,omitempty"`
// A developer-facing error message, which should be in English. Any
@ -38,80 +61,146 @@ type Status struct {
Message string `protobuf:"bytes,2,opt,name=message,proto3" json:"message,omitempty"`
// A list of messages that carry the error details. There is a common set of
// message types for APIs to use.
Details []*any.Any `protobuf:"bytes,3,rep,name=details,proto3" json:"details,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
Details []*anypb.Any `protobuf:"bytes,3,rep,name=details,proto3" json:"details,omitempty"`
}
func (m *Status) Reset() { *m = Status{} }
func (m *Status) String() string { return proto.CompactTextString(m) }
func (*Status) ProtoMessage() {}
func (x *Status) Reset() {
*x = Status{}
if protoimpl.UnsafeEnabled {
mi := &file_google_rpc_status_proto_msgTypes[0]
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
ms.StoreMessageInfo(mi)
}
}
func (x *Status) String() string {
return protoimpl.X.MessageStringOf(x)
}
func (*Status) ProtoMessage() {}
func (x *Status) ProtoReflect() protoreflect.Message {
mi := &file_google_rpc_status_proto_msgTypes[0]
if protoimpl.UnsafeEnabled && x != nil {
ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x))
if ms.LoadMessageInfo() == nil {
ms.StoreMessageInfo(mi)
}
return ms
}
return mi.MessageOf(x)
}
// Deprecated: Use Status.ProtoReflect.Descriptor instead.
func (*Status) Descriptor() ([]byte, []int) {
return fileDescriptor_24d244abaf643bfe, []int{0}
return file_google_rpc_status_proto_rawDescGZIP(), []int{0}
}
func (m *Status) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Status.Unmarshal(m, b)
}
func (m *Status) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Status.Marshal(b, m, deterministic)
}
func (m *Status) XXX_Merge(src proto.Message) {
xxx_messageInfo_Status.Merge(m, src)
}
func (m *Status) XXX_Size() int {
return xxx_messageInfo_Status.Size(m)
}
func (m *Status) XXX_DiscardUnknown() {
xxx_messageInfo_Status.DiscardUnknown(m)
}
var xxx_messageInfo_Status proto.InternalMessageInfo
func (m *Status) GetCode() int32 {
if m != nil {
return m.Code
func (x *Status) GetCode() int32 {
if x != nil {
return x.Code
}
return 0
}
func (m *Status) GetMessage() string {
if m != nil {
return m.Message
func (x *Status) GetMessage() string {
if x != nil {
return x.Message
}
return ""
}
func (m *Status) GetDetails() []*any.Any {
if m != nil {
return m.Details
func (x *Status) GetDetails() []*anypb.Any {
if x != nil {
return x.Details
}
return nil
}
func init() {
proto.RegisterType((*Status)(nil), "google.rpc.Status")
var File_google_rpc_status_proto protoreflect.FileDescriptor
var file_google_rpc_status_proto_rawDesc = []byte{
0x0a, 0x17, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x72, 0x70, 0x63, 0x2f, 0x73, 0x74, 0x61,
0x74, 0x75, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x12, 0x0a, 0x67, 0x6f, 0x6f, 0x67, 0x6c,
0x65, 0x2e, 0x72, 0x70, 0x63, 0x1a, 0x19, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72,
0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x61, 0x6e, 0x79, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f,
0x22, 0x66, 0x0a, 0x06, 0x53, 0x74, 0x61, 0x74, 0x75, 0x73, 0x12, 0x12, 0x0a, 0x04, 0x63, 0x6f,
0x64, 0x65, 0x18, 0x01, 0x20, 0x01, 0x28, 0x05, 0x52, 0x04, 0x63, 0x6f, 0x64, 0x65, 0x12, 0x18,
0x0a, 0x07, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x18, 0x02, 0x20, 0x01, 0x28, 0x09, 0x52,
0x07, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x12, 0x2e, 0x0a, 0x07, 0x64, 0x65, 0x74, 0x61,
0x69, 0x6c, 0x73, 0x18, 0x03, 0x20, 0x03, 0x28, 0x0b, 0x32, 0x14, 0x2e, 0x67, 0x6f, 0x6f, 0x67,
0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x41, 0x6e, 0x79, 0x52,
0x07, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x73, 0x42, 0x61, 0x0a, 0x0e, 0x63, 0x6f, 0x6d, 0x2e,
0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x72, 0x70, 0x63, 0x42, 0x0b, 0x53, 0x74, 0x61, 0x74,
0x75, 0x73, 0x50, 0x72, 0x6f, 0x74, 0x6f, 0x50, 0x01, 0x5a, 0x37, 0x67, 0x6f, 0x6f, 0x67, 0x6c,
0x65, 0x2e, 0x67, 0x6f, 0x6c, 0x61, 0x6e, 0x67, 0x2e, 0x6f, 0x72, 0x67, 0x2f, 0x67, 0x65, 0x6e,
0x70, 0x72, 0x6f, 0x74, 0x6f, 0x2f, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x61, 0x70, 0x69, 0x73,
0x2f, 0x72, 0x70, 0x63, 0x2f, 0x73, 0x74, 0x61, 0x74, 0x75, 0x73, 0x3b, 0x73, 0x74, 0x61, 0x74,
0x75, 0x73, 0xf8, 0x01, 0x01, 0xa2, 0x02, 0x03, 0x52, 0x50, 0x43, 0x62, 0x06, 0x70, 0x72, 0x6f,
0x74, 0x6f, 0x33,
}
func init() {
proto.RegisterFile("google/rpc/status.proto", fileDescriptor_24d244abaf643bfe)
var (
file_google_rpc_status_proto_rawDescOnce sync.Once
file_google_rpc_status_proto_rawDescData = file_google_rpc_status_proto_rawDesc
)
func file_google_rpc_status_proto_rawDescGZIP() []byte {
file_google_rpc_status_proto_rawDescOnce.Do(func() {
file_google_rpc_status_proto_rawDescData = protoimpl.X.CompressGZIP(file_google_rpc_status_proto_rawDescData)
})
return file_google_rpc_status_proto_rawDescData
}
var fileDescriptor_24d244abaf643bfe = []byte{
// 212 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0x12, 0x4f, 0xcf, 0xcf, 0x4f,
0xcf, 0x49, 0xd5, 0x2f, 0x2a, 0x48, 0xd6, 0x2f, 0x2e, 0x49, 0x2c, 0x29, 0x2d, 0xd6, 0x2b, 0x28,
0xca, 0x2f, 0xc9, 0x17, 0xe2, 0x82, 0x48, 0xe8, 0x15, 0x15, 0x24, 0x4b, 0x49, 0x42, 0x15, 0x81,
0x65, 0x92, 0x4a, 0xd3, 0xf4, 0x13, 0xf3, 0x2a, 0x21, 0xca, 0x94, 0xd2, 0xb8, 0xd8, 0x82, 0xc1,
0xda, 0x84, 0x84, 0xb8, 0x58, 0x92, 0xf3, 0x53, 0x52, 0x25, 0x18, 0x15, 0x18, 0x35, 0x58, 0x83,
0xc0, 0x6c, 0x21, 0x09, 0x2e, 0xf6, 0xdc, 0xd4, 0xe2, 0xe2, 0xc4, 0xf4, 0x54, 0x09, 0x26, 0x05,
0x46, 0x0d, 0xce, 0x20, 0x18, 0x57, 0x48, 0x8f, 0x8b, 0x3d, 0x25, 0xb5, 0x24, 0x31, 0x33, 0xa7,
0x58, 0x82, 0x59, 0x81, 0x59, 0x83, 0xdb, 0x48, 0x44, 0x0f, 0x6a, 0x21, 0xcc, 0x12, 0x3d, 0xc7,
0xbc, 0xca, 0x20, 0x98, 0x22, 0xa7, 0x44, 0x2e, 0xbe, 0xe4, 0xfc, 0x5c, 0x3d, 0x84, 0xa3, 0x9c,
0xb8, 0x21, 0xf6, 0x06, 0x80, 0x94, 0x07, 0x30, 0x46, 0x99, 0x43, 0xa5, 0xd2, 0xf3, 0x73, 0x12,
0xf3, 0xd2, 0xf5, 0xf2, 0x8b, 0xd2, 0xf5, 0xd3, 0x53, 0xf3, 0xc0, 0x86, 0xe9, 0x43, 0xa4, 0x12,
0x0b, 0x32, 0x8b, 0x91, 0xfc, 0x69, 0x0d, 0xa1, 0x7e, 0x30, 0x32, 0x2e, 0x62, 0x62, 0x0e, 0x0a,
0x70, 0x4e, 0x62, 0x03, 0x2b, 0x36, 0x06, 0x04, 0x00, 0x00, 0xff, 0xff, 0xb9, 0x28, 0x45, 0xb1,
0x13, 0x01, 0x00, 0x00,
var file_google_rpc_status_proto_msgTypes = make([]protoimpl.MessageInfo, 1)
var file_google_rpc_status_proto_goTypes = []interface{}{
(*Status)(nil), // 0: google.rpc.Status
(*anypb.Any)(nil), // 1: google.protobuf.Any
}
var file_google_rpc_status_proto_depIdxs = []int32{
1, // 0: google.rpc.Status.details:type_name -> google.protobuf.Any
1, // [1:1] is the sub-list for method output_type
1, // [1:1] is the sub-list for method input_type
1, // [1:1] is the sub-list for extension type_name
1, // [1:1] is the sub-list for extension extendee
0, // [0:1] is the sub-list for field type_name
}
func init() { file_google_rpc_status_proto_init() }
func file_google_rpc_status_proto_init() {
if File_google_rpc_status_proto != nil {
return
}
if !protoimpl.UnsafeEnabled {
file_google_rpc_status_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
switch v := v.(*Status); i {
case 0:
return &v.state
case 1:
return &v.sizeCache
case 2:
return &v.unknownFields
default:
return nil
}
}
}
type x struct{}
out := protoimpl.TypeBuilder{
File: protoimpl.DescBuilder{
GoPackagePath: reflect.TypeOf(x{}).PkgPath(),
RawDescriptor: file_google_rpc_status_proto_rawDesc,
NumEnums: 0,
NumMessages: 1,
NumExtensions: 0,
NumServices: 0,
},
GoTypes: file_google_rpc_status_proto_goTypes,
DependencyIndexes: file_google_rpc_status_proto_depIdxs,
MessageInfos: file_google_rpc_status_proto_msgTypes,
}.Build()
File_google_rpc_status_proto = out.File
file_google_rpc_status_proto_rawDesc = nil
file_google_rpc_status_proto_goTypes = nil
file_google_rpc_status_proto_depIdxs = nil
}

27
vendor/google.golang.org/protobuf/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Copyright (c) 2018 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/google.golang.org/protobuf/PATENTS generated vendored Normal file
View File

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

339
vendor/google.golang.org/protobuf/README.md generated vendored Normal file
View File

@ -0,0 +1,339 @@
# Go support for Protocol Buffers
[![Go Reference](https://pkg.go.dev/badge/google.golang.org/protobuf.svg)](https://pkg.go.dev/google.golang.org/protobuf)
[![Build Status](https://travis-ci.org/protocolbuffers/protobuf-go.svg?branch=master)](https://travis-ci.org/protocolbuffers/protobuf-go)
This project hosts the Go implementation for
[protocol buffers](https://developers.google.com/protocol-buffers), which is a
language-neutral, platform-neutral, extensible mechanism for serializing
structured data. The protocol buffer language is a language for specifying the
schema for structured data. This schema is compiled into language specific
bindings. This project provides both a tool to generate Go code for the
protocol buffer language, and also the runtime implementation to handle
serialization of messages in Go. See the
[protocol buffer developer guide](https://developers.google.com/protocol-buffers/docs/overview)
for more information about protocol buffers themselves.
This project is comprised of two components:
* Code generator: The
[`protoc-gen-go`](https://pkg.go.dev/google.golang.org/protobuf/cmd/protoc-gen-go)
tool is a compiler plugin to `protoc`, the protocol buffer compiler. It
augments the `protoc` compiler so that it knows how to
[generate Go specific code for a given `.proto` file](https://developers.google.com/protocol-buffers/docs/reference/go-generated).
* Runtime library: The
[`protobuf`](https://pkg.go.dev/mod/google.golang.org/protobuf) module
contains a set of Go packages that form the runtime implementation of
protobufs in Go. This provides the set of interfaces that
[define what a message is](https://pkg.go.dev/google.golang.org/protobuf/reflect/protoreflect)
and functionality to serialize message in various formats (e.g.,
[wire](https://pkg.go.dev/google.golang.org/protobuf/proto),
[JSON](https://pkg.go.dev/google.golang.org/protobuf/encoding/protojson),
and
[text](https://pkg.go.dev/google.golang.org/protobuf/encoding/prototext)).
See the
[developer guide for protocol buffers in Go](https://developers.google.com/protocol-buffers/docs/gotutorial)
for a general guide for how to get started using protobufs in Go.
This project is the second major revision of the Go protocol buffer API
implemented by the
[`google.golang.org/protobuf`](https://pkg.go.dev/mod/google.golang.org/protobuf)
module. The first major version is implemented by the
[`github.com/golang/protobuf`](https://pkg.go.dev/mod/github.com/golang/protobuf)
module.
## Package index
Summary of the packages provided by this module:
* [`proto`](https://pkg.go.dev/google.golang.org/protobuf/proto): Package
`proto` provides functions operating on protobuf messages such as cloning,
merging, and checking equality, as well as binary serialization.
* [`encoding/protojson`](https://pkg.go.dev/google.golang.org/protobuf/encoding/protojson):
Package `protojson` serializes protobuf messages as JSON.
* [`encoding/prototext`](https://pkg.go.dev/google.golang.org/protobuf/encoding/prototext):
Package `prototext` serializes protobuf messages as the text format.
* [`encoding/protowire`](https://pkg.go.dev/google.golang.org/protobuf/encoding/protowire):
Package `protowire` parses and formats the low-level raw wire encoding. Most
users should use package `proto` to serialize messages in the wire format.
* [`reflect/protoreflect`](https://pkg.go.dev/google.golang.org/protobuf/reflect/protoreflect):
Package `protoreflect` provides interfaces to dynamically manipulate
protobuf messages.
* [`reflect/protoregistry`](https://pkg.go.dev/google.golang.org/protobuf/reflect/protoregistry):
Package `protoregistry` provides data structures to register and lookup
protobuf descriptor types.
* [`reflect/protodesc`](https://pkg.go.dev/google.golang.org/protobuf/reflect/protodesc):
Package `protodesc` provides functionality for converting
`descriptorpb.FileDescriptorProto` messages to/from the reflective
`protoreflect.FileDescriptor`.
* [`testing/protocmp`](https://pkg.go.dev/google.golang.org/protobuf/testing/protocmp):
Package `protocmp` provides protobuf specific options for the `cmp` package.
* [`testing/protopack`](https://pkg.go.dev/google.golang.org/protobuf/testing/protopack):
Package `protopack` aids manual encoding and decoding of the wire format.
* [`testing/prototest`](https://pkg.go.dev/google.golang.org/protobuf/testing/prototest):
Package `prototest` exercises the protobuf reflection implementation for
concrete message types.
* [`types/dynamicpb`](https://pkg.go.dev/google.golang.org/protobuf/types/dynamicpb):
Package `dynamicpb` creates protobuf messages at runtime from protobuf
descriptors.
* [`types/known/anypb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/anypb):
Package `anypb` is the generated package for `google/protobuf/any.proto`.
* [`types/known/timestamppb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/timestamppb):
Package `timestamppb` is the generated package for
`google/protobuf/timestamp.proto`.
* [`types/known/durationpb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/durationpb):
Package `durationpb` is the generated package for
`google/protobuf/duration.proto`.
* [`types/known/wrapperspb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/wrapperspb):
Package `wrapperspb` is the generated package for
`google/protobuf/wrappers.proto`.
* [`types/known/structpb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/structpb):
Package `structpb` is the generated package for
`google/protobuf/struct.proto`.
* [`types/known/fieldmaskpb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/fieldmaskpb):
Package `fieldmaskpb` is the generated package for
`google/protobuf/field_mask.proto`.
* [`types/known/apipb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/apipb):
Package `apipb` is the generated package for
`google/protobuf/api.proto`.
* [`types/known/typepb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/typepb):
Package `typepb` is the generated package for
`google/protobuf/type.proto`.
* [`types/known/sourcecontextpb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/sourcecontextpb):
Package `sourcecontextpb` is the generated package for
`google/protobuf/source_context.proto`.
* [`types/known/emptypb`](https://pkg.go.dev/google.golang.org/protobuf/types/known/emptypb):
Package `emptypb` is the generated package for
`google/protobuf/empty.proto`.
* [`types/descriptorpb`](https://pkg.go.dev/google.golang.org/protobuf/types/descriptorpb):
Package `descriptorpb` is the generated package for
`google/protobuf/descriptor.proto`.
* [`types/pluginpb`](https://pkg.go.dev/google.golang.org/protobuf/types/pluginpb):
Package `pluginpb` is the generated package for
`google/protobuf/compiler/plugin.proto`.
* [`compiler/protogen`](https://pkg.go.dev/google.golang.org/protobuf/compiler/protogen):
Package `protogen` provides support for writing protoc plugins.
* [`cmd/protoc-gen-go`](https://pkg.go.dev/google.golang.org/protobuf/cmd/protoc-gen-go):
The `protoc-gen-go` binary is a protoc plugin to generate a Go protocol
buffer package.
## Reporting issues
The issue tracker for this project is currently located at
[golang/protobuf](https://github.com/golang/protobuf/issues).
Please report any issues there with a sufficient description of the bug or
feature request. Bug reports should ideally be accompanied by a minimal
reproduction of the issue. Irreproducible bugs are difficult to diagnose and fix
(and likely to be closed after some period of time). Bug reports must specify
the version of the
[Go protocol buffer module](https://github.com/protocolbuffers/protobuf-go/releases)
and also the version of the
[protocol buffer toolchain](https://github.com/protocolbuffers/protobuf/releases)
being used.
## Contributing
This project is open-source and accepts contributions. See the
[contribution guide](https://github.com/protocolbuffers/protobuf-go/blob/master/CONTRIBUTING.md)
for more information.
## Compatibility
This module and the generated code are expected to be stable over time. However,
we reserve the right to make breaking changes without notice for the following
reasons:
* **Security:** A security issue in the specification or implementation may
come to light whose resolution requires breaking compatibility. We reserve
the right to address such issues.
* **Unspecified behavior:** There are some aspects of the protocol buffer
specification that are undefined. Programs that depend on unspecified
behavior may break in future releases.
* **Specification changes:** It may become necessary to address an
inconsistency, incompleteness, or change in the protocol buffer
specification, which may affect the behavior of existing programs. We
reserve the right to address such changes.
* **Bugs:** If a package has a bug that violates correctness, a program
depending on the buggy behavior may break if the bug is fixed. We reserve
the right to fix such bugs.
* **Generated additions**: We reserve the right to add new declarations to
generated Go packages of `.proto` files. This includes declared constants,
variables, functions, types, fields in structs, and methods on types. This
may break attempts at injecting additional code on top of what is generated
by `protoc-gen-go`. Such practice is not supported by this project.
* **Internal changes**: We reserve the right to add, modify, and remove
internal code, which includes all unexported declarations, the
[`protoc-gen-go/internal_gengo`](https://pkg.go.dev/google.golang.org/protobuf/cmd/protoc-gen-go/internal_gengo)
package, the
[`runtime/protoimpl`](https://pkg.go.dev/google.golang.org/protobuf/runtime/protoimpl?tab=doc)
package, and all packages under
[`internal`](https://pkg.go.dev/google.golang.org/protobuf/internal).
Any breaking changes outside of these will be announced 6 months in advance to
[protobuf@googlegroups.com](https://groups.google.com/forum/#!forum/protobuf).
Users should use generated code produced by a version of
[`protoc-gen-go`](https://pkg.go.dev/google.golang.org/protobuf/cmd/protoc-gen-go)
that is identical to the runtime version provided by the
[protobuf module](https://pkg.go.dev/mod/google.golang.org/protobuf). This
project promises that the runtime remains compatible with code produced by a
version of the generator that is no older than 1 year from the version of the
runtime used, according to the release dates of the minor version. Generated
code is expected to use a runtime version that is at least as new as the
generator used to produce it. Generated code contains references to
[`protoimpl.EnforceVersion`](https://pkg.go.dev/google.golang.org/protobuf/runtime/protoimpl?tab=doc#EnforceVersion)
to statically ensure that the generated code and runtime do not drift
sufficiently far apart.
## Historical legacy
This project is the second major revision
([released in 2020](https://blog.golang.org/a-new-go-api-for-protocol-buffers))
of the Go protocol buffer API implemented by the
[`google.golang.org/protobuf`](https://pkg.go.dev/mod/google.golang.org/protobuf)
module. The first major version
([released publicly in 2010](https://blog.golang.org/third-party-libraries-goprotobuf-and))
is implemented by the
[`github.com/golang/protobuf`](https://pkg.go.dev/mod/github.com/golang/protobuf)
module.
The first version predates the release of Go 1 by several years. It has a long
history as one of the first core pieces of infrastructure software ever written
in Go. As such, the Go protobuf project was one of many pioneers for determining
what the Go language should even look like and what would eventually be
considered good design patterns and “idiomatic” Go (by simultaneously being
both positive and negative examples of it).
Consider the changing signature of the `proto.Unmarshal` function as an example
of Go language and library evolution throughout the life of this project:
```go
// 2007/09/25 - Conception of Go
// 2008/11/12
export func UnMarshal(r io.Read, pb_e reflect.Empty) *os.Error
// 2008/11/13
export func UnMarshal(buf *[]byte, pb_e reflect.Empty) *os.Error
// 2008/11/24
export func UnMarshal(buf *[]byte, pb_e interface{}) *os.Error
// 2008/12/18
export func UnMarshal(buf []byte, pb_e interface{}) *os.Error
// 2009/01/20
func UnMarshal(buf []byte, pb_e interface{}) *os.Error
// 2009/04/17
func UnMarshal(buf []byte, pb_e interface{}) os.Error
// 2009/05/22
func Unmarshal(buf []byte, pb_e interface{}) os.Error
// 2011/11/03
func Unmarshal(buf []byte, pb_e interface{}) error
// 2012/03/28 - Release of Go 1
// 2012/06/12
func Unmarshal(buf []byte, pb Message) error
```
These changes demonstrate the difficulty of determining what the right API is
for any new technology. It takes time multiplied by many users to determine what
is best; even then, “best” is often still somewhere over the horizon.
The change on June 6th, 2012 added a degree of type-safety to Go protobufs by
declaring a new interface that all protobuf messages were required to implement:
```go
type Message interface {
Reset()
String() string
ProtoMessage()
}
```
This interface reduced the set of types that can be passed to `proto.Unmarshal`
from the universal set of all possible Go types to those with a special
`ProtoMessage` marker method. The intention of this change is to limit the
protobuf API to only operate on protobuf data types (i.e., protobuf messages).
For example, there is no sensible operation if a Go channel were passed to the
protobuf API as a channel cannot be serialized. The restricted interface would
prevent that.
This interface does not behaviorally describe what a protobuf message is, but
acts as a marker with an undocumented expectation that protobuf messages must be
a Go struct with a specific layout of fields with formatted tags. This
expectation is not statically enforced by the Go language, for it is an
implementation detail checked dynamically at runtime using Go reflection. Back
in 2012, the only types with this marker were those generated by
`protoc-gen-go`. Since `protoc-gen-go` would always generate messages with the
proper layout of fields, this was deemed an acceptable and dramatic improvement
over `interface{}`.
Over the next 10 years,
[use of Go would skyrocket](https://blog.golang.org/10years) and use of
protobufs in Go would skyrocket as well. With increased popularity also came
more diverse usages and requirements for Go protobufs and an increased number of
custom `proto.Message` implementations that were not generated by
`protoc-gen-go`.
The increasingly diverse ecosystem of Go types implementing the `proto.Message`
interface led to incompatibilities, which often occurred when:
* **Passing custom `proto.Message` types to the protobuf APIs**: A concrete
message implementation might work with some top-level functions (e.g.,
`proto.Marshal`), but cause others (e.g., `proto.Equal`) to choke and panic.
This occurs because the type only had partial support for being an actual
message by only implementing the `proto.Marshaler` interface or having
malformed struct field tags that happened to work with one function, but not
another.
* **Using Go reflection on any `proto.Message` types**: A common desire is to
write general-purpose code that operates on any protobuf message. For
example, a microservice might want to populate a `trace_id` field if it is
present in a message. To accomplish this, one would use Go reflection to
introspect the message type, and assume it were a pointer to a Go struct
with a field named `TraceId` (as would be commonly produced by
`protoc-gen-go`). If the concrete message type did not match this
expectation, it either failed to work or even resulted in a panic. Such was
the case for concrete message types that might be backed by a Go map instead
of a Go struct.
Both of these issues are solved by following the idiom that _interfaces should
describe behavior, not data_. This means that the interface itself should
provide sufficient functionality through its methods that users can introspect
and interact with all aspects of a protobuf message through a principled API.
This feature is called _protobuf reflection_. Just as how Go reflection provides
an API for programmatically interacting with any arbitrary Go value, protobuf
reflection provides an API for programmatically interacting with any arbitrary
protobuf message.
Since an interface cannot be extended in a backwards compatible way, this
suggested the need for a new major version that defines a new `proto.Message`
interface:
```go
type Message interface {
ProtoReflect() protoreflect.Message
}
```
The new
[`proto.Message`](https://pkg.go.dev/google.golang.org/protobuf/proto?tab=doc#Message)
interface contains a single `ProtoReflect` method that returns a
[`protoreflect.Message`](https://pkg.go.dev/google.golang.org/protobuf/reflect/protoreflect?tab=doc#Message),
which is a reflective view over a protobuf message. In addition to making a
breaking change to the `proto.Message` interface, we took this opportunity to
cleanup the supporting functionality that operate on a `proto.Message`, split up
complicated functionality apart into manageable packages, and to hide
implementation details away from the public API.
The goal for this major revision is to improve upon all the benefits of, while
addressing all the shortcomings of the old API. We hope that it will serve the
Go ecosystem well for the next 10 years and beyond.

View File

@ -0,0 +1,773 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package prototext
import (
"fmt"
"unicode/utf8"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/encoding/text"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/flags"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/internal/set"
"google.golang.org/protobuf/internal/strs"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
// Unmarshal reads the given []byte into the given proto.Message.
// The provided message must be mutable (e.g., a non-nil pointer to a message).
func Unmarshal(b []byte, m proto.Message) error {
return UnmarshalOptions{}.Unmarshal(b, m)
}
// UnmarshalOptions is a configurable textproto format unmarshaler.
type UnmarshalOptions struct {
pragma.NoUnkeyedLiterals
// AllowPartial accepts input for messages that will result in missing
// required fields. If AllowPartial is false (the default), Unmarshal will
// return error if there are any missing required fields.
AllowPartial bool
// DiscardUnknown specifies whether to ignore unknown fields when parsing.
// An unknown field is any field whose field name or field number does not
// resolve to any known or extension field in the message.
// By default, unmarshal rejects unknown fields as an error.
DiscardUnknown bool
// Resolver is used for looking up types when unmarshaling
// google.protobuf.Any messages or extension fields.
// If nil, this defaults to using protoregistry.GlobalTypes.
Resolver interface {
protoregistry.MessageTypeResolver
protoregistry.ExtensionTypeResolver
}
}
// Unmarshal reads the given []byte and populates the given proto.Message
// using options in the UnmarshalOptions object.
// The provided message must be mutable (e.g., a non-nil pointer to a message).
func (o UnmarshalOptions) Unmarshal(b []byte, m proto.Message) error {
return o.unmarshal(b, m)
}
// unmarshal is a centralized function that all unmarshal operations go through.
// For profiling purposes, avoid changing the name of this function or
// introducing other code paths for unmarshal that do not go through this.
func (o UnmarshalOptions) unmarshal(b []byte, m proto.Message) error {
proto.Reset(m)
if o.Resolver == nil {
o.Resolver = protoregistry.GlobalTypes
}
dec := decoder{text.NewDecoder(b), o}
if err := dec.unmarshalMessage(m.ProtoReflect(), false); err != nil {
return err
}
if o.AllowPartial {
return nil
}
return proto.CheckInitialized(m)
}
type decoder struct {
*text.Decoder
opts UnmarshalOptions
}
// newError returns an error object with position info.
func (d decoder) newError(pos int, f string, x ...interface{}) error {
line, column := d.Position(pos)
head := fmt.Sprintf("(line %d:%d): ", line, column)
return errors.New(head+f, x...)
}
// unexpectedTokenError returns a syntax error for the given unexpected token.
func (d decoder) unexpectedTokenError(tok text.Token) error {
return d.syntaxError(tok.Pos(), "unexpected token: %s", tok.RawString())
}
// syntaxError returns a syntax error for given position.
func (d decoder) syntaxError(pos int, f string, x ...interface{}) error {
line, column := d.Position(pos)
head := fmt.Sprintf("syntax error (line %d:%d): ", line, column)
return errors.New(head+f, x...)
}
// unmarshalMessage unmarshals into the given protoreflect.Message.
func (d decoder) unmarshalMessage(m pref.Message, checkDelims bool) error {
messageDesc := m.Descriptor()
if !flags.ProtoLegacy && messageset.IsMessageSet(messageDesc) {
return errors.New("no support for proto1 MessageSets")
}
if messageDesc.FullName() == genid.Any_message_fullname {
return d.unmarshalAny(m, checkDelims)
}
if checkDelims {
tok, err := d.Read()
if err != nil {
return err
}
if tok.Kind() != text.MessageOpen {
return d.unexpectedTokenError(tok)
}
}
var seenNums set.Ints
var seenOneofs set.Ints
fieldDescs := messageDesc.Fields()
for {
// Read field name.
tok, err := d.Read()
if err != nil {
return err
}
switch typ := tok.Kind(); typ {
case text.Name:
// Continue below.
case text.EOF:
if checkDelims {
return text.ErrUnexpectedEOF
}
return nil
default:
if checkDelims && typ == text.MessageClose {
return nil
}
return d.unexpectedTokenError(tok)
}
// Resolve the field descriptor.
var name pref.Name
var fd pref.FieldDescriptor
var xt pref.ExtensionType
var xtErr error
var isFieldNumberName bool
switch tok.NameKind() {
case text.IdentName:
name = pref.Name(tok.IdentName())
fd = fieldDescs.ByTextName(string(name))
case text.TypeName:
// Handle extensions only. This code path is not for Any.
xt, xtErr = d.opts.Resolver.FindExtensionByName(pref.FullName(tok.TypeName()))
case text.FieldNumber:
isFieldNumberName = true
num := pref.FieldNumber(tok.FieldNumber())
if !num.IsValid() {
return d.newError(tok.Pos(), "invalid field number: %d", num)
}
fd = fieldDescs.ByNumber(num)
if fd == nil {
xt, xtErr = d.opts.Resolver.FindExtensionByNumber(messageDesc.FullName(), num)
}
}
if xt != nil {
fd = xt.TypeDescriptor()
if !messageDesc.ExtensionRanges().Has(fd.Number()) || fd.ContainingMessage().FullName() != messageDesc.FullName() {
return d.newError(tok.Pos(), "message %v cannot be extended by %v", messageDesc.FullName(), fd.FullName())
}
} else if xtErr != nil && xtErr != protoregistry.NotFound {
return d.newError(tok.Pos(), "unable to resolve [%s]: %v", tok.RawString(), xtErr)
}
if flags.ProtoLegacy {
if fd != nil && fd.IsWeak() && fd.Message().IsPlaceholder() {
fd = nil // reset since the weak reference is not linked in
}
}
// Handle unknown fields.
if fd == nil {
if d.opts.DiscardUnknown || messageDesc.ReservedNames().Has(name) {
d.skipValue()
continue
}
return d.newError(tok.Pos(), "unknown field: %v", tok.RawString())
}
// Handle fields identified by field number.
if isFieldNumberName {
// TODO: Add an option to permit parsing field numbers.
//
// This requires careful thought as the MarshalOptions.EmitUnknown
// option allows formatting unknown fields as the field number and the
// best-effort textual representation of the field value. In that case,
// it may not be possible to unmarshal the value from a parser that does
// have information about the unknown field.
return d.newError(tok.Pos(), "cannot specify field by number: %v", tok.RawString())
}
switch {
case fd.IsList():
kind := fd.Kind()
if kind != pref.MessageKind && kind != pref.GroupKind && !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
list := m.Mutable(fd).List()
if err := d.unmarshalList(fd, list); err != nil {
return err
}
case fd.IsMap():
mmap := m.Mutable(fd).Map()
if err := d.unmarshalMap(fd, mmap); err != nil {
return err
}
default:
kind := fd.Kind()
if kind != pref.MessageKind && kind != pref.GroupKind && !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
// If field is a oneof, check if it has already been set.
if od := fd.ContainingOneof(); od != nil {
idx := uint64(od.Index())
if seenOneofs.Has(idx) {
return d.newError(tok.Pos(), "error parsing %q, oneof %v is already set", tok.RawString(), od.FullName())
}
seenOneofs.Set(idx)
}
num := uint64(fd.Number())
if seenNums.Has(num) {
return d.newError(tok.Pos(), "non-repeated field %q is repeated", tok.RawString())
}
if err := d.unmarshalSingular(fd, m); err != nil {
return err
}
seenNums.Set(num)
}
}
return nil
}
// unmarshalSingular unmarshals a non-repeated field value specified by the
// given FieldDescriptor.
func (d decoder) unmarshalSingular(fd pref.FieldDescriptor, m pref.Message) error {
var val pref.Value
var err error
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
val = m.NewField(fd)
err = d.unmarshalMessage(val.Message(), true)
default:
val, err = d.unmarshalScalar(fd)
}
if err == nil {
m.Set(fd, val)
}
return err
}
// unmarshalScalar unmarshals a scalar/enum protoreflect.Value specified by the
// given FieldDescriptor.
func (d decoder) unmarshalScalar(fd pref.FieldDescriptor) (pref.Value, error) {
tok, err := d.Read()
if err != nil {
return pref.Value{}, err
}
if tok.Kind() != text.Scalar {
return pref.Value{}, d.unexpectedTokenError(tok)
}
kind := fd.Kind()
switch kind {
case pref.BoolKind:
if b, ok := tok.Bool(); ok {
return pref.ValueOfBool(b), nil
}
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind:
if n, ok := tok.Int32(); ok {
return pref.ValueOfInt32(n), nil
}
case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
if n, ok := tok.Int64(); ok {
return pref.ValueOfInt64(n), nil
}
case pref.Uint32Kind, pref.Fixed32Kind:
if n, ok := tok.Uint32(); ok {
return pref.ValueOfUint32(n), nil
}
case pref.Uint64Kind, pref.Fixed64Kind:
if n, ok := tok.Uint64(); ok {
return pref.ValueOfUint64(n), nil
}
case pref.FloatKind:
if n, ok := tok.Float32(); ok {
return pref.ValueOfFloat32(n), nil
}
case pref.DoubleKind:
if n, ok := tok.Float64(); ok {
return pref.ValueOfFloat64(n), nil
}
case pref.StringKind:
if s, ok := tok.String(); ok {
if strs.EnforceUTF8(fd) && !utf8.ValidString(s) {
return pref.Value{}, d.newError(tok.Pos(), "contains invalid UTF-8")
}
return pref.ValueOfString(s), nil
}
case pref.BytesKind:
if b, ok := tok.String(); ok {
return pref.ValueOfBytes([]byte(b)), nil
}
case pref.EnumKind:
if lit, ok := tok.Enum(); ok {
// Lookup EnumNumber based on name.
if enumVal := fd.Enum().Values().ByName(pref.Name(lit)); enumVal != nil {
return pref.ValueOfEnum(enumVal.Number()), nil
}
}
if num, ok := tok.Int32(); ok {
return pref.ValueOfEnum(pref.EnumNumber(num)), nil
}
default:
panic(fmt.Sprintf("invalid scalar kind %v", kind))
}
return pref.Value{}, d.newError(tok.Pos(), "invalid value for %v type: %v", kind, tok.RawString())
}
// unmarshalList unmarshals into given protoreflect.List. A list value can
// either be in [] syntax or simply just a single scalar/message value.
func (d decoder) unmarshalList(fd pref.FieldDescriptor, list pref.List) error {
tok, err := d.Peek()
if err != nil {
return err
}
switch fd.Kind() {
case pref.MessageKind, pref.GroupKind:
switch tok.Kind() {
case text.ListOpen:
d.Read()
for {
tok, err := d.Peek()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
d.Read()
return nil
case text.MessageOpen:
pval := list.NewElement()
if err := d.unmarshalMessage(pval.Message(), true); err != nil {
return err
}
list.Append(pval)
default:
return d.unexpectedTokenError(tok)
}
}
case text.MessageOpen:
pval := list.NewElement()
if err := d.unmarshalMessage(pval.Message(), true); err != nil {
return err
}
list.Append(pval)
return nil
}
default:
switch tok.Kind() {
case text.ListOpen:
d.Read()
for {
tok, err := d.Peek()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
d.Read()
return nil
case text.Scalar:
pval, err := d.unmarshalScalar(fd)
if err != nil {
return err
}
list.Append(pval)
default:
return d.unexpectedTokenError(tok)
}
}
case text.Scalar:
pval, err := d.unmarshalScalar(fd)
if err != nil {
return err
}
list.Append(pval)
return nil
}
}
return d.unexpectedTokenError(tok)
}
// unmarshalMap unmarshals into given protoreflect.Map. A map value is a
// textproto message containing {key: <kvalue>, value: <mvalue>}.
func (d decoder) unmarshalMap(fd pref.FieldDescriptor, mmap pref.Map) error {
// Determine ahead whether map entry is a scalar type or a message type in
// order to call the appropriate unmarshalMapValue func inside
// unmarshalMapEntry.
var unmarshalMapValue func() (pref.Value, error)
switch fd.MapValue().Kind() {
case pref.MessageKind, pref.GroupKind:
unmarshalMapValue = func() (pref.Value, error) {
pval := mmap.NewValue()
if err := d.unmarshalMessage(pval.Message(), true); err != nil {
return pref.Value{}, err
}
return pval, nil
}
default:
unmarshalMapValue = func() (pref.Value, error) {
return d.unmarshalScalar(fd.MapValue())
}
}
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.MessageOpen:
return d.unmarshalMapEntry(fd, mmap, unmarshalMapValue)
case text.ListOpen:
for {
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
return nil
case text.MessageOpen:
if err := d.unmarshalMapEntry(fd, mmap, unmarshalMapValue); err != nil {
return err
}
default:
return d.unexpectedTokenError(tok)
}
}
default:
return d.unexpectedTokenError(tok)
}
}
// unmarshalMap unmarshals into given protoreflect.Map. A map value is a
// textproto message containing {key: <kvalue>, value: <mvalue>}.
func (d decoder) unmarshalMapEntry(fd pref.FieldDescriptor, mmap pref.Map, unmarshalMapValue func() (pref.Value, error)) error {
var key pref.MapKey
var pval pref.Value
Loop:
for {
// Read field name.
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.Name:
if tok.NameKind() != text.IdentName {
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "unknown map entry field %q", tok.RawString())
}
d.skipValue()
continue Loop
}
// Continue below.
case text.MessageClose:
break Loop
default:
return d.unexpectedTokenError(tok)
}
switch name := pref.Name(tok.IdentName()); name {
case genid.MapEntry_Key_field_name:
if !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
if key.IsValid() {
return d.newError(tok.Pos(), "map entry %q cannot be repeated", name)
}
val, err := d.unmarshalScalar(fd.MapKey())
if err != nil {
return err
}
key = val.MapKey()
case genid.MapEntry_Value_field_name:
if kind := fd.MapValue().Kind(); (kind != pref.MessageKind) && (kind != pref.GroupKind) {
if !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
}
if pval.IsValid() {
return d.newError(tok.Pos(), "map entry %q cannot be repeated", name)
}
pval, err = unmarshalMapValue()
if err != nil {
return err
}
default:
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "unknown map entry field %q", name)
}
d.skipValue()
}
}
if !key.IsValid() {
key = fd.MapKey().Default().MapKey()
}
if !pval.IsValid() {
switch fd.MapValue().Kind() {
case pref.MessageKind, pref.GroupKind:
// If value field is not set for message/group types, construct an
// empty one as default.
pval = mmap.NewValue()
default:
pval = fd.MapValue().Default()
}
}
mmap.Set(key, pval)
return nil
}
// unmarshalAny unmarshals an Any textproto. It can either be in expanded form
// or non-expanded form.
func (d decoder) unmarshalAny(m pref.Message, checkDelims bool) error {
var typeURL string
var bValue []byte
var seenTypeUrl bool
var seenValue bool
var isExpanded bool
if checkDelims {
tok, err := d.Read()
if err != nil {
return err
}
if tok.Kind() != text.MessageOpen {
return d.unexpectedTokenError(tok)
}
}
Loop:
for {
// Read field name. Can only have 3 possible field names, i.e. type_url,
// value and type URL name inside [].
tok, err := d.Read()
if err != nil {
return err
}
if typ := tok.Kind(); typ != text.Name {
if checkDelims {
if typ == text.MessageClose {
break Loop
}
} else if typ == text.EOF {
break Loop
}
return d.unexpectedTokenError(tok)
}
switch tok.NameKind() {
case text.IdentName:
// Both type_url and value fields require field separator :.
if !tok.HasSeparator() {
return d.syntaxError(tok.Pos(), "missing field separator :")
}
switch name := pref.Name(tok.IdentName()); name {
case genid.Any_TypeUrl_field_name:
if seenTypeUrl {
return d.newError(tok.Pos(), "duplicate %v field", genid.Any_TypeUrl_field_fullname)
}
if isExpanded {
return d.newError(tok.Pos(), "conflict with [%s] field", typeURL)
}
tok, err := d.Read()
if err != nil {
return err
}
var ok bool
typeURL, ok = tok.String()
if !ok {
return d.newError(tok.Pos(), "invalid %v field value: %v", genid.Any_TypeUrl_field_fullname, tok.RawString())
}
seenTypeUrl = true
case genid.Any_Value_field_name:
if seenValue {
return d.newError(tok.Pos(), "duplicate %v field", genid.Any_Value_field_fullname)
}
if isExpanded {
return d.newError(tok.Pos(), "conflict with [%s] field", typeURL)
}
tok, err := d.Read()
if err != nil {
return err
}
s, ok := tok.String()
if !ok {
return d.newError(tok.Pos(), "invalid %v field value: %v", genid.Any_Value_field_fullname, tok.RawString())
}
bValue = []byte(s)
seenValue = true
default:
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "invalid field name %q in %v message", tok.RawString(), genid.Any_message_fullname)
}
}
case text.TypeName:
if isExpanded {
return d.newError(tok.Pos(), "cannot have more than one type")
}
if seenTypeUrl {
return d.newError(tok.Pos(), "conflict with type_url field")
}
typeURL = tok.TypeName()
var err error
bValue, err = d.unmarshalExpandedAny(typeURL, tok.Pos())
if err != nil {
return err
}
isExpanded = true
default:
if !d.opts.DiscardUnknown {
return d.newError(tok.Pos(), "invalid field name %q in %v message", tok.RawString(), genid.Any_message_fullname)
}
}
}
fds := m.Descriptor().Fields()
if len(typeURL) > 0 {
m.Set(fds.ByNumber(genid.Any_TypeUrl_field_number), pref.ValueOfString(typeURL))
}
if len(bValue) > 0 {
m.Set(fds.ByNumber(genid.Any_Value_field_number), pref.ValueOfBytes(bValue))
}
return nil
}
func (d decoder) unmarshalExpandedAny(typeURL string, pos int) ([]byte, error) {
mt, err := d.opts.Resolver.FindMessageByURL(typeURL)
if err != nil {
return nil, d.newError(pos, "unable to resolve message [%v]: %v", typeURL, err)
}
// Create new message for the embedded message type and unmarshal the value
// field into it.
m := mt.New()
if err := d.unmarshalMessage(m, true); err != nil {
return nil, err
}
// Serialize the embedded message and return the resulting bytes.
b, err := proto.MarshalOptions{
AllowPartial: true, // Never check required fields inside an Any.
Deterministic: true,
}.Marshal(m.Interface())
if err != nil {
return nil, d.newError(pos, "error in marshaling message into Any.value: %v", err)
}
return b, nil
}
// skipValue makes the decoder parse a field value in order to advance the read
// to the next field. It relies on Read returning an error if the types are not
// in valid sequence.
func (d decoder) skipValue() error {
tok, err := d.Read()
if err != nil {
return err
}
// Only need to continue reading for messages and lists.
switch tok.Kind() {
case text.MessageOpen:
return d.skipMessageValue()
case text.ListOpen:
for {
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.ListClose:
return nil
case text.MessageOpen:
return d.skipMessageValue()
default:
// Skip items. This will not validate whether skipped values are
// of the same type or not, same behavior as C++
// TextFormat::Parser::AllowUnknownField(true) version 3.8.0.
if err := d.skipValue(); err != nil {
return err
}
}
}
}
return nil
}
// skipMessageValue makes the decoder parse and skip over all fields in a
// message. It assumes that the previous read type is MessageOpen.
func (d decoder) skipMessageValue() error {
for {
tok, err := d.Read()
if err != nil {
return err
}
switch tok.Kind() {
case text.MessageClose:
return nil
case text.Name:
if err := d.skipValue(); err != nil {
return err
}
}
}
}

View File

@ -0,0 +1,7 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package prototext marshals and unmarshals protocol buffer messages as the
// textproto format.
package prototext

View File

@ -0,0 +1,371 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package prototext
import (
"fmt"
"strconv"
"unicode/utf8"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/encoding/text"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/flags"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/internal/order"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/internal/strs"
"google.golang.org/protobuf/proto"
"google.golang.org/protobuf/reflect/protoreflect"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
const defaultIndent = " "
// Format formats the message as a multiline string.
// This function is only intended for human consumption and ignores errors.
// Do not depend on the output being stable. It may change over time across
// different versions of the program.
func Format(m proto.Message) string {
return MarshalOptions{Multiline: true}.Format(m)
}
// Marshal writes the given proto.Message in textproto format using default
// options. Do not depend on the output being stable. It may change over time
// across different versions of the program.
func Marshal(m proto.Message) ([]byte, error) {
return MarshalOptions{}.Marshal(m)
}
// MarshalOptions is a configurable text format marshaler.
type MarshalOptions struct {
pragma.NoUnkeyedLiterals
// Multiline specifies whether the marshaler should format the output in
// indented-form with every textual element on a new line.
// If Indent is an empty string, then an arbitrary indent is chosen.
Multiline bool
// Indent specifies the set of indentation characters to use in a multiline
// formatted output such that every entry is preceded by Indent and
// terminated by a newline. If non-empty, then Multiline is treated as true.
// Indent can only be composed of space or tab characters.
Indent string
// EmitASCII specifies whether to format strings and bytes as ASCII only
// as opposed to using UTF-8 encoding when possible.
EmitASCII bool
// allowInvalidUTF8 specifies whether to permit the encoding of strings
// with invalid UTF-8. This is unexported as it is intended to only
// be specified by the Format method.
allowInvalidUTF8 bool
// AllowPartial allows messages that have missing required fields to marshal
// without returning an error. If AllowPartial is false (the default),
// Marshal will return error if there are any missing required fields.
AllowPartial bool
// EmitUnknown specifies whether to emit unknown fields in the output.
// If specified, the unmarshaler may be unable to parse the output.
// The default is to exclude unknown fields.
EmitUnknown bool
// Resolver is used for looking up types when expanding google.protobuf.Any
// messages. If nil, this defaults to using protoregistry.GlobalTypes.
Resolver interface {
protoregistry.ExtensionTypeResolver
protoregistry.MessageTypeResolver
}
}
// Format formats the message as a string.
// This method is only intended for human consumption and ignores errors.
// Do not depend on the output being stable. It may change over time across
// different versions of the program.
func (o MarshalOptions) Format(m proto.Message) string {
if m == nil || !m.ProtoReflect().IsValid() {
return "<nil>" // invalid syntax, but okay since this is for debugging
}
o.allowInvalidUTF8 = true
o.AllowPartial = true
o.EmitUnknown = true
b, _ := o.Marshal(m)
return string(b)
}
// Marshal writes the given proto.Message in textproto format using options in
// MarshalOptions object. Do not depend on the output being stable. It may
// change over time across different versions of the program.
func (o MarshalOptions) Marshal(m proto.Message) ([]byte, error) {
return o.marshal(m)
}
// marshal is a centralized function that all marshal operations go through.
// For profiling purposes, avoid changing the name of this function or
// introducing other code paths for marshal that do not go through this.
func (o MarshalOptions) marshal(m proto.Message) ([]byte, error) {
var delims = [2]byte{'{', '}'}
if o.Multiline && o.Indent == "" {
o.Indent = defaultIndent
}
if o.Resolver == nil {
o.Resolver = protoregistry.GlobalTypes
}
internalEnc, err := text.NewEncoder(o.Indent, delims, o.EmitASCII)
if err != nil {
return nil, err
}
// Treat nil message interface as an empty message,
// in which case there is nothing to output.
if m == nil {
return []byte{}, nil
}
enc := encoder{internalEnc, o}
err = enc.marshalMessage(m.ProtoReflect(), false)
if err != nil {
return nil, err
}
out := enc.Bytes()
if len(o.Indent) > 0 && len(out) > 0 {
out = append(out, '\n')
}
if o.AllowPartial {
return out, nil
}
return out, proto.CheckInitialized(m)
}
type encoder struct {
*text.Encoder
opts MarshalOptions
}
// marshalMessage marshals the given protoreflect.Message.
func (e encoder) marshalMessage(m pref.Message, inclDelims bool) error {
messageDesc := m.Descriptor()
if !flags.ProtoLegacy && messageset.IsMessageSet(messageDesc) {
return errors.New("no support for proto1 MessageSets")
}
if inclDelims {
e.StartMessage()
defer e.EndMessage()
}
// Handle Any expansion.
if messageDesc.FullName() == genid.Any_message_fullname {
if e.marshalAny(m) {
return nil
}
// If unable to expand, continue on to marshal Any as a regular message.
}
// Marshal fields.
var err error
order.RangeFields(m, order.IndexNameFieldOrder, func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
if err = e.marshalField(fd.TextName(), v, fd); err != nil {
return false
}
return true
})
if err != nil {
return err
}
// Marshal unknown fields.
if e.opts.EmitUnknown {
e.marshalUnknown(m.GetUnknown())
}
return nil
}
// marshalField marshals the given field with protoreflect.Value.
func (e encoder) marshalField(name string, val pref.Value, fd pref.FieldDescriptor) error {
switch {
case fd.IsList():
return e.marshalList(name, val.List(), fd)
case fd.IsMap():
return e.marshalMap(name, val.Map(), fd)
default:
e.WriteName(name)
return e.marshalSingular(val, fd)
}
}
// marshalSingular marshals the given non-repeated field value. This includes
// all scalar types, enums, messages, and groups.
func (e encoder) marshalSingular(val pref.Value, fd pref.FieldDescriptor) error {
kind := fd.Kind()
switch kind {
case pref.BoolKind:
e.WriteBool(val.Bool())
case pref.StringKind:
s := val.String()
if !e.opts.allowInvalidUTF8 && strs.EnforceUTF8(fd) && !utf8.ValidString(s) {
return errors.InvalidUTF8(string(fd.FullName()))
}
e.WriteString(s)
case pref.Int32Kind, pref.Int64Kind,
pref.Sint32Kind, pref.Sint64Kind,
pref.Sfixed32Kind, pref.Sfixed64Kind:
e.WriteInt(val.Int())
case pref.Uint32Kind, pref.Uint64Kind,
pref.Fixed32Kind, pref.Fixed64Kind:
e.WriteUint(val.Uint())
case pref.FloatKind:
// Encoder.WriteFloat handles the special numbers NaN and infinites.
e.WriteFloat(val.Float(), 32)
case pref.DoubleKind:
// Encoder.WriteFloat handles the special numbers NaN and infinites.
e.WriteFloat(val.Float(), 64)
case pref.BytesKind:
e.WriteString(string(val.Bytes()))
case pref.EnumKind:
num := val.Enum()
if desc := fd.Enum().Values().ByNumber(num); desc != nil {
e.WriteLiteral(string(desc.Name()))
} else {
// Use numeric value if there is no enum description.
e.WriteInt(int64(num))
}
case pref.MessageKind, pref.GroupKind:
return e.marshalMessage(val.Message(), true)
default:
panic(fmt.Sprintf("%v has unknown kind: %v", fd.FullName(), kind))
}
return nil
}
// marshalList marshals the given protoreflect.List as multiple name-value fields.
func (e encoder) marshalList(name string, list pref.List, fd pref.FieldDescriptor) error {
size := list.Len()
for i := 0; i < size; i++ {
e.WriteName(name)
if err := e.marshalSingular(list.Get(i), fd); err != nil {
return err
}
}
return nil
}
// marshalMap marshals the given protoreflect.Map as multiple name-value fields.
func (e encoder) marshalMap(name string, mmap pref.Map, fd pref.FieldDescriptor) error {
var err error
order.RangeEntries(mmap, order.GenericKeyOrder, func(key pref.MapKey, val pref.Value) bool {
e.WriteName(name)
e.StartMessage()
defer e.EndMessage()
e.WriteName(string(genid.MapEntry_Key_field_name))
err = e.marshalSingular(key.Value(), fd.MapKey())
if err != nil {
return false
}
e.WriteName(string(genid.MapEntry_Value_field_name))
err = e.marshalSingular(val, fd.MapValue())
if err != nil {
return false
}
return true
})
return err
}
// marshalUnknown parses the given []byte and marshals fields out.
// This function assumes proper encoding in the given []byte.
func (e encoder) marshalUnknown(b []byte) {
const dec = 10
const hex = 16
for len(b) > 0 {
num, wtype, n := protowire.ConsumeTag(b)
b = b[n:]
e.WriteName(strconv.FormatInt(int64(num), dec))
switch wtype {
case protowire.VarintType:
var v uint64
v, n = protowire.ConsumeVarint(b)
e.WriteUint(v)
case protowire.Fixed32Type:
var v uint32
v, n = protowire.ConsumeFixed32(b)
e.WriteLiteral("0x" + strconv.FormatUint(uint64(v), hex))
case protowire.Fixed64Type:
var v uint64
v, n = protowire.ConsumeFixed64(b)
e.WriteLiteral("0x" + strconv.FormatUint(v, hex))
case protowire.BytesType:
var v []byte
v, n = protowire.ConsumeBytes(b)
e.WriteString(string(v))
case protowire.StartGroupType:
e.StartMessage()
var v []byte
v, n = protowire.ConsumeGroup(num, b)
e.marshalUnknown(v)
e.EndMessage()
default:
panic(fmt.Sprintf("prototext: error parsing unknown field wire type: %v", wtype))
}
b = b[n:]
}
}
// marshalAny marshals the given google.protobuf.Any message in expanded form.
// It returns true if it was able to marshal, else false.
func (e encoder) marshalAny(any pref.Message) bool {
// Construct the embedded message.
fds := any.Descriptor().Fields()
fdType := fds.ByNumber(genid.Any_TypeUrl_field_number)
typeURL := any.Get(fdType).String()
mt, err := e.opts.Resolver.FindMessageByURL(typeURL)
if err != nil {
return false
}
m := mt.New().Interface()
// Unmarshal bytes into embedded message.
fdValue := fds.ByNumber(genid.Any_Value_field_number)
value := any.Get(fdValue)
err = proto.UnmarshalOptions{
AllowPartial: true,
Resolver: e.opts.Resolver,
}.Unmarshal(value.Bytes(), m)
if err != nil {
return false
}
// Get current encoder position. If marshaling fails, reset encoder output
// back to this position.
pos := e.Snapshot()
// Field name is the proto field name enclosed in [].
e.WriteName("[" + typeURL + "]")
err = e.marshalMessage(m.ProtoReflect(), true)
if err != nil {
e.Reset(pos)
return false
}
return true
}

View File

@ -0,0 +1,538 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package protowire parses and formats the raw wire encoding.
// See https://developers.google.com/protocol-buffers/docs/encoding.
//
// For marshaling and unmarshaling entire protobuf messages,
// use the "google.golang.org/protobuf/proto" package instead.
package protowire
import (
"io"
"math"
"math/bits"
"google.golang.org/protobuf/internal/errors"
)
// Number represents the field number.
type Number int32
const (
MinValidNumber Number = 1
FirstReservedNumber Number = 19000
LastReservedNumber Number = 19999
MaxValidNumber Number = 1<<29 - 1
)
// IsValid reports whether the field number is semantically valid.
//
// Note that while numbers within the reserved range are semantically invalid,
// they are syntactically valid in the wire format.
// Implementations may treat records with reserved field numbers as unknown.
func (n Number) IsValid() bool {
return MinValidNumber <= n && n < FirstReservedNumber || LastReservedNumber < n && n <= MaxValidNumber
}
// Type represents the wire type.
type Type int8
const (
VarintType Type = 0
Fixed32Type Type = 5
Fixed64Type Type = 1
BytesType Type = 2
StartGroupType Type = 3
EndGroupType Type = 4
)
const (
_ = -iota
errCodeTruncated
errCodeFieldNumber
errCodeOverflow
errCodeReserved
errCodeEndGroup
)
var (
errFieldNumber = errors.New("invalid field number")
errOverflow = errors.New("variable length integer overflow")
errReserved = errors.New("cannot parse reserved wire type")
errEndGroup = errors.New("mismatching end group marker")
errParse = errors.New("parse error")
)
// ParseError converts an error code into an error value.
// This returns nil if n is a non-negative number.
func ParseError(n int) error {
if n >= 0 {
return nil
}
switch n {
case errCodeTruncated:
return io.ErrUnexpectedEOF
case errCodeFieldNumber:
return errFieldNumber
case errCodeOverflow:
return errOverflow
case errCodeReserved:
return errReserved
case errCodeEndGroup:
return errEndGroup
default:
return errParse
}
}
// ConsumeField parses an entire field record (both tag and value) and returns
// the field number, the wire type, and the total length.
// This returns a negative length upon an error (see ParseError).
//
// The total length includes the tag header and the end group marker (if the
// field is a group).
func ConsumeField(b []byte) (Number, Type, int) {
num, typ, n := ConsumeTag(b)
if n < 0 {
return 0, 0, n // forward error code
}
m := ConsumeFieldValue(num, typ, b[n:])
if m < 0 {
return 0, 0, m // forward error code
}
return num, typ, n + m
}
// ConsumeFieldValue parses a field value and returns its length.
// This assumes that the field Number and wire Type have already been parsed.
// This returns a negative length upon an error (see ParseError).
//
// When parsing a group, the length includes the end group marker and
// the end group is verified to match the starting field number.
func ConsumeFieldValue(num Number, typ Type, b []byte) (n int) {
switch typ {
case VarintType:
_, n = ConsumeVarint(b)
return n
case Fixed32Type:
_, n = ConsumeFixed32(b)
return n
case Fixed64Type:
_, n = ConsumeFixed64(b)
return n
case BytesType:
_, n = ConsumeBytes(b)
return n
case StartGroupType:
n0 := len(b)
for {
num2, typ2, n := ConsumeTag(b)
if n < 0 {
return n // forward error code
}
b = b[n:]
if typ2 == EndGroupType {
if num != num2 {
return errCodeEndGroup
}
return n0 - len(b)
}
n = ConsumeFieldValue(num2, typ2, b)
if n < 0 {
return n // forward error code
}
b = b[n:]
}
case EndGroupType:
return errCodeEndGroup
default:
return errCodeReserved
}
}
// AppendTag encodes num and typ as a varint-encoded tag and appends it to b.
func AppendTag(b []byte, num Number, typ Type) []byte {
return AppendVarint(b, EncodeTag(num, typ))
}
// ConsumeTag parses b as a varint-encoded tag, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeTag(b []byte) (Number, Type, int) {
v, n := ConsumeVarint(b)
if n < 0 {
return 0, 0, n // forward error code
}
num, typ := DecodeTag(v)
if num < MinValidNumber {
return 0, 0, errCodeFieldNumber
}
return num, typ, n
}
func SizeTag(num Number) int {
return SizeVarint(EncodeTag(num, 0)) // wire type has no effect on size
}
// AppendVarint appends v to b as a varint-encoded uint64.
func AppendVarint(b []byte, v uint64) []byte {
switch {
case v < 1<<7:
b = append(b, byte(v))
case v < 1<<14:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte(v>>7))
case v < 1<<21:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte(v>>14))
case v < 1<<28:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte(v>>21))
case v < 1<<35:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte(v>>28))
case v < 1<<42:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte(v>>35))
case v < 1<<49:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte(v>>42))
case v < 1<<56:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte((v>>42)&0x7f|0x80),
byte(v>>49))
case v < 1<<63:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte((v>>42)&0x7f|0x80),
byte((v>>49)&0x7f|0x80),
byte(v>>56))
default:
b = append(b,
byte((v>>0)&0x7f|0x80),
byte((v>>7)&0x7f|0x80),
byte((v>>14)&0x7f|0x80),
byte((v>>21)&0x7f|0x80),
byte((v>>28)&0x7f|0x80),
byte((v>>35)&0x7f|0x80),
byte((v>>42)&0x7f|0x80),
byte((v>>49)&0x7f|0x80),
byte((v>>56)&0x7f|0x80),
1)
}
return b
}
// ConsumeVarint parses b as a varint-encoded uint64, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeVarint(b []byte) (v uint64, n int) {
var y uint64
if len(b) <= 0 {
return 0, errCodeTruncated
}
v = uint64(b[0])
if v < 0x80 {
return v, 1
}
v -= 0x80
if len(b) <= 1 {
return 0, errCodeTruncated
}
y = uint64(b[1])
v += y << 7
if y < 0x80 {
return v, 2
}
v -= 0x80 << 7
if len(b) <= 2 {
return 0, errCodeTruncated
}
y = uint64(b[2])
v += y << 14
if y < 0x80 {
return v, 3
}
v -= 0x80 << 14
if len(b) <= 3 {
return 0, errCodeTruncated
}
y = uint64(b[3])
v += y << 21
if y < 0x80 {
return v, 4
}
v -= 0x80 << 21
if len(b) <= 4 {
return 0, errCodeTruncated
}
y = uint64(b[4])
v += y << 28
if y < 0x80 {
return v, 5
}
v -= 0x80 << 28
if len(b) <= 5 {
return 0, errCodeTruncated
}
y = uint64(b[5])
v += y << 35
if y < 0x80 {
return v, 6
}
v -= 0x80 << 35
if len(b) <= 6 {
return 0, errCodeTruncated
}
y = uint64(b[6])
v += y << 42
if y < 0x80 {
return v, 7
}
v -= 0x80 << 42
if len(b) <= 7 {
return 0, errCodeTruncated
}
y = uint64(b[7])
v += y << 49
if y < 0x80 {
return v, 8
}
v -= 0x80 << 49
if len(b) <= 8 {
return 0, errCodeTruncated
}
y = uint64(b[8])
v += y << 56
if y < 0x80 {
return v, 9
}
v -= 0x80 << 56
if len(b) <= 9 {
return 0, errCodeTruncated
}
y = uint64(b[9])
v += y << 63
if y < 2 {
return v, 10
}
return 0, errCodeOverflow
}
// SizeVarint returns the encoded size of a varint.
// The size is guaranteed to be within 1 and 10, inclusive.
func SizeVarint(v uint64) int {
// This computes 1 + (bits.Len64(v)-1)/7.
// 9/64 is a good enough approximation of 1/7
return int(9*uint32(bits.Len64(v))+64) / 64
}
// AppendFixed32 appends v to b as a little-endian uint32.
func AppendFixed32(b []byte, v uint32) []byte {
return append(b,
byte(v>>0),
byte(v>>8),
byte(v>>16),
byte(v>>24))
}
// ConsumeFixed32 parses b as a little-endian uint32, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeFixed32(b []byte) (v uint32, n int) {
if len(b) < 4 {
return 0, errCodeTruncated
}
v = uint32(b[0])<<0 | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
return v, 4
}
// SizeFixed32 returns the encoded size of a fixed32; which is always 4.
func SizeFixed32() int {
return 4
}
// AppendFixed64 appends v to b as a little-endian uint64.
func AppendFixed64(b []byte, v uint64) []byte {
return append(b,
byte(v>>0),
byte(v>>8),
byte(v>>16),
byte(v>>24),
byte(v>>32),
byte(v>>40),
byte(v>>48),
byte(v>>56))
}
// ConsumeFixed64 parses b as a little-endian uint64, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeFixed64(b []byte) (v uint64, n int) {
if len(b) < 8 {
return 0, errCodeTruncated
}
v = uint64(b[0])<<0 | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
return v, 8
}
// SizeFixed64 returns the encoded size of a fixed64; which is always 8.
func SizeFixed64() int {
return 8
}
// AppendBytes appends v to b as a length-prefixed bytes value.
func AppendBytes(b []byte, v []byte) []byte {
return append(AppendVarint(b, uint64(len(v))), v...)
}
// ConsumeBytes parses b as a length-prefixed bytes value, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeBytes(b []byte) (v []byte, n int) {
m, n := ConsumeVarint(b)
if n < 0 {
return nil, n // forward error code
}
if m > uint64(len(b[n:])) {
return nil, errCodeTruncated
}
return b[n:][:m], n + int(m)
}
// SizeBytes returns the encoded size of a length-prefixed bytes value,
// given only the length.
func SizeBytes(n int) int {
return SizeVarint(uint64(n)) + n
}
// AppendString appends v to b as a length-prefixed bytes value.
func AppendString(b []byte, v string) []byte {
return append(AppendVarint(b, uint64(len(v))), v...)
}
// ConsumeString parses b as a length-prefixed bytes value, reporting its length.
// This returns a negative length upon an error (see ParseError).
func ConsumeString(b []byte) (v string, n int) {
bb, n := ConsumeBytes(b)
return string(bb), n
}
// AppendGroup appends v to b as group value, with a trailing end group marker.
// The value v must not contain the end marker.
func AppendGroup(b []byte, num Number, v []byte) []byte {
return AppendVarint(append(b, v...), EncodeTag(num, EndGroupType))
}
// ConsumeGroup parses b as a group value until the trailing end group marker,
// and verifies that the end marker matches the provided num. The value v
// does not contain the end marker, while the length does contain the end marker.
// This returns a negative length upon an error (see ParseError).
func ConsumeGroup(num Number, b []byte) (v []byte, n int) {
n = ConsumeFieldValue(num, StartGroupType, b)
if n < 0 {
return nil, n // forward error code
}
b = b[:n]
// Truncate off end group marker, but need to handle denormalized varints.
// Assuming end marker is never 0 (which is always the case since
// EndGroupType is non-zero), we can truncate all trailing bytes where the
// lower 7 bits are all zero (implying that the varint is denormalized).
for len(b) > 0 && b[len(b)-1]&0x7f == 0 {
b = b[:len(b)-1]
}
b = b[:len(b)-SizeTag(num)]
return b, n
}
// SizeGroup returns the encoded size of a group, given only the length.
func SizeGroup(num Number, n int) int {
return n + SizeTag(num)
}
// DecodeTag decodes the field Number and wire Type from its unified form.
// The Number is -1 if the decoded field number overflows int32.
// Other than overflow, this does not check for field number validity.
func DecodeTag(x uint64) (Number, Type) {
// NOTE: MessageSet allows for larger field numbers than normal.
if x>>3 > uint64(math.MaxInt32) {
return -1, 0
}
return Number(x >> 3), Type(x & 7)
}
// EncodeTag encodes the field Number and wire Type into its unified form.
func EncodeTag(num Number, typ Type) uint64 {
return uint64(num)<<3 | uint64(typ&7)
}
// DecodeZigZag decodes a zig-zag-encoded uint64 as an int64.
// Input: {…, 5, 3, 1, 0, 2, 4, 6, …}
// Output: {…, -3, -2, -1, 0, +1, +2, +3, …}
func DecodeZigZag(x uint64) int64 {
return int64(x>>1) ^ int64(x)<<63>>63
}
// EncodeZigZag encodes an int64 as a zig-zag-encoded uint64.
// Input: {…, -3, -2, -1, 0, +1, +2, +3, …}
// Output: {…, 5, 3, 1, 0, 2, 4, 6, …}
func EncodeZigZag(x int64) uint64 {
return uint64(x<<1) ^ uint64(x>>63)
}
// DecodeBool decodes a uint64 as a bool.
// Input: { 0, 1, 2, …}
// Output: {false, true, true, …}
func DecodeBool(x uint64) bool {
return x != 0
}
// EncodeBool encodes a bool as a uint64.
// Input: {false, true}
// Output: { 0, 1}
func EncodeBool(x bool) uint64 {
if x {
return 1
}
return 0
}

8
vendor/google.golang.org/protobuf/go.mod generated vendored Normal file
View File

@ -0,0 +1,8 @@
module google.golang.org/protobuf
go 1.9
require (
github.com/golang/protobuf v1.5.0
github.com/google/go-cmp v0.5.5
)

View File

@ -0,0 +1,318 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package descfmt provides functionality to format descriptors.
package descfmt
import (
"fmt"
"io"
"reflect"
"strconv"
"strings"
"google.golang.org/protobuf/internal/detrand"
"google.golang.org/protobuf/internal/pragma"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
type list interface {
Len() int
pragma.DoNotImplement
}
func FormatList(s fmt.State, r rune, vs list) {
io.WriteString(s, formatListOpt(vs, true, r == 'v' && (s.Flag('+') || s.Flag('#'))))
}
func formatListOpt(vs list, isRoot, allowMulti bool) string {
start, end := "[", "]"
if isRoot {
var name string
switch vs.(type) {
case pref.Names:
name = "Names"
case pref.FieldNumbers:
name = "FieldNumbers"
case pref.FieldRanges:
name = "FieldRanges"
case pref.EnumRanges:
name = "EnumRanges"
case pref.FileImports:
name = "FileImports"
case pref.Descriptor:
name = reflect.ValueOf(vs).MethodByName("Get").Type().Out(0).Name() + "s"
default:
name = reflect.ValueOf(vs).Elem().Type().Name()
}
start, end = name+"{", "}"
}
var ss []string
switch vs := vs.(type) {
case pref.Names:
for i := 0; i < vs.Len(); i++ {
ss = append(ss, fmt.Sprint(vs.Get(i)))
}
return start + joinStrings(ss, false) + end
case pref.FieldNumbers:
for i := 0; i < vs.Len(); i++ {
ss = append(ss, fmt.Sprint(vs.Get(i)))
}
return start + joinStrings(ss, false) + end
case pref.FieldRanges:
for i := 0; i < vs.Len(); i++ {
r := vs.Get(i)
if r[0]+1 == r[1] {
ss = append(ss, fmt.Sprintf("%d", r[0]))
} else {
ss = append(ss, fmt.Sprintf("%d:%d", r[0], r[1])) // enum ranges are end exclusive
}
}
return start + joinStrings(ss, false) + end
case pref.EnumRanges:
for i := 0; i < vs.Len(); i++ {
r := vs.Get(i)
if r[0] == r[1] {
ss = append(ss, fmt.Sprintf("%d", r[0]))
} else {
ss = append(ss, fmt.Sprintf("%d:%d", r[0], int64(r[1])+1)) // enum ranges are end inclusive
}
}
return start + joinStrings(ss, false) + end
case pref.FileImports:
for i := 0; i < vs.Len(); i++ {
var rs records
rs.Append(reflect.ValueOf(vs.Get(i)), "Path", "Package", "IsPublic", "IsWeak")
ss = append(ss, "{"+rs.Join()+"}")
}
return start + joinStrings(ss, allowMulti) + end
default:
_, isEnumValue := vs.(pref.EnumValueDescriptors)
for i := 0; i < vs.Len(); i++ {
m := reflect.ValueOf(vs).MethodByName("Get")
v := m.Call([]reflect.Value{reflect.ValueOf(i)})[0].Interface()
ss = append(ss, formatDescOpt(v.(pref.Descriptor), false, allowMulti && !isEnumValue))
}
return start + joinStrings(ss, allowMulti && isEnumValue) + end
}
}
// descriptorAccessors is a list of accessors to print for each descriptor.
//
// Do not print all accessors since some contain redundant information,
// while others are pointers that we do not want to follow since the descriptor
// is actually a cyclic graph.
//
// Using a list allows us to print the accessors in a sensible order.
var descriptorAccessors = map[reflect.Type][]string{
reflect.TypeOf((*pref.FileDescriptor)(nil)).Elem(): {"Path", "Package", "Imports", "Messages", "Enums", "Extensions", "Services"},
reflect.TypeOf((*pref.MessageDescriptor)(nil)).Elem(): {"IsMapEntry", "Fields", "Oneofs", "ReservedNames", "ReservedRanges", "RequiredNumbers", "ExtensionRanges", "Messages", "Enums", "Extensions"},
reflect.TypeOf((*pref.FieldDescriptor)(nil)).Elem(): {"Number", "Cardinality", "Kind", "HasJSONName", "JSONName", "HasPresence", "IsExtension", "IsPacked", "IsWeak", "IsList", "IsMap", "MapKey", "MapValue", "HasDefault", "Default", "ContainingOneof", "ContainingMessage", "Message", "Enum"},
reflect.TypeOf((*pref.OneofDescriptor)(nil)).Elem(): {"Fields"}, // not directly used; must keep in sync with formatDescOpt
reflect.TypeOf((*pref.EnumDescriptor)(nil)).Elem(): {"Values", "ReservedNames", "ReservedRanges"},
reflect.TypeOf((*pref.EnumValueDescriptor)(nil)).Elem(): {"Number"},
reflect.TypeOf((*pref.ServiceDescriptor)(nil)).Elem(): {"Methods"},
reflect.TypeOf((*pref.MethodDescriptor)(nil)).Elem(): {"Input", "Output", "IsStreamingClient", "IsStreamingServer"},
}
func FormatDesc(s fmt.State, r rune, t pref.Descriptor) {
io.WriteString(s, formatDescOpt(t, true, r == 'v' && (s.Flag('+') || s.Flag('#'))))
}
func formatDescOpt(t pref.Descriptor, isRoot, allowMulti bool) string {
rv := reflect.ValueOf(t)
rt := rv.MethodByName("ProtoType").Type().In(0)
start, end := "{", "}"
if isRoot {
start = rt.Name() + "{"
}
_, isFile := t.(pref.FileDescriptor)
rs := records{allowMulti: allowMulti}
if t.IsPlaceholder() {
if isFile {
rs.Append(rv, "Path", "Package", "IsPlaceholder")
} else {
rs.Append(rv, "FullName", "IsPlaceholder")
}
} else {
switch {
case isFile:
rs.Append(rv, "Syntax")
case isRoot:
rs.Append(rv, "Syntax", "FullName")
default:
rs.Append(rv, "Name")
}
switch t := t.(type) {
case pref.FieldDescriptor:
for _, s := range descriptorAccessors[rt] {
switch s {
case "MapKey":
if k := t.MapKey(); k != nil {
rs.recs = append(rs.recs, [2]string{"MapKey", k.Kind().String()})
}
case "MapValue":
if v := t.MapValue(); v != nil {
switch v.Kind() {
case pref.EnumKind:
rs.recs = append(rs.recs, [2]string{"MapValue", string(v.Enum().FullName())})
case pref.MessageKind, pref.GroupKind:
rs.recs = append(rs.recs, [2]string{"MapValue", string(v.Message().FullName())})
default:
rs.recs = append(rs.recs, [2]string{"MapValue", v.Kind().String()})
}
}
case "ContainingOneof":
if od := t.ContainingOneof(); od != nil {
rs.recs = append(rs.recs, [2]string{"Oneof", string(od.Name())})
}
case "ContainingMessage":
if t.IsExtension() {
rs.recs = append(rs.recs, [2]string{"Extendee", string(t.ContainingMessage().FullName())})
}
case "Message":
if !t.IsMap() {
rs.Append(rv, s)
}
default:
rs.Append(rv, s)
}
}
case pref.OneofDescriptor:
var ss []string
fs := t.Fields()
for i := 0; i < fs.Len(); i++ {
ss = append(ss, string(fs.Get(i).Name()))
}
if len(ss) > 0 {
rs.recs = append(rs.recs, [2]string{"Fields", "[" + joinStrings(ss, false) + "]"})
}
default:
rs.Append(rv, descriptorAccessors[rt]...)
}
if rv.MethodByName("GoType").IsValid() {
rs.Append(rv, "GoType")
}
}
return start + rs.Join() + end
}
type records struct {
recs [][2]string
allowMulti bool
}
func (rs *records) Append(v reflect.Value, accessors ...string) {
for _, a := range accessors {
var rv reflect.Value
if m := v.MethodByName(a); m.IsValid() {
rv = m.Call(nil)[0]
}
if v.Kind() == reflect.Struct && !rv.IsValid() {
rv = v.FieldByName(a)
}
if !rv.IsValid() {
panic(fmt.Sprintf("unknown accessor: %v.%s", v.Type(), a))
}
if _, ok := rv.Interface().(pref.Value); ok {
rv = rv.MethodByName("Interface").Call(nil)[0]
if !rv.IsNil() {
rv = rv.Elem()
}
}
// Ignore zero values.
var isZero bool
switch rv.Kind() {
case reflect.Interface, reflect.Slice:
isZero = rv.IsNil()
case reflect.Bool:
isZero = rv.Bool() == false
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
isZero = rv.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
isZero = rv.Uint() == 0
case reflect.String:
isZero = rv.String() == ""
}
if n, ok := rv.Interface().(list); ok {
isZero = n.Len() == 0
}
if isZero {
continue
}
// Format the value.
var s string
v := rv.Interface()
switch v := v.(type) {
case list:
s = formatListOpt(v, false, rs.allowMulti)
case pref.FieldDescriptor, pref.OneofDescriptor, pref.EnumValueDescriptor, pref.MethodDescriptor:
s = string(v.(pref.Descriptor).Name())
case pref.Descriptor:
s = string(v.FullName())
case string:
s = strconv.Quote(v)
case []byte:
s = fmt.Sprintf("%q", v)
default:
s = fmt.Sprint(v)
}
rs.recs = append(rs.recs, [2]string{a, s})
}
}
func (rs *records) Join() string {
var ss []string
// In single line mode, simply join all records with commas.
if !rs.allowMulti {
for _, r := range rs.recs {
ss = append(ss, r[0]+formatColon(0)+r[1])
}
return joinStrings(ss, false)
}
// In allowMulti line mode, align single line records for more readable output.
var maxLen int
flush := func(i int) {
for _, r := range rs.recs[len(ss):i] {
ss = append(ss, r[0]+formatColon(maxLen-len(r[0]))+r[1])
}
maxLen = 0
}
for i, r := range rs.recs {
if isMulti := strings.Contains(r[1], "\n"); isMulti {
flush(i)
ss = append(ss, r[0]+formatColon(0)+strings.Join(strings.Split(r[1], "\n"), "\n\t"))
} else if maxLen < len(r[0]) {
maxLen = len(r[0])
}
}
flush(len(rs.recs))
return joinStrings(ss, true)
}
func formatColon(padding int) string {
// Deliberately introduce instability into the debug output to
// discourage users from performing string comparisons.
// This provides us flexibility to change the output in the future.
if detrand.Bool() {
return ":" + strings.Repeat(" ", 1+padding) // use non-breaking spaces (U+00a0)
} else {
return ":" + strings.Repeat(" ", 1+padding) // use regular spaces (U+0020)
}
}
func joinStrings(ss []string, isMulti bool) string {
if len(ss) == 0 {
return ""
}
if isMulti {
return "\n\t" + strings.Join(ss, "\n\t") + "\n"
}
return strings.Join(ss, ", ")
}

View File

@ -0,0 +1,29 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package descopts contains the nil pointers to concrete descriptor options.
//
// This package exists as a form of reverse dependency injection so that certain
// packages (e.g., internal/filedesc and internal/filetype can avoid a direct
// dependency on the descriptor proto package).
package descopts
import pref "google.golang.org/protobuf/reflect/protoreflect"
// These variables are set by the init function in descriptor.pb.go via logic
// in internal/filetype. In other words, so long as the descriptor proto package
// is linked in, these variables will be populated.
//
// Each variable is populated with a nil pointer to the options struct.
var (
File pref.ProtoMessage
Enum pref.ProtoMessage
EnumValue pref.ProtoMessage
Message pref.ProtoMessage
Field pref.ProtoMessage
Oneof pref.ProtoMessage
ExtensionRange pref.ProtoMessage
Service pref.ProtoMessage
Method pref.ProtoMessage
)

View File

@ -0,0 +1,69 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package detrand provides deterministically random functionality.
//
// The pseudo-randomness of these functions is seeded by the program binary
// itself and guarantees that the output does not change within a program,
// while ensuring that the output is unstable across different builds.
package detrand
import (
"encoding/binary"
"hash/fnv"
"os"
)
// Disable disables detrand such that all functions returns the zero value.
// This function is not concurrent-safe and must be called during program init.
func Disable() {
randSeed = 0
}
// Bool returns a deterministically random boolean.
func Bool() bool {
return randSeed%2 == 1
}
// Intn returns a deterministically random integer between 0 and n-1, inclusive.
func Intn(n int) int {
if n <= 0 {
panic("must be positive")
}
return int(randSeed % uint64(n))
}
// randSeed is a best-effort at an approximate hash of the Go binary.
var randSeed = binaryHash()
func binaryHash() uint64 {
// Open the Go binary.
s, err := os.Executable()
if err != nil {
return 0
}
f, err := os.Open(s)
if err != nil {
return 0
}
defer f.Close()
// Hash the size and several samples of the Go binary.
const numSamples = 8
var buf [64]byte
h := fnv.New64()
fi, err := f.Stat()
if err != nil {
return 0
}
binary.LittleEndian.PutUint64(buf[:8], uint64(fi.Size()))
h.Write(buf[:8])
for i := int64(0); i < numSamples; i++ {
if _, err := f.ReadAt(buf[:], i*fi.Size()/numSamples); err != nil {
return 0
}
h.Write(buf[:])
}
return h.Sum64()
}

View File

@ -0,0 +1,213 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package defval marshals and unmarshals textual forms of default values.
//
// This package handles both the form historically used in Go struct field tags
// and also the form used by google.protobuf.FieldDescriptorProto.default_value
// since they differ in superficial ways.
package defval
import (
"fmt"
"math"
"strconv"
ptext "google.golang.org/protobuf/internal/encoding/text"
errors "google.golang.org/protobuf/internal/errors"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
// Format is the serialization format used to represent the default value.
type Format int
const (
_ Format = iota
// Descriptor uses the serialization format that protoc uses with the
// google.protobuf.FieldDescriptorProto.default_value field.
Descriptor
// GoTag uses the historical serialization format in Go struct field tags.
GoTag
)
// Unmarshal deserializes the default string s according to the given kind k.
// When k is an enum, a list of enum value descriptors must be provided.
func Unmarshal(s string, k pref.Kind, evs pref.EnumValueDescriptors, f Format) (pref.Value, pref.EnumValueDescriptor, error) {
switch k {
case pref.BoolKind:
if f == GoTag {
switch s {
case "1":
return pref.ValueOfBool(true), nil, nil
case "0":
return pref.ValueOfBool(false), nil, nil
}
} else {
switch s {
case "true":
return pref.ValueOfBool(true), nil, nil
case "false":
return pref.ValueOfBool(false), nil, nil
}
}
case pref.EnumKind:
if f == GoTag {
// Go tags use the numeric form of the enum value.
if n, err := strconv.ParseInt(s, 10, 32); err == nil {
if ev := evs.ByNumber(pref.EnumNumber(n)); ev != nil {
return pref.ValueOfEnum(ev.Number()), ev, nil
}
}
} else {
// Descriptor default_value use the enum identifier.
ev := evs.ByName(pref.Name(s))
if ev != nil {
return pref.ValueOfEnum(ev.Number()), ev, nil
}
}
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind:
if v, err := strconv.ParseInt(s, 10, 32); err == nil {
return pref.ValueOfInt32(int32(v)), nil, nil
}
case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
if v, err := strconv.ParseInt(s, 10, 64); err == nil {
return pref.ValueOfInt64(int64(v)), nil, nil
}
case pref.Uint32Kind, pref.Fixed32Kind:
if v, err := strconv.ParseUint(s, 10, 32); err == nil {
return pref.ValueOfUint32(uint32(v)), nil, nil
}
case pref.Uint64Kind, pref.Fixed64Kind:
if v, err := strconv.ParseUint(s, 10, 64); err == nil {
return pref.ValueOfUint64(uint64(v)), nil, nil
}
case pref.FloatKind, pref.DoubleKind:
var v float64
var err error
switch s {
case "-inf":
v = math.Inf(-1)
case "inf":
v = math.Inf(+1)
case "nan":
v = math.NaN()
default:
v, err = strconv.ParseFloat(s, 64)
}
if err == nil {
if k == pref.FloatKind {
return pref.ValueOfFloat32(float32(v)), nil, nil
} else {
return pref.ValueOfFloat64(float64(v)), nil, nil
}
}
case pref.StringKind:
// String values are already unescaped and can be used as is.
return pref.ValueOfString(s), nil, nil
case pref.BytesKind:
if b, ok := unmarshalBytes(s); ok {
return pref.ValueOfBytes(b), nil, nil
}
}
return pref.Value{}, nil, errors.New("could not parse value for %v: %q", k, s)
}
// Marshal serializes v as the default string according to the given kind k.
// When specifying the Descriptor format for an enum kind, the associated
// enum value descriptor must be provided.
func Marshal(v pref.Value, ev pref.EnumValueDescriptor, k pref.Kind, f Format) (string, error) {
switch k {
case pref.BoolKind:
if f == GoTag {
if v.Bool() {
return "1", nil
} else {
return "0", nil
}
} else {
if v.Bool() {
return "true", nil
} else {
return "false", nil
}
}
case pref.EnumKind:
if f == GoTag {
return strconv.FormatInt(int64(v.Enum()), 10), nil
} else {
return string(ev.Name()), nil
}
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind, pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
return strconv.FormatInt(v.Int(), 10), nil
case pref.Uint32Kind, pref.Fixed32Kind, pref.Uint64Kind, pref.Fixed64Kind:
return strconv.FormatUint(v.Uint(), 10), nil
case pref.FloatKind, pref.DoubleKind:
f := v.Float()
switch {
case math.IsInf(f, -1):
return "-inf", nil
case math.IsInf(f, +1):
return "inf", nil
case math.IsNaN(f):
return "nan", nil
default:
if k == pref.FloatKind {
return strconv.FormatFloat(f, 'g', -1, 32), nil
} else {
return strconv.FormatFloat(f, 'g', -1, 64), nil
}
}
case pref.StringKind:
// String values are serialized as is without any escaping.
return v.String(), nil
case pref.BytesKind:
if s, ok := marshalBytes(v.Bytes()); ok {
return s, nil
}
}
return "", errors.New("could not format value for %v: %v", k, v)
}
// unmarshalBytes deserializes bytes by applying C unescaping.
func unmarshalBytes(s string) ([]byte, bool) {
// Bytes values use the same escaping as the text format,
// however they lack the surrounding double quotes.
v, err := ptext.UnmarshalString(`"` + s + `"`)
if err != nil {
return nil, false
}
return []byte(v), true
}
// marshalBytes serializes bytes by using C escaping.
// To match the exact output of protoc, this is identical to the
// CEscape function in strutil.cc of the protoc source code.
func marshalBytes(b []byte) (string, bool) {
var s []byte
for _, c := range b {
switch c {
case '\n':
s = append(s, `\n`...)
case '\r':
s = append(s, `\r`...)
case '\t':
s = append(s, `\t`...)
case '"':
s = append(s, `\"`...)
case '\'':
s = append(s, `\'`...)
case '\\':
s = append(s, `\\`...)
default:
if printableASCII := c >= 0x20 && c <= 0x7e; printableASCII {
s = append(s, c)
} else {
s = append(s, fmt.Sprintf(`\%03o`, c)...)
}
}
}
return string(s), true
}

View File

@ -0,0 +1,241 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package messageset encodes and decodes the obsolete MessageSet wire format.
package messageset
import (
"math"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/errors"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
// The MessageSet wire format is equivalent to a message defined as follows,
// where each Item defines an extension field with a field number of 'type_id'
// and content of 'message'. MessageSet extensions must be non-repeated message
// fields.
//
// message MessageSet {
// repeated group Item = 1 {
// required int32 type_id = 2;
// required string message = 3;
// }
// }
const (
FieldItem = protowire.Number(1)
FieldTypeID = protowire.Number(2)
FieldMessage = protowire.Number(3)
)
// ExtensionName is the field name for extensions of MessageSet.
//
// A valid MessageSet extension must be of the form:
// message MyMessage {
// extend proto2.bridge.MessageSet {
// optional MyMessage message_set_extension = 1234;
// }
// ...
// }
const ExtensionName = "message_set_extension"
// IsMessageSet returns whether the message uses the MessageSet wire format.
func IsMessageSet(md pref.MessageDescriptor) bool {
xmd, ok := md.(interface{ IsMessageSet() bool })
return ok && xmd.IsMessageSet()
}
// IsMessageSetExtension reports this field properly extends a MessageSet.
func IsMessageSetExtension(fd pref.FieldDescriptor) bool {
switch {
case fd.Name() != ExtensionName:
return false
case !IsMessageSet(fd.ContainingMessage()):
return false
case fd.FullName().Parent() != fd.Message().FullName():
return false
}
return true
}
// SizeField returns the size of a MessageSet item field containing an extension
// with the given field number, not counting the contents of the message subfield.
func SizeField(num protowire.Number) int {
return 2*protowire.SizeTag(FieldItem) + protowire.SizeTag(FieldTypeID) + protowire.SizeVarint(uint64(num))
}
// Unmarshal parses a MessageSet.
//
// It calls fn with the type ID and value of each item in the MessageSet.
// Unknown fields are discarded.
//
// If wantLen is true, the item values include the varint length prefix.
// This is ugly, but simplifies the fast-path decoder in internal/impl.
func Unmarshal(b []byte, wantLen bool, fn func(typeID protowire.Number, value []byte) error) error {
for len(b) > 0 {
num, wtyp, n := protowire.ConsumeTag(b)
if n < 0 {
return protowire.ParseError(n)
}
b = b[n:]
if num != FieldItem || wtyp != protowire.StartGroupType {
n := protowire.ConsumeFieldValue(num, wtyp, b)
if n < 0 {
return protowire.ParseError(n)
}
b = b[n:]
continue
}
typeID, value, n, err := ConsumeFieldValue(b, wantLen)
if err != nil {
return err
}
b = b[n:]
if typeID == 0 {
continue
}
if err := fn(typeID, value); err != nil {
return err
}
}
return nil
}
// ConsumeFieldValue parses b as a MessageSet item field value until and including
// the trailing end group marker. It assumes the start group tag has already been parsed.
// It returns the contents of the type_id and message subfields and the total
// item length.
//
// If wantLen is true, the returned message value includes the length prefix.
func ConsumeFieldValue(b []byte, wantLen bool) (typeid protowire.Number, message []byte, n int, err error) {
ilen := len(b)
for {
num, wtyp, n := protowire.ConsumeTag(b)
if n < 0 {
return 0, nil, 0, protowire.ParseError(n)
}
b = b[n:]
switch {
case num == FieldItem && wtyp == protowire.EndGroupType:
if wantLen && len(message) == 0 {
// The message field was missing, which should never happen.
// Be prepared for this case anyway.
message = protowire.AppendVarint(message, 0)
}
return typeid, message, ilen - len(b), nil
case num == FieldTypeID && wtyp == protowire.VarintType:
v, n := protowire.ConsumeVarint(b)
if n < 0 {
return 0, nil, 0, protowire.ParseError(n)
}
b = b[n:]
if v < 1 || v > math.MaxInt32 {
return 0, nil, 0, errors.New("invalid type_id in message set")
}
typeid = protowire.Number(v)
case num == FieldMessage && wtyp == protowire.BytesType:
m, n := protowire.ConsumeBytes(b)
if n < 0 {
return 0, nil, 0, protowire.ParseError(n)
}
if message == nil {
if wantLen {
message = b[:n:n]
} else {
message = m[:len(m):len(m)]
}
} else {
// This case should never happen in practice, but handle it for
// correctness: The MessageSet item contains multiple message
// fields, which need to be merged.
//
// In the case where we're returning the length, this becomes
// quite inefficient since we need to strip the length off
// the existing data and reconstruct it with the combined length.
if wantLen {
_, nn := protowire.ConsumeVarint(message)
m0 := message[nn:]
message = nil
message = protowire.AppendVarint(message, uint64(len(m0)+len(m)))
message = append(message, m0...)
message = append(message, m...)
} else {
message = append(message, m...)
}
}
b = b[n:]
default:
// We have no place to put it, so we just ignore unknown fields.
n := protowire.ConsumeFieldValue(num, wtyp, b)
if n < 0 {
return 0, nil, 0, protowire.ParseError(n)
}
b = b[n:]
}
}
}
// AppendFieldStart appends the start of a MessageSet item field containing
// an extension with the given number. The caller must add the message
// subfield (including the tag).
func AppendFieldStart(b []byte, num protowire.Number) []byte {
b = protowire.AppendTag(b, FieldItem, protowire.StartGroupType)
b = protowire.AppendTag(b, FieldTypeID, protowire.VarintType)
b = protowire.AppendVarint(b, uint64(num))
return b
}
// AppendFieldEnd appends the trailing end group marker for a MessageSet item field.
func AppendFieldEnd(b []byte) []byte {
return protowire.AppendTag(b, FieldItem, protowire.EndGroupType)
}
// SizeUnknown returns the size of an unknown fields section in MessageSet format.
//
// See AppendUnknown.
func SizeUnknown(unknown []byte) (size int) {
for len(unknown) > 0 {
num, typ, n := protowire.ConsumeTag(unknown)
if n < 0 || typ != protowire.BytesType {
return 0
}
unknown = unknown[n:]
_, n = protowire.ConsumeBytes(unknown)
if n < 0 {
return 0
}
unknown = unknown[n:]
size += SizeField(num) + protowire.SizeTag(FieldMessage) + n
}
return size
}
// AppendUnknown appends unknown fields to b in MessageSet format.
//
// For historic reasons, unresolved items in a MessageSet are stored in a
// message's unknown fields section in non-MessageSet format. That is, an
// unknown item with typeID T and value V appears in the unknown fields as
// a field with number T and value V.
//
// This function converts the unknown fields back into MessageSet form.
func AppendUnknown(b, unknown []byte) ([]byte, error) {
for len(unknown) > 0 {
num, typ, n := protowire.ConsumeTag(unknown)
if n < 0 || typ != protowire.BytesType {
return nil, errors.New("invalid data in message set unknown fields")
}
unknown = unknown[n:]
_, n = protowire.ConsumeBytes(unknown)
if n < 0 {
return nil, errors.New("invalid data in message set unknown fields")
}
b = AppendFieldStart(b, num)
b = protowire.AppendTag(b, FieldMessage, protowire.BytesType)
b = append(b, unknown[:n]...)
b = AppendFieldEnd(b)
unknown = unknown[n:]
}
return b, nil
}

View File

@ -0,0 +1,207 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package tag marshals and unmarshals the legacy struct tags as generated
// by historical versions of protoc-gen-go.
package tag
import (
"reflect"
"strconv"
"strings"
defval "google.golang.org/protobuf/internal/encoding/defval"
fdesc "google.golang.org/protobuf/internal/filedesc"
"google.golang.org/protobuf/internal/strs"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
var byteType = reflect.TypeOf(byte(0))
// Unmarshal decodes the tag into a prototype.Field.
//
// The goType is needed to determine the original protoreflect.Kind since the
// tag does not record sufficient information to determine that.
// The type is the underlying field type (e.g., a repeated field may be
// represented by []T, but the Go type passed in is just T).
// A list of enum value descriptors must be provided for enum fields.
// This does not populate the Enum or Message (except for weak message).
//
// This function is a best effort attempt; parsing errors are ignored.
func Unmarshal(tag string, goType reflect.Type, evs pref.EnumValueDescriptors) pref.FieldDescriptor {
f := new(fdesc.Field)
f.L0.ParentFile = fdesc.SurrogateProto2
for len(tag) > 0 {
i := strings.IndexByte(tag, ',')
if i < 0 {
i = len(tag)
}
switch s := tag[:i]; {
case strings.HasPrefix(s, "name="):
f.L0.FullName = pref.FullName(s[len("name="):])
case strings.Trim(s, "0123456789") == "":
n, _ := strconv.ParseUint(s, 10, 32)
f.L1.Number = pref.FieldNumber(n)
case s == "opt":
f.L1.Cardinality = pref.Optional
case s == "req":
f.L1.Cardinality = pref.Required
case s == "rep":
f.L1.Cardinality = pref.Repeated
case s == "varint":
switch goType.Kind() {
case reflect.Bool:
f.L1.Kind = pref.BoolKind
case reflect.Int32:
f.L1.Kind = pref.Int32Kind
case reflect.Int64:
f.L1.Kind = pref.Int64Kind
case reflect.Uint32:
f.L1.Kind = pref.Uint32Kind
case reflect.Uint64:
f.L1.Kind = pref.Uint64Kind
}
case s == "zigzag32":
if goType.Kind() == reflect.Int32 {
f.L1.Kind = pref.Sint32Kind
}
case s == "zigzag64":
if goType.Kind() == reflect.Int64 {
f.L1.Kind = pref.Sint64Kind
}
case s == "fixed32":
switch goType.Kind() {
case reflect.Int32:
f.L1.Kind = pref.Sfixed32Kind
case reflect.Uint32:
f.L1.Kind = pref.Fixed32Kind
case reflect.Float32:
f.L1.Kind = pref.FloatKind
}
case s == "fixed64":
switch goType.Kind() {
case reflect.Int64:
f.L1.Kind = pref.Sfixed64Kind
case reflect.Uint64:
f.L1.Kind = pref.Fixed64Kind
case reflect.Float64:
f.L1.Kind = pref.DoubleKind
}
case s == "bytes":
switch {
case goType.Kind() == reflect.String:
f.L1.Kind = pref.StringKind
case goType.Kind() == reflect.Slice && goType.Elem() == byteType:
f.L1.Kind = pref.BytesKind
default:
f.L1.Kind = pref.MessageKind
}
case s == "group":
f.L1.Kind = pref.GroupKind
case strings.HasPrefix(s, "enum="):
f.L1.Kind = pref.EnumKind
case strings.HasPrefix(s, "json="):
jsonName := s[len("json="):]
if jsonName != strs.JSONCamelCase(string(f.L0.FullName.Name())) {
f.L1.StringName.InitJSON(jsonName)
}
case s == "packed":
f.L1.HasPacked = true
f.L1.IsPacked = true
case strings.HasPrefix(s, "weak="):
f.L1.IsWeak = true
f.L1.Message = fdesc.PlaceholderMessage(pref.FullName(s[len("weak="):]))
case strings.HasPrefix(s, "def="):
// The default tag is special in that everything afterwards is the
// default regardless of the presence of commas.
s, i = tag[len("def="):], len(tag)
v, ev, _ := defval.Unmarshal(s, f.L1.Kind, evs, defval.GoTag)
f.L1.Default = fdesc.DefaultValue(v, ev)
case s == "proto3":
f.L0.ParentFile = fdesc.SurrogateProto3
}
tag = strings.TrimPrefix(tag[i:], ",")
}
// The generator uses the group message name instead of the field name.
// We obtain the real field name by lowercasing the group name.
if f.L1.Kind == pref.GroupKind {
f.L0.FullName = pref.FullName(strings.ToLower(string(f.L0.FullName)))
}
return f
}
// Marshal encodes the protoreflect.FieldDescriptor as a tag.
//
// The enumName must be provided if the kind is an enum.
// Historically, the formulation of the enum "name" was the proto package
// dot-concatenated with the generated Go identifier for the enum type.
// Depending on the context on how Marshal is called, there are different ways
// through which that information is determined. As such it is the caller's
// responsibility to provide a function to obtain that information.
func Marshal(fd pref.FieldDescriptor, enumName string) string {
var tag []string
switch fd.Kind() {
case pref.BoolKind, pref.EnumKind, pref.Int32Kind, pref.Uint32Kind, pref.Int64Kind, pref.Uint64Kind:
tag = append(tag, "varint")
case pref.Sint32Kind:
tag = append(tag, "zigzag32")
case pref.Sint64Kind:
tag = append(tag, "zigzag64")
case pref.Sfixed32Kind, pref.Fixed32Kind, pref.FloatKind:
tag = append(tag, "fixed32")
case pref.Sfixed64Kind, pref.Fixed64Kind, pref.DoubleKind:
tag = append(tag, "fixed64")
case pref.StringKind, pref.BytesKind, pref.MessageKind:
tag = append(tag, "bytes")
case pref.GroupKind:
tag = append(tag, "group")
}
tag = append(tag, strconv.Itoa(int(fd.Number())))
switch fd.Cardinality() {
case pref.Optional:
tag = append(tag, "opt")
case pref.Required:
tag = append(tag, "req")
case pref.Repeated:
tag = append(tag, "rep")
}
if fd.IsPacked() {
tag = append(tag, "packed")
}
name := string(fd.Name())
if fd.Kind() == pref.GroupKind {
// The name of the FieldDescriptor for a group field is
// lowercased. To find the original capitalization, we
// look in the field's MessageType.
name = string(fd.Message().Name())
}
tag = append(tag, "name="+name)
if jsonName := fd.JSONName(); jsonName != "" && jsonName != name && !fd.IsExtension() {
// NOTE: The jsonName != name condition is suspect, but it preserve
// the exact same semantics from the previous generator.
tag = append(tag, "json="+jsonName)
}
if fd.IsWeak() {
tag = append(tag, "weak="+string(fd.Message().FullName()))
}
// The previous implementation does not tag extension fields as proto3,
// even when the field is defined in a proto3 file. Match that behavior
// for consistency.
if fd.Syntax() == pref.Proto3 && !fd.IsExtension() {
tag = append(tag, "proto3")
}
if fd.Kind() == pref.EnumKind && enumName != "" {
tag = append(tag, "enum="+enumName)
}
if fd.ContainingOneof() != nil {
tag = append(tag, "oneof")
}
// This must appear last in the tag, since commas in strings aren't escaped.
if fd.HasDefault() {
def, _ := defval.Marshal(fd.Default(), fd.DefaultEnumValue(), fd.Kind(), defval.GoTag)
tag = append(tag, "def="+def)
}
return strings.Join(tag, ",")
}

View File

@ -0,0 +1,665 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package text
import (
"bytes"
"fmt"
"io"
"regexp"
"strconv"
"unicode/utf8"
"google.golang.org/protobuf/internal/errors"
)
// Decoder is a token-based textproto decoder.
type Decoder struct {
// lastCall is last method called, either readCall or peekCall.
// Initial value is readCall.
lastCall call
// lastToken contains the last read token.
lastToken Token
// lastErr contains the last read error.
lastErr error
// openStack is a stack containing the byte characters for MessageOpen and
// ListOpen kinds. The top of stack represents the message or the list that
// the current token is nested in. An empty stack means the current token is
// at the top level message. The characters '{' and '<' both represent the
// MessageOpen kind.
openStack []byte
// orig is used in reporting line and column.
orig []byte
// in contains the unconsumed input.
in []byte
}
// NewDecoder returns a Decoder to read the given []byte.
func NewDecoder(b []byte) *Decoder {
return &Decoder{orig: b, in: b}
}
// ErrUnexpectedEOF means that EOF was encountered in the middle of the input.
var ErrUnexpectedEOF = errors.New("%v", io.ErrUnexpectedEOF)
// call specifies which Decoder method was invoked.
type call uint8
const (
readCall call = iota
peekCall
)
// Peek looks ahead and returns the next token and error without advancing a read.
func (d *Decoder) Peek() (Token, error) {
defer func() { d.lastCall = peekCall }()
if d.lastCall == readCall {
d.lastToken, d.lastErr = d.Read()
}
return d.lastToken, d.lastErr
}
// Read returns the next token.
// It will return an error if there is no valid token.
func (d *Decoder) Read() (Token, error) {
defer func() { d.lastCall = readCall }()
if d.lastCall == peekCall {
return d.lastToken, d.lastErr
}
tok, err := d.parseNext(d.lastToken.kind)
if err != nil {
return Token{}, err
}
switch tok.kind {
case comma, semicolon:
tok, err = d.parseNext(tok.kind)
if err != nil {
return Token{}, err
}
}
d.lastToken = tok
return tok, nil
}
const (
mismatchedFmt = "mismatched close character %q"
unexpectedFmt = "unexpected character %q"
)
// parseNext parses the next Token based on given last kind.
func (d *Decoder) parseNext(lastKind Kind) (Token, error) {
// Trim leading spaces.
d.consume(0)
isEOF := false
if len(d.in) == 0 {
isEOF = true
}
switch lastKind {
case EOF:
return d.consumeToken(EOF, 0, 0), nil
case bof:
// Start of top level message. Next token can be EOF or Name.
if isEOF {
return d.consumeToken(EOF, 0, 0), nil
}
return d.parseFieldName()
case Name:
// Next token can be MessageOpen, ListOpen or Scalar.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case '{', '<':
d.pushOpenStack(ch)
return d.consumeToken(MessageOpen, 1, 0), nil
case '[':
d.pushOpenStack(ch)
return d.consumeToken(ListOpen, 1, 0), nil
default:
return d.parseScalar()
}
case Scalar:
openKind, closeCh := d.currentOpenKind()
switch openKind {
case bof:
// Top level message.
// Next token can be EOF, comma, semicolon or Name.
if isEOF {
return d.consumeToken(EOF, 0, 0), nil
}
switch d.in[0] {
case ',':
return d.consumeToken(comma, 1, 0), nil
case ';':
return d.consumeToken(semicolon, 1, 0), nil
default:
return d.parseFieldName()
}
case MessageOpen:
// Next token can be MessageClose, comma, semicolon or Name.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case closeCh:
d.popOpenStack()
return d.consumeToken(MessageClose, 1, 0), nil
case otherCloseChar[closeCh]:
return Token{}, d.newSyntaxError(mismatchedFmt, ch)
case ',':
return d.consumeToken(comma, 1, 0), nil
case ';':
return d.consumeToken(semicolon, 1, 0), nil
default:
return d.parseFieldName()
}
case ListOpen:
// Next token can be ListClose or comma.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case ']':
d.popOpenStack()
return d.consumeToken(ListClose, 1, 0), nil
case ',':
return d.consumeToken(comma, 1, 0), nil
default:
return Token{}, d.newSyntaxError(unexpectedFmt, ch)
}
}
case MessageOpen:
// Next token can be MessageClose or Name.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
_, closeCh := d.currentOpenKind()
switch ch := d.in[0]; ch {
case closeCh:
d.popOpenStack()
return d.consumeToken(MessageClose, 1, 0), nil
case otherCloseChar[closeCh]:
return Token{}, d.newSyntaxError(mismatchedFmt, ch)
default:
return d.parseFieldName()
}
case MessageClose:
openKind, closeCh := d.currentOpenKind()
switch openKind {
case bof:
// Top level message.
// Next token can be EOF, comma, semicolon or Name.
if isEOF {
return d.consumeToken(EOF, 0, 0), nil
}
switch ch := d.in[0]; ch {
case ',':
return d.consumeToken(comma, 1, 0), nil
case ';':
return d.consumeToken(semicolon, 1, 0), nil
default:
return d.parseFieldName()
}
case MessageOpen:
// Next token can be MessageClose, comma, semicolon or Name.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case closeCh:
d.popOpenStack()
return d.consumeToken(MessageClose, 1, 0), nil
case otherCloseChar[closeCh]:
return Token{}, d.newSyntaxError(mismatchedFmt, ch)
case ',':
return d.consumeToken(comma, 1, 0), nil
case ';':
return d.consumeToken(semicolon, 1, 0), nil
default:
return d.parseFieldName()
}
case ListOpen:
// Next token can be ListClose or comma
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case closeCh:
d.popOpenStack()
return d.consumeToken(ListClose, 1, 0), nil
case ',':
return d.consumeToken(comma, 1, 0), nil
default:
return Token{}, d.newSyntaxError(unexpectedFmt, ch)
}
}
case ListOpen:
// Next token can be ListClose, MessageStart or Scalar.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case ']':
d.popOpenStack()
return d.consumeToken(ListClose, 1, 0), nil
case '{', '<':
d.pushOpenStack(ch)
return d.consumeToken(MessageOpen, 1, 0), nil
default:
return d.parseScalar()
}
case ListClose:
openKind, closeCh := d.currentOpenKind()
switch openKind {
case bof:
// Top level message.
// Next token can be EOF, comma, semicolon or Name.
if isEOF {
return d.consumeToken(EOF, 0, 0), nil
}
switch ch := d.in[0]; ch {
case ',':
return d.consumeToken(comma, 1, 0), nil
case ';':
return d.consumeToken(semicolon, 1, 0), nil
default:
return d.parseFieldName()
}
case MessageOpen:
// Next token can be MessageClose, comma, semicolon or Name.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case closeCh:
d.popOpenStack()
return d.consumeToken(MessageClose, 1, 0), nil
case otherCloseChar[closeCh]:
return Token{}, d.newSyntaxError(mismatchedFmt, ch)
case ',':
return d.consumeToken(comma, 1, 0), nil
case ';':
return d.consumeToken(semicolon, 1, 0), nil
default:
return d.parseFieldName()
}
default:
// It is not possible to have this case. Let it panic below.
}
case comma, semicolon:
openKind, closeCh := d.currentOpenKind()
switch openKind {
case bof:
// Top level message. Next token can be EOF or Name.
if isEOF {
return d.consumeToken(EOF, 0, 0), nil
}
return d.parseFieldName()
case MessageOpen:
// Next token can be MessageClose or Name.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case closeCh:
d.popOpenStack()
return d.consumeToken(MessageClose, 1, 0), nil
case otherCloseChar[closeCh]:
return Token{}, d.newSyntaxError(mismatchedFmt, ch)
default:
return d.parseFieldName()
}
case ListOpen:
if lastKind == semicolon {
// It is not be possible to have this case as logic here
// should not have produced a semicolon Token when inside a
// list. Let it panic below.
break
}
// Next token can be MessageOpen or Scalar.
if isEOF {
return Token{}, ErrUnexpectedEOF
}
switch ch := d.in[0]; ch {
case '{', '<':
d.pushOpenStack(ch)
return d.consumeToken(MessageOpen, 1, 0), nil
default:
return d.parseScalar()
}
}
}
line, column := d.Position(len(d.orig) - len(d.in))
panic(fmt.Sprintf("Decoder.parseNext: bug at handling line %d:%d with lastKind=%v", line, column, lastKind))
}
var otherCloseChar = map[byte]byte{
'}': '>',
'>': '}',
}
// currentOpenKind indicates whether current position is inside a message, list
// or top-level message by returning MessageOpen, ListOpen or bof respectively.
// If the returned kind is either a MessageOpen or ListOpen, it also returns the
// corresponding closing character.
func (d *Decoder) currentOpenKind() (Kind, byte) {
if len(d.openStack) == 0 {
return bof, 0
}
openCh := d.openStack[len(d.openStack)-1]
switch openCh {
case '{':
return MessageOpen, '}'
case '<':
return MessageOpen, '>'
case '[':
return ListOpen, ']'
}
panic(fmt.Sprintf("Decoder: openStack contains invalid byte %s", string(openCh)))
}
func (d *Decoder) pushOpenStack(ch byte) {
d.openStack = append(d.openStack, ch)
}
func (d *Decoder) popOpenStack() {
d.openStack = d.openStack[:len(d.openStack)-1]
}
// parseFieldName parses field name and separator.
func (d *Decoder) parseFieldName() (tok Token, err error) {
defer func() {
if err == nil && d.tryConsumeChar(':') {
tok.attrs |= hasSeparator
}
}()
// Extension or Any type URL.
if d.in[0] == '[' {
return d.parseTypeName()
}
// Identifier.
if size := parseIdent(d.in, false); size > 0 {
return d.consumeToken(Name, size, uint8(IdentName)), nil
}
// Field number. Identify if input is a valid number that is not negative
// and is decimal integer within 32-bit range.
if num := parseNumber(d.in); num.size > 0 {
if !num.neg && num.kind == numDec {
if _, err := strconv.ParseInt(string(d.in[:num.size]), 10, 32); err == nil {
return d.consumeToken(Name, num.size, uint8(FieldNumber)), nil
}
}
return Token{}, d.newSyntaxError("invalid field number: %s", d.in[:num.size])
}
return Token{}, d.newSyntaxError("invalid field name: %s", errRegexp.Find(d.in))
}
// parseTypeName parses Any type URL or extension field name. The name is
// enclosed in [ and ] characters. The C++ parser does not handle many legal URL
// strings. This implementation is more liberal and allows for the pattern
// ^[-_a-zA-Z0-9]+([./][-_a-zA-Z0-9]+)*`). Whitespaces and comments are allowed
// in between [ ], '.', '/' and the sub names.
func (d *Decoder) parseTypeName() (Token, error) {
startPos := len(d.orig) - len(d.in)
// Use alias s to advance first in order to use d.in for error handling.
// Caller already checks for [ as first character.
s := consume(d.in[1:], 0)
if len(s) == 0 {
return Token{}, ErrUnexpectedEOF
}
var name []byte
for len(s) > 0 && isTypeNameChar(s[0]) {
name = append(name, s[0])
s = s[1:]
}
s = consume(s, 0)
var closed bool
for len(s) > 0 && !closed {
switch {
case s[0] == ']':
s = s[1:]
closed = true
case s[0] == '/', s[0] == '.':
if len(name) > 0 && (name[len(name)-1] == '/' || name[len(name)-1] == '.') {
return Token{}, d.newSyntaxError("invalid type URL/extension field name: %s",
d.orig[startPos:len(d.orig)-len(s)+1])
}
name = append(name, s[0])
s = s[1:]
s = consume(s, 0)
for len(s) > 0 && isTypeNameChar(s[0]) {
name = append(name, s[0])
s = s[1:]
}
s = consume(s, 0)
default:
return Token{}, d.newSyntaxError(
"invalid type URL/extension field name: %s", d.orig[startPos:len(d.orig)-len(s)+1])
}
}
if !closed {
return Token{}, ErrUnexpectedEOF
}
// First character cannot be '.'. Last character cannot be '.' or '/'.
size := len(name)
if size == 0 || name[0] == '.' || name[size-1] == '.' || name[size-1] == '/' {
return Token{}, d.newSyntaxError("invalid type URL/extension field name: %s",
d.orig[startPos:len(d.orig)-len(s)])
}
d.in = s
endPos := len(d.orig) - len(d.in)
d.consume(0)
return Token{
kind: Name,
attrs: uint8(TypeName),
pos: startPos,
raw: d.orig[startPos:endPos],
str: string(name),
}, nil
}
func isTypeNameChar(b byte) bool {
return (b == '-' || b == '_' ||
('0' <= b && b <= '9') ||
('a' <= b && b <= 'z') ||
('A' <= b && b <= 'Z'))
}
func isWhiteSpace(b byte) bool {
switch b {
case ' ', '\n', '\r', '\t':
return true
default:
return false
}
}
// parseIdent parses an unquoted proto identifier and returns size.
// If allowNeg is true, it allows '-' to be the first character in the
// identifier. This is used when parsing literal values like -infinity, etc.
// Regular expression matches an identifier: `^[_a-zA-Z][_a-zA-Z0-9]*`
func parseIdent(input []byte, allowNeg bool) int {
var size int
s := input
if len(s) == 0 {
return 0
}
if allowNeg && s[0] == '-' {
s = s[1:]
size++
if len(s) == 0 {
return 0
}
}
switch {
case s[0] == '_',
'a' <= s[0] && s[0] <= 'z',
'A' <= s[0] && s[0] <= 'Z':
s = s[1:]
size++
default:
return 0
}
for len(s) > 0 && (s[0] == '_' ||
'a' <= s[0] && s[0] <= 'z' ||
'A' <= s[0] && s[0] <= 'Z' ||
'0' <= s[0] && s[0] <= '9') {
s = s[1:]
size++
}
if len(s) > 0 && !isDelim(s[0]) {
return 0
}
return size
}
// parseScalar parses for a string, literal or number value.
func (d *Decoder) parseScalar() (Token, error) {
if d.in[0] == '"' || d.in[0] == '\'' {
return d.parseStringValue()
}
if tok, ok := d.parseLiteralValue(); ok {
return tok, nil
}
if tok, ok := d.parseNumberValue(); ok {
return tok, nil
}
return Token{}, d.newSyntaxError("invalid scalar value: %s", errRegexp.Find(d.in))
}
// parseLiteralValue parses a literal value. A literal value is used for
// bools, special floats and enums. This function simply identifies that the
// field value is a literal.
func (d *Decoder) parseLiteralValue() (Token, bool) {
size := parseIdent(d.in, true)
if size == 0 {
return Token{}, false
}
return d.consumeToken(Scalar, size, literalValue), true
}
// consumeToken constructs a Token for given Kind from d.in and consumes given
// size-length from it.
func (d *Decoder) consumeToken(kind Kind, size int, attrs uint8) Token {
// Important to compute raw and pos before consuming.
tok := Token{
kind: kind,
attrs: attrs,
pos: len(d.orig) - len(d.in),
raw: d.in[:size],
}
d.consume(size)
return tok
}
// newSyntaxError returns a syntax error with line and column information for
// current position.
func (d *Decoder) newSyntaxError(f string, x ...interface{}) error {
e := errors.New(f, x...)
line, column := d.Position(len(d.orig) - len(d.in))
return errors.New("syntax error (line %d:%d): %v", line, column, e)
}
// Position returns line and column number of given index of the original input.
// It will panic if index is out of range.
func (d *Decoder) Position(idx int) (line int, column int) {
b := d.orig[:idx]
line = bytes.Count(b, []byte("\n")) + 1
if i := bytes.LastIndexByte(b, '\n'); i >= 0 {
b = b[i+1:]
}
column = utf8.RuneCount(b) + 1 // ignore multi-rune characters
return line, column
}
func (d *Decoder) tryConsumeChar(c byte) bool {
if len(d.in) > 0 && d.in[0] == c {
d.consume(1)
return true
}
return false
}
// consume consumes n bytes of input and any subsequent whitespace or comments.
func (d *Decoder) consume(n int) {
d.in = consume(d.in, n)
return
}
// consume consumes n bytes of input and any subsequent whitespace or comments.
func consume(b []byte, n int) []byte {
b = b[n:]
for len(b) > 0 {
switch b[0] {
case ' ', '\n', '\r', '\t':
b = b[1:]
case '#':
if i := bytes.IndexByte(b, '\n'); i >= 0 {
b = b[i+len("\n"):]
} else {
b = nil
}
default:
return b
}
}
return b
}
// Any sequence that looks like a non-delimiter (for error reporting).
var errRegexp = regexp.MustCompile(`^([-+._a-zA-Z0-9\/]+|.)`)
// isDelim returns true if given byte is a delimiter character.
func isDelim(c byte) bool {
return !(c == '-' || c == '+' || c == '.' || c == '_' ||
('a' <= c && c <= 'z') ||
('A' <= c && c <= 'Z') ||
('0' <= c && c <= '9'))
}

View File

@ -0,0 +1,190 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package text
// parseNumberValue parses a number from the input and returns a Token object.
func (d *Decoder) parseNumberValue() (Token, bool) {
in := d.in
num := parseNumber(in)
if num.size == 0 {
return Token{}, false
}
numAttrs := num.kind
if num.neg {
numAttrs |= isNegative
}
strSize := num.size
last := num.size - 1
if num.kind == numFloat && (d.in[last] == 'f' || d.in[last] == 'F') {
strSize = last
}
tok := Token{
kind: Scalar,
attrs: numberValue,
pos: len(d.orig) - len(d.in),
raw: d.in[:num.size],
str: string(d.in[:strSize]),
numAttrs: numAttrs,
}
d.consume(num.size)
return tok, true
}
const (
numDec uint8 = (1 << iota) / 2
numHex
numOct
numFloat
)
// number is the result of parsing out a valid number from parseNumber. It
// contains data for doing float or integer conversion via the strconv package
// in conjunction with the input bytes.
type number struct {
kind uint8
neg bool
size int
}
// parseNumber constructs a number object from given input. It allows for the
// following patterns:
// integer: ^-?([1-9][0-9]*|0[xX][0-9a-fA-F]+|0[0-7]*)
// float: ^-?((0|[1-9][0-9]*)?([.][0-9]*)?([eE][+-]?[0-9]+)?[fF]?)
// It also returns the number of parsed bytes for the given number, 0 if it is
// not a number.
func parseNumber(input []byte) number {
kind := numDec
var size int
var neg bool
s := input
if len(s) == 0 {
return number{}
}
// Optional -
if s[0] == '-' {
neg = true
s = s[1:]
size++
if len(s) == 0 {
return number{}
}
}
// C++ allows for whitespace and comments in between the negative sign and
// the rest of the number. This logic currently does not but is consistent
// with v1.
switch {
case s[0] == '0':
if len(s) > 1 {
switch {
case s[1] == 'x' || s[1] == 'X':
// Parse as hex number.
kind = numHex
n := 2
s = s[2:]
for len(s) > 0 && (('0' <= s[0] && s[0] <= '9') ||
('a' <= s[0] && s[0] <= 'f') ||
('A' <= s[0] && s[0] <= 'F')) {
s = s[1:]
n++
}
if n == 2 {
return number{}
}
size += n
case '0' <= s[1] && s[1] <= '7':
// Parse as octal number.
kind = numOct
n := 2
s = s[2:]
for len(s) > 0 && '0' <= s[0] && s[0] <= '7' {
s = s[1:]
n++
}
size += n
}
if kind&(numHex|numOct) > 0 {
if len(s) > 0 && !isDelim(s[0]) {
return number{}
}
return number{kind: kind, neg: neg, size: size}
}
}
s = s[1:]
size++
case '1' <= s[0] && s[0] <= '9':
n := 1
s = s[1:]
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
s = s[1:]
n++
}
size += n
case s[0] == '.':
// Set kind to numFloat to signify the intent to parse as float. And
// that it needs to have other digits after '.'.
kind = numFloat
default:
return number{}
}
// . followed by 0 or more digits.
if len(s) > 0 && s[0] == '.' {
n := 1
s = s[1:]
// If decimal point was before any digits, it should be followed by
// other digits.
if len(s) == 0 && kind == numFloat {
return number{}
}
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
s = s[1:]
n++
}
size += n
kind = numFloat
}
// e or E followed by an optional - or + and 1 or more digits.
if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
kind = numFloat
s = s[1:]
n := 1
if s[0] == '+' || s[0] == '-' {
s = s[1:]
n++
if len(s) == 0 {
return number{}
}
}
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
s = s[1:]
n++
}
size += n
}
// Optional suffix f or F for floats.
if len(s) > 0 && (s[0] == 'f' || s[0] == 'F') {
kind = numFloat
s = s[1:]
size++
}
// Check that next byte is a delimiter or it is at the end.
if len(s) > 0 && !isDelim(s[0]) {
return number{}
}
return number{kind: kind, neg: neg, size: size}
}

View File

@ -0,0 +1,161 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package text
import (
"bytes"
"strconv"
"strings"
"unicode"
"unicode/utf16"
"unicode/utf8"
"google.golang.org/protobuf/internal/strs"
)
// parseStringValue parses string field token.
// This differs from parseString since the text format allows
// multiple back-to-back string literals where they are semantically treated
// as a single large string with all values concatenated.
//
// E.g., `"foo" "bar" "baz"` => "foobarbaz"
func (d *Decoder) parseStringValue() (Token, error) {
// Note that the ending quote is sufficient to unambiguously mark the end
// of a string. Thus, the text grammar does not require intervening
// whitespace or control characters in-between strings.
// Thus, the following is valid:
// `"foo"'bar'"baz"` => "foobarbaz"
in0 := d.in
var ss []string
for len(d.in) > 0 && (d.in[0] == '"' || d.in[0] == '\'') {
s, err := d.parseString()
if err != nil {
return Token{}, err
}
ss = append(ss, s)
}
// d.in already points to the end of the value at this point.
return Token{
kind: Scalar,
attrs: stringValue,
pos: len(d.orig) - len(in0),
raw: in0[:len(in0)-len(d.in)],
str: strings.Join(ss, ""),
}, nil
}
// parseString parses a string value enclosed in " or '.
func (d *Decoder) parseString() (string, error) {
in := d.in
if len(in) == 0 {
return "", ErrUnexpectedEOF
}
quote := in[0]
in = in[1:]
i := indexNeedEscapeInBytes(in)
in, out := in[i:], in[:i:i] // set cap to prevent mutations
for len(in) > 0 {
switch r, n := utf8.DecodeRune(in); {
case r == utf8.RuneError && n == 1:
return "", d.newSyntaxError("invalid UTF-8 detected")
case r == 0 || r == '\n':
return "", d.newSyntaxError("invalid character %q in string", r)
case r == rune(quote):
in = in[1:]
d.consume(len(d.in) - len(in))
return string(out), nil
case r == '\\':
if len(in) < 2 {
return "", ErrUnexpectedEOF
}
switch r := in[1]; r {
case '"', '\'', '\\', '?':
in, out = in[2:], append(out, r)
case 'a':
in, out = in[2:], append(out, '\a')
case 'b':
in, out = in[2:], append(out, '\b')
case 'n':
in, out = in[2:], append(out, '\n')
case 'r':
in, out = in[2:], append(out, '\r')
case 't':
in, out = in[2:], append(out, '\t')
case 'v':
in, out = in[2:], append(out, '\v')
case 'f':
in, out = in[2:], append(out, '\f')
case '0', '1', '2', '3', '4', '5', '6', '7':
// One, two, or three octal characters.
n := len(in[1:]) - len(bytes.TrimLeft(in[1:], "01234567"))
if n > 3 {
n = 3
}
v, err := strconv.ParseUint(string(in[1:1+n]), 8, 8)
if err != nil {
return "", d.newSyntaxError("invalid octal escape code %q in string", in[:1+n])
}
in, out = in[1+n:], append(out, byte(v))
case 'x':
// One or two hexadecimal characters.
n := len(in[2:]) - len(bytes.TrimLeft(in[2:], "0123456789abcdefABCDEF"))
if n > 2 {
n = 2
}
v, err := strconv.ParseUint(string(in[2:2+n]), 16, 8)
if err != nil {
return "", d.newSyntaxError("invalid hex escape code %q in string", in[:2+n])
}
in, out = in[2+n:], append(out, byte(v))
case 'u', 'U':
// Four or eight hexadecimal characters
n := 6
if r == 'U' {
n = 10
}
if len(in) < n {
return "", ErrUnexpectedEOF
}
v, err := strconv.ParseUint(string(in[2:n]), 16, 32)
if utf8.MaxRune < v || err != nil {
return "", d.newSyntaxError("invalid Unicode escape code %q in string", in[:n])
}
in = in[n:]
r := rune(v)
if utf16.IsSurrogate(r) {
if len(in) < 6 {
return "", ErrUnexpectedEOF
}
v, err := strconv.ParseUint(string(in[2:6]), 16, 16)
r = utf16.DecodeRune(r, rune(v))
if in[0] != '\\' || in[1] != 'u' || r == unicode.ReplacementChar || err != nil {
return "", d.newSyntaxError("invalid Unicode escape code %q in string", in[:6])
}
in = in[6:]
}
out = append(out, string(r)...)
default:
return "", d.newSyntaxError("invalid escape code %q in string", in[:2])
}
default:
i := indexNeedEscapeInBytes(in[n:])
in, out = in[n+i:], append(out, in[:n+i]...)
}
}
return "", ErrUnexpectedEOF
}
// indexNeedEscapeInString returns the index of the character that needs
// escaping. If no characters need escaping, this returns the input length.
func indexNeedEscapeInBytes(b []byte) int { return indexNeedEscapeInString(strs.UnsafeString(b)) }
// UnmarshalString returns an unescaped string given a textproto string value.
// String value needs to contain single or double quotes. This is only used by
// internal/encoding/defval package for unmarshaling bytes.
func UnmarshalString(s string) (string, error) {
d := NewDecoder([]byte(s))
return d.parseString()
}

View File

@ -0,0 +1,373 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package text
import (
"bytes"
"fmt"
"math"
"strconv"
"strings"
"google.golang.org/protobuf/internal/flags"
)
// Kind represents a token kind expressible in the textproto format.
type Kind uint8
// Kind values.
const (
Invalid Kind = iota
EOF
Name // Name indicates the field name.
Scalar // Scalar are scalar values, e.g. "string", 47, ENUM_LITERAL, true.
MessageOpen
MessageClose
ListOpen
ListClose
// comma and semi-colon are only for parsing in between values and should not be exposed.
comma
semicolon
// bof indicates beginning of file, which is the default token
// kind at the beginning of parsing.
bof = Invalid
)
func (t Kind) String() string {
switch t {
case Invalid:
return "<invalid>"
case EOF:
return "eof"
case Scalar:
return "scalar"
case Name:
return "name"
case MessageOpen:
return "{"
case MessageClose:
return "}"
case ListOpen:
return "["
case ListClose:
return "]"
case comma:
return ","
case semicolon:
return ";"
default:
return fmt.Sprintf("<invalid:%v>", uint8(t))
}
}
// NameKind represents different types of field names.
type NameKind uint8
// NameKind values.
const (
IdentName NameKind = iota + 1
TypeName
FieldNumber
)
func (t NameKind) String() string {
switch t {
case IdentName:
return "IdentName"
case TypeName:
return "TypeName"
case FieldNumber:
return "FieldNumber"
default:
return fmt.Sprintf("<invalid:%v>", uint8(t))
}
}
// Bit mask in Token.attrs to indicate if a Name token is followed by the
// separator char ':'. The field name separator char is optional for message
// field or repeated message field, but required for all other types. Decoder
// simply indicates whether a Name token is followed by separator or not. It is
// up to the prototext package to validate.
const hasSeparator = 1 << 7
// Scalar value types.
const (
numberValue = iota + 1
stringValue
literalValue
)
// Bit mask in Token.numAttrs to indicate that the number is a negative.
const isNegative = 1 << 7
// Token provides a parsed token kind and value. Values are provided by the
// different accessor methods.
type Token struct {
// Kind of the Token object.
kind Kind
// attrs contains metadata for the following Kinds:
// Name: hasSeparator bit and one of NameKind.
// Scalar: one of numberValue, stringValue, literalValue.
attrs uint8
// numAttrs contains metadata for numberValue:
// - highest bit is whether negative or positive.
// - lower bits indicate one of numDec, numHex, numOct, numFloat.
numAttrs uint8
// pos provides the position of the token in the original input.
pos int
// raw bytes of the serialized token.
// This is a subslice into the original input.
raw []byte
// str contains parsed string for the following:
// - stringValue of Scalar kind
// - numberValue of Scalar kind
// - TypeName of Name kind
str string
}
// Kind returns the token kind.
func (t Token) Kind() Kind {
return t.kind
}
// RawString returns the read value in string.
func (t Token) RawString() string {
return string(t.raw)
}
// Pos returns the token position from the input.
func (t Token) Pos() int {
return t.pos
}
// NameKind returns IdentName, TypeName or FieldNumber.
// It panics if type is not Name.
func (t Token) NameKind() NameKind {
if t.kind == Name {
return NameKind(t.attrs &^ hasSeparator)
}
panic(fmt.Sprintf("Token is not a Name type: %s", t.kind))
}
// HasSeparator returns true if the field name is followed by the separator char
// ':', else false. It panics if type is not Name.
func (t Token) HasSeparator() bool {
if t.kind == Name {
return t.attrs&hasSeparator != 0
}
panic(fmt.Sprintf("Token is not a Name type: %s", t.kind))
}
// IdentName returns the value for IdentName type.
func (t Token) IdentName() string {
if t.kind == Name && t.attrs&uint8(IdentName) != 0 {
return string(t.raw)
}
panic(fmt.Sprintf("Token is not an IdentName: %s:%s", t.kind, NameKind(t.attrs&^hasSeparator)))
}
// TypeName returns the value for TypeName type.
func (t Token) TypeName() string {
if t.kind == Name && t.attrs&uint8(TypeName) != 0 {
return t.str
}
panic(fmt.Sprintf("Token is not a TypeName: %s:%s", t.kind, NameKind(t.attrs&^hasSeparator)))
}
// FieldNumber returns the value for FieldNumber type. It returns a
// non-negative int32 value. Caller will still need to validate for the correct
// field number range.
func (t Token) FieldNumber() int32 {
if t.kind != Name || t.attrs&uint8(FieldNumber) == 0 {
panic(fmt.Sprintf("Token is not a FieldNumber: %s:%s", t.kind, NameKind(t.attrs&^hasSeparator)))
}
// Following should not return an error as it had already been called right
// before this Token was constructed.
num, _ := strconv.ParseInt(string(t.raw), 10, 32)
return int32(num)
}
// String returns the string value for a Scalar type.
func (t Token) String() (string, bool) {
if t.kind != Scalar || t.attrs != stringValue {
return "", false
}
return t.str, true
}
// Enum returns the literal value for a Scalar type for use as enum literals.
func (t Token) Enum() (string, bool) {
if t.kind != Scalar || t.attrs != literalValue || (len(t.raw) > 0 && t.raw[0] == '-') {
return "", false
}
return string(t.raw), true
}
// Bool returns the bool value for a Scalar type.
func (t Token) Bool() (bool, bool) {
if t.kind != Scalar {
return false, false
}
switch t.attrs {
case literalValue:
if b, ok := boolLits[string(t.raw)]; ok {
return b, true
}
case numberValue:
// Unsigned integer representation of 0 or 1 is permitted: 00, 0x0, 01,
// 0x1, etc.
n, err := strconv.ParseUint(t.str, 0, 64)
if err == nil {
switch n {
case 0:
return false, true
case 1:
return true, true
}
}
}
return false, false
}
// These exact boolean literals are the ones supported in C++.
var boolLits = map[string]bool{
"t": true,
"true": true,
"True": true,
"f": false,
"false": false,
"False": false,
}
// Uint64 returns the uint64 value for a Scalar type.
func (t Token) Uint64() (uint64, bool) {
if t.kind != Scalar || t.attrs != numberValue ||
t.numAttrs&isNegative > 0 || t.numAttrs&numFloat > 0 {
return 0, false
}
n, err := strconv.ParseUint(t.str, 0, 64)
if err != nil {
return 0, false
}
return n, true
}
// Uint32 returns the uint32 value for a Scalar type.
func (t Token) Uint32() (uint32, bool) {
if t.kind != Scalar || t.attrs != numberValue ||
t.numAttrs&isNegative > 0 || t.numAttrs&numFloat > 0 {
return 0, false
}
n, err := strconv.ParseUint(t.str, 0, 32)
if err != nil {
return 0, false
}
return uint32(n), true
}
// Int64 returns the int64 value for a Scalar type.
func (t Token) Int64() (int64, bool) {
if t.kind != Scalar || t.attrs != numberValue || t.numAttrs&numFloat > 0 {
return 0, false
}
if n, err := strconv.ParseInt(t.str, 0, 64); err == nil {
return n, true
}
// C++ accepts large positive hex numbers as negative values.
// This feature is here for proto1 backwards compatibility purposes.
if flags.ProtoLegacy && (t.numAttrs == numHex) {
if n, err := strconv.ParseUint(t.str, 0, 64); err == nil {
return int64(n), true
}
}
return 0, false
}
// Int32 returns the int32 value for a Scalar type.
func (t Token) Int32() (int32, bool) {
if t.kind != Scalar || t.attrs != numberValue || t.numAttrs&numFloat > 0 {
return 0, false
}
if n, err := strconv.ParseInt(t.str, 0, 32); err == nil {
return int32(n), true
}
// C++ accepts large positive hex numbers as negative values.
// This feature is here for proto1 backwards compatibility purposes.
if flags.ProtoLegacy && (t.numAttrs == numHex) {
if n, err := strconv.ParseUint(t.str, 0, 32); err == nil {
return int32(n), true
}
}
return 0, false
}
// Float64 returns the float64 value for a Scalar type.
func (t Token) Float64() (float64, bool) {
if t.kind != Scalar {
return 0, false
}
switch t.attrs {
case literalValue:
if f, ok := floatLits[strings.ToLower(string(t.raw))]; ok {
return f, true
}
case numberValue:
n, err := strconv.ParseFloat(t.str, 64)
if err == nil {
return n, true
}
nerr := err.(*strconv.NumError)
if nerr.Err == strconv.ErrRange {
return n, true
}
}
return 0, false
}
// Float32 returns the float32 value for a Scalar type.
func (t Token) Float32() (float32, bool) {
if t.kind != Scalar {
return 0, false
}
switch t.attrs {
case literalValue:
if f, ok := floatLits[strings.ToLower(string(t.raw))]; ok {
return float32(f), true
}
case numberValue:
n, err := strconv.ParseFloat(t.str, 64)
if err == nil {
// Overflows are treated as (-)infinity.
return float32(n), true
}
nerr := err.(*strconv.NumError)
if nerr.Err == strconv.ErrRange {
return float32(n), true
}
}
return 0, false
}
// These are the supported float literals which C++ permits case-insensitive
// variants of these.
var floatLits = map[string]float64{
"nan": math.NaN(),
"inf": math.Inf(1),
"infinity": math.Inf(1),
"-inf": math.Inf(-1),
"-infinity": math.Inf(-1),
}
// TokenEquals returns true if given Tokens are equal, else false.
func TokenEquals(x, y Token) bool {
return x.kind == y.kind &&
x.attrs == y.attrs &&
x.numAttrs == y.numAttrs &&
x.pos == y.pos &&
bytes.Equal(x.raw, y.raw) &&
x.str == y.str
}

View File

@ -0,0 +1,29 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package text implements the text format for protocol buffers.
// This package has no semantic understanding for protocol buffers and is only
// a parser and composer for the format.
//
// There is no formal specification for the protobuf text format, as such the
// C++ implementation (see google::protobuf::TextFormat) is the reference
// implementation of the text format.
//
// This package is neither a superset nor a subset of the C++ implementation.
// This implementation permits a more liberal grammar in some cases to be
// backwards compatible with the historical Go implementation.
// Future parsings unique to Go should not be added.
// Some grammars allowed by the C++ implementation are deliberately
// not implemented here because they are considered a bug by the protobuf team
// and should not be replicated.
//
// The Go implementation should implement a sufficient amount of the C++
// grammar such that the default text serialization by C++ can be parsed by Go.
// However, just because the C++ parser accepts some input does not mean that
// the Go implementation should as well.
//
// The text format is almost a superset of JSON except:
// * message keys are not quoted strings, but identifiers
// * the top-level value must be a message without the delimiters
package text

View File

@ -0,0 +1,265 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package text
import (
"math"
"math/bits"
"strconv"
"strings"
"unicode/utf8"
"google.golang.org/protobuf/internal/detrand"
"google.golang.org/protobuf/internal/errors"
)
// encType represents an encoding type.
type encType uint8
const (
_ encType = (1 << iota) / 2
name
scalar
messageOpen
messageClose
)
// Encoder provides methods to write out textproto constructs and values. The user is
// responsible for producing valid sequences of constructs and values.
type Encoder struct {
encoderState
indent string
delims [2]byte
outputASCII bool
}
type encoderState struct {
lastType encType
indents []byte
out []byte
}
// NewEncoder returns an Encoder.
//
// If indent is a non-empty string, it causes every entry in a List or Message
// to be preceded by the indent and trailed by a newline.
//
// If delims is not the zero value, it controls the delimiter characters used
// for messages (e.g., "{}" vs "<>").
//
// If outputASCII is true, strings will be serialized in such a way that
// multi-byte UTF-8 sequences are escaped. This property ensures that the
// overall output is ASCII (as opposed to UTF-8).
func NewEncoder(indent string, delims [2]byte, outputASCII bool) (*Encoder, error) {
e := &Encoder{}
if len(indent) > 0 {
if strings.Trim(indent, " \t") != "" {
return nil, errors.New("indent may only be composed of space and tab characters")
}
e.indent = indent
}
switch delims {
case [2]byte{0, 0}:
e.delims = [2]byte{'{', '}'}
case [2]byte{'{', '}'}, [2]byte{'<', '>'}:
e.delims = delims
default:
return nil, errors.New("delimiters may only be \"{}\" or \"<>\"")
}
e.outputASCII = outputASCII
return e, nil
}
// Bytes returns the content of the written bytes.
func (e *Encoder) Bytes() []byte {
return e.out
}
// StartMessage writes out the '{' or '<' symbol.
func (e *Encoder) StartMessage() {
e.prepareNext(messageOpen)
e.out = append(e.out, e.delims[0])
}
// EndMessage writes out the '}' or '>' symbol.
func (e *Encoder) EndMessage() {
e.prepareNext(messageClose)
e.out = append(e.out, e.delims[1])
}
// WriteName writes out the field name and the separator ':'.
func (e *Encoder) WriteName(s string) {
e.prepareNext(name)
e.out = append(e.out, s...)
e.out = append(e.out, ':')
}
// WriteBool writes out the given boolean value.
func (e *Encoder) WriteBool(b bool) {
if b {
e.WriteLiteral("true")
} else {
e.WriteLiteral("false")
}
}
// WriteString writes out the given string value.
func (e *Encoder) WriteString(s string) {
e.prepareNext(scalar)
e.out = appendString(e.out, s, e.outputASCII)
}
func appendString(out []byte, in string, outputASCII bool) []byte {
out = append(out, '"')
i := indexNeedEscapeInString(in)
in, out = in[i:], append(out, in[:i]...)
for len(in) > 0 {
switch r, n := utf8.DecodeRuneInString(in); {
case r == utf8.RuneError && n == 1:
// We do not report invalid UTF-8 because strings in the text format
// are used to represent both the proto string and bytes type.
r = rune(in[0])
fallthrough
case r < ' ' || r == '"' || r == '\\' || r == 0x7f:
out = append(out, '\\')
switch r {
case '"', '\\':
out = append(out, byte(r))
case '\n':
out = append(out, 'n')
case '\r':
out = append(out, 'r')
case '\t':
out = append(out, 't')
default:
out = append(out, 'x')
out = append(out, "00"[1+(bits.Len32(uint32(r))-1)/4:]...)
out = strconv.AppendUint(out, uint64(r), 16)
}
in = in[n:]
case r >= utf8.RuneSelf && (outputASCII || r <= 0x009f):
out = append(out, '\\')
if r <= math.MaxUint16 {
out = append(out, 'u')
out = append(out, "0000"[1+(bits.Len32(uint32(r))-1)/4:]...)
out = strconv.AppendUint(out, uint64(r), 16)
} else {
out = append(out, 'U')
out = append(out, "00000000"[1+(bits.Len32(uint32(r))-1)/4:]...)
out = strconv.AppendUint(out, uint64(r), 16)
}
in = in[n:]
default:
i := indexNeedEscapeInString(in[n:])
in, out = in[n+i:], append(out, in[:n+i]...)
}
}
out = append(out, '"')
return out
}
// indexNeedEscapeInString returns the index of the character that needs
// escaping. If no characters need escaping, this returns the input length.
func indexNeedEscapeInString(s string) int {
for i := 0; i < len(s); i++ {
if c := s[i]; c < ' ' || c == '"' || c == '\'' || c == '\\' || c >= 0x7f {
return i
}
}
return len(s)
}
// WriteFloat writes out the given float value for given bitSize.
func (e *Encoder) WriteFloat(n float64, bitSize int) {
e.prepareNext(scalar)
e.out = appendFloat(e.out, n, bitSize)
}
func appendFloat(out []byte, n float64, bitSize int) []byte {
switch {
case math.IsNaN(n):
return append(out, "nan"...)
case math.IsInf(n, +1):
return append(out, "inf"...)
case math.IsInf(n, -1):
return append(out, "-inf"...)
default:
return strconv.AppendFloat(out, n, 'g', -1, bitSize)
}
}
// WriteInt writes out the given signed integer value.
func (e *Encoder) WriteInt(n int64) {
e.prepareNext(scalar)
e.out = append(e.out, strconv.FormatInt(n, 10)...)
}
// WriteUint writes out the given unsigned integer value.
func (e *Encoder) WriteUint(n uint64) {
e.prepareNext(scalar)
e.out = append(e.out, strconv.FormatUint(n, 10)...)
}
// WriteLiteral writes out the given string as a literal value without quotes.
// This is used for writing enum literal strings.
func (e *Encoder) WriteLiteral(s string) {
e.prepareNext(scalar)
e.out = append(e.out, s...)
}
// prepareNext adds possible space and indentation for the next value based
// on last encType and indent option. It also updates e.lastType to next.
func (e *Encoder) prepareNext(next encType) {
defer func() {
e.lastType = next
}()
// Single line.
if len(e.indent) == 0 {
// Add space after each field before the next one.
if e.lastType&(scalar|messageClose) != 0 && next == name {
e.out = append(e.out, ' ')
// Add a random extra space to make output unstable.
if detrand.Bool() {
e.out = append(e.out, ' ')
}
}
return
}
// Multi-line.
switch {
case e.lastType == name:
e.out = append(e.out, ' ')
// Add a random extra space after name: to make output unstable.
if detrand.Bool() {
e.out = append(e.out, ' ')
}
case e.lastType == messageOpen && next != messageClose:
e.indents = append(e.indents, e.indent...)
e.out = append(e.out, '\n')
e.out = append(e.out, e.indents...)
case e.lastType&(scalar|messageClose) != 0:
if next == messageClose {
e.indents = e.indents[:len(e.indents)-len(e.indent)]
}
e.out = append(e.out, '\n')
e.out = append(e.out, e.indents...)
}
}
// Snapshot returns the current snapshot for use in Reset.
func (e *Encoder) Snapshot() encoderState {
return e.encoderState
}
// Reset resets the Encoder to the given encoderState from a Snapshot.
func (e *Encoder) Reset(es encoderState) {
e.encoderState = es
}

View File

@ -0,0 +1,89 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package errors implements functions to manipulate errors.
package errors
import (
"errors"
"fmt"
"google.golang.org/protobuf/internal/detrand"
)
// Error is a sentinel matching all errors produced by this package.
var Error = errors.New("protobuf error")
// New formats a string according to the format specifier and arguments and
// returns an error that has a "proto" prefix.
func New(f string, x ...interface{}) error {
return &prefixError{s: format(f, x...)}
}
type prefixError struct{ s string }
var prefix = func() string {
// Deliberately introduce instability into the error message string to
// discourage users from performing error string comparisons.
if detrand.Bool() {
return "proto: " // use non-breaking spaces (U+00a0)
} else {
return "proto: " // use regular spaces (U+0020)
}
}()
func (e *prefixError) Error() string {
return prefix + e.s
}
func (e *prefixError) Unwrap() error {
return Error
}
// Wrap returns an error that has a "proto" prefix, the formatted string described
// by the format specifier and arguments, and a suffix of err. The error wraps err.
func Wrap(err error, f string, x ...interface{}) error {
return &wrapError{
s: format(f, x...),
err: err,
}
}
type wrapError struct {
s string
err error
}
func (e *wrapError) Error() string {
return format("%v%v: %v", prefix, e.s, e.err)
}
func (e *wrapError) Unwrap() error {
return e.err
}
func (e *wrapError) Is(target error) bool {
return target == Error
}
func format(f string, x ...interface{}) string {
// avoid "proto: " prefix when chaining
for i := 0; i < len(x); i++ {
switch e := x[i].(type) {
case *prefixError:
x[i] = e.s
case *wrapError:
x[i] = format("%v: %v", e.s, e.err)
}
}
return fmt.Sprintf(f, x...)
}
func InvalidUTF8(name string) error {
return New("field %v contains invalid UTF-8", name)
}
func RequiredNotSet(name string) error {
return New("required field %v not set", name)
}

View File

@ -0,0 +1,39 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.13
package errors
import "reflect"
// Is is a copy of Go 1.13's errors.Is for use with older Go versions.
func Is(err, target error) bool {
if target == nil {
return err == target
}
isComparable := reflect.TypeOf(target).Comparable()
for {
if isComparable && err == target {
return true
}
if x, ok := err.(interface{ Is(error) bool }); ok && x.Is(target) {
return true
}
if err = unwrap(err); err == nil {
return false
}
}
}
func unwrap(err error) error {
u, ok := err.(interface {
Unwrap() error
})
if !ok {
return nil
}
return u.Unwrap()
}

View File

@ -0,0 +1,12 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.13
package errors
import "errors"
// Is is errors.Is.
func Is(err, target error) bool { return errors.Is(err, target) }

View File

@ -0,0 +1,158 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package filedesc provides functionality for constructing descriptors.
//
// The types in this package implement interfaces in the protoreflect package
// related to protobuf descripriptors.
package filedesc
import (
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/reflect/protoreflect"
pref "google.golang.org/protobuf/reflect/protoreflect"
preg "google.golang.org/protobuf/reflect/protoregistry"
)
// Builder construct a protoreflect.FileDescriptor from the raw descriptor.
type Builder struct {
// GoPackagePath is the Go package path that is invoking this builder.
GoPackagePath string
// RawDescriptor is the wire-encoded bytes of FileDescriptorProto
// and must be populated.
RawDescriptor []byte
// NumEnums is the total number of enums declared in the file.
NumEnums int32
// NumMessages is the total number of messages declared in the file.
// It includes the implicit message declarations for map entries.
NumMessages int32
// NumExtensions is the total number of extensions declared in the file.
NumExtensions int32
// NumServices is the total number of services declared in the file.
NumServices int32
// TypeResolver resolves extension field types for descriptor options.
// If nil, it uses protoregistry.GlobalTypes.
TypeResolver interface {
preg.ExtensionTypeResolver
}
// FileRegistry is use to lookup file, enum, and message dependencies.
// Once constructed, the file descriptor is registered here.
// If nil, it uses protoregistry.GlobalFiles.
FileRegistry interface {
FindFileByPath(string) (protoreflect.FileDescriptor, error)
FindDescriptorByName(pref.FullName) (pref.Descriptor, error)
RegisterFile(pref.FileDescriptor) error
}
}
// resolverByIndex is an interface Builder.FileRegistry may implement.
// If so, it permits looking up an enum or message dependency based on the
// sub-list and element index into filetype.Builder.DependencyIndexes.
type resolverByIndex interface {
FindEnumByIndex(int32, int32, []Enum, []Message) pref.EnumDescriptor
FindMessageByIndex(int32, int32, []Enum, []Message) pref.MessageDescriptor
}
// Indexes of each sub-list in filetype.Builder.DependencyIndexes.
const (
listFieldDeps int32 = iota
listExtTargets
listExtDeps
listMethInDeps
listMethOutDeps
)
// Out is the output of the Builder.
type Out struct {
File pref.FileDescriptor
// Enums is all enum descriptors in "flattened ordering".
Enums []Enum
// Messages is all message descriptors in "flattened ordering".
// It includes the implicit message declarations for map entries.
Messages []Message
// Extensions is all extension descriptors in "flattened ordering".
Extensions []Extension
// Service is all service descriptors in "flattened ordering".
Services []Service
}
// Build constructs a FileDescriptor given the parameters set in Builder.
// It assumes that the inputs are well-formed and panics if any inconsistencies
// are encountered.
//
// If NumEnums+NumMessages+NumExtensions+NumServices is zero,
// then Build automatically derives them from the raw descriptor.
func (db Builder) Build() (out Out) {
// Populate the counts if uninitialized.
if db.NumEnums+db.NumMessages+db.NumExtensions+db.NumServices == 0 {
db.unmarshalCounts(db.RawDescriptor, true)
}
// Initialize resolvers and registries if unpopulated.
if db.TypeResolver == nil {
db.TypeResolver = preg.GlobalTypes
}
if db.FileRegistry == nil {
db.FileRegistry = preg.GlobalFiles
}
fd := newRawFile(db)
out.File = fd
out.Enums = fd.allEnums
out.Messages = fd.allMessages
out.Extensions = fd.allExtensions
out.Services = fd.allServices
if err := db.FileRegistry.RegisterFile(fd); err != nil {
panic(err)
}
return out
}
// unmarshalCounts counts the number of enum, message, extension, and service
// declarations in the raw message, which is either a FileDescriptorProto
// or a MessageDescriptorProto depending on whether isFile is set.
func (db *Builder) unmarshalCounts(b []byte, isFile bool) {
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
if isFile {
switch num {
case genid.FileDescriptorProto_EnumType_field_number:
db.NumEnums++
case genid.FileDescriptorProto_MessageType_field_number:
db.unmarshalCounts(v, false)
db.NumMessages++
case genid.FileDescriptorProto_Extension_field_number:
db.NumExtensions++
case genid.FileDescriptorProto_Service_field_number:
db.NumServices++
}
} else {
switch num {
case genid.DescriptorProto_EnumType_field_number:
db.NumEnums++
case genid.DescriptorProto_NestedType_field_number:
db.unmarshalCounts(v, false)
db.NumMessages++
case genid.DescriptorProto_Extension_field_number:
db.NumExtensions++
}
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}

View File

@ -0,0 +1,631 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package filedesc
import (
"bytes"
"fmt"
"sync"
"sync/atomic"
"google.golang.org/protobuf/internal/descfmt"
"google.golang.org/protobuf/internal/descopts"
"google.golang.org/protobuf/internal/encoding/defval"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/internal/strs"
pref "google.golang.org/protobuf/reflect/protoreflect"
"google.golang.org/protobuf/reflect/protoregistry"
)
// The types in this file may have a suffix:
// • L0: Contains fields common to all descriptors (except File) and
// must be initialized up front.
// • L1: Contains fields specific to a descriptor and
// must be initialized up front.
// • L2: Contains fields that are lazily initialized when constructing
// from the raw file descriptor. When constructing as a literal, the L2
// fields must be initialized up front.
//
// The types are exported so that packages like reflect/protodesc can
// directly construct descriptors.
type (
File struct {
fileRaw
L1 FileL1
once uint32 // atomically set if L2 is valid
mu sync.Mutex // protects L2
L2 *FileL2
}
FileL1 struct {
Syntax pref.Syntax
Path string
Package pref.FullName
Enums Enums
Messages Messages
Extensions Extensions
Services Services
}
FileL2 struct {
Options func() pref.ProtoMessage
Imports FileImports
Locations SourceLocations
}
)
func (fd *File) ParentFile() pref.FileDescriptor { return fd }
func (fd *File) Parent() pref.Descriptor { return nil }
func (fd *File) Index() int { return 0 }
func (fd *File) Syntax() pref.Syntax { return fd.L1.Syntax }
func (fd *File) Name() pref.Name { return fd.L1.Package.Name() }
func (fd *File) FullName() pref.FullName { return fd.L1.Package }
func (fd *File) IsPlaceholder() bool { return false }
func (fd *File) Options() pref.ProtoMessage {
if f := fd.lazyInit().Options; f != nil {
return f()
}
return descopts.File
}
func (fd *File) Path() string { return fd.L1.Path }
func (fd *File) Package() pref.FullName { return fd.L1.Package }
func (fd *File) Imports() pref.FileImports { return &fd.lazyInit().Imports }
func (fd *File) Enums() pref.EnumDescriptors { return &fd.L1.Enums }
func (fd *File) Messages() pref.MessageDescriptors { return &fd.L1.Messages }
func (fd *File) Extensions() pref.ExtensionDescriptors { return &fd.L1.Extensions }
func (fd *File) Services() pref.ServiceDescriptors { return &fd.L1.Services }
func (fd *File) SourceLocations() pref.SourceLocations { return &fd.lazyInit().Locations }
func (fd *File) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, fd) }
func (fd *File) ProtoType(pref.FileDescriptor) {}
func (fd *File) ProtoInternal(pragma.DoNotImplement) {}
func (fd *File) lazyInit() *FileL2 {
if atomic.LoadUint32(&fd.once) == 0 {
fd.lazyInitOnce()
}
return fd.L2
}
func (fd *File) lazyInitOnce() {
fd.mu.Lock()
if fd.L2 == nil {
fd.lazyRawInit() // recursively initializes all L2 structures
}
atomic.StoreUint32(&fd.once, 1)
fd.mu.Unlock()
}
// GoPackagePath is a pseudo-internal API for determining the Go package path
// that this file descriptor is declared in.
//
// WARNING: This method is exempt from the compatibility promise and may be
// removed in the future without warning.
func (fd *File) GoPackagePath() string {
return fd.builder.GoPackagePath
}
type (
Enum struct {
Base
L1 EnumL1
L2 *EnumL2 // protected by fileDesc.once
}
EnumL1 struct {
eagerValues bool // controls whether EnumL2.Values is already populated
}
EnumL2 struct {
Options func() pref.ProtoMessage
Values EnumValues
ReservedNames Names
ReservedRanges EnumRanges
}
EnumValue struct {
Base
L1 EnumValueL1
}
EnumValueL1 struct {
Options func() pref.ProtoMessage
Number pref.EnumNumber
}
)
func (ed *Enum) Options() pref.ProtoMessage {
if f := ed.lazyInit().Options; f != nil {
return f()
}
return descopts.Enum
}
func (ed *Enum) Values() pref.EnumValueDescriptors {
if ed.L1.eagerValues {
return &ed.L2.Values
}
return &ed.lazyInit().Values
}
func (ed *Enum) ReservedNames() pref.Names { return &ed.lazyInit().ReservedNames }
func (ed *Enum) ReservedRanges() pref.EnumRanges { return &ed.lazyInit().ReservedRanges }
func (ed *Enum) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, ed) }
func (ed *Enum) ProtoType(pref.EnumDescriptor) {}
func (ed *Enum) lazyInit() *EnumL2 {
ed.L0.ParentFile.lazyInit() // implicitly initializes L2
return ed.L2
}
func (ed *EnumValue) Options() pref.ProtoMessage {
if f := ed.L1.Options; f != nil {
return f()
}
return descopts.EnumValue
}
func (ed *EnumValue) Number() pref.EnumNumber { return ed.L1.Number }
func (ed *EnumValue) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, ed) }
func (ed *EnumValue) ProtoType(pref.EnumValueDescriptor) {}
type (
Message struct {
Base
L1 MessageL1
L2 *MessageL2 // protected by fileDesc.once
}
MessageL1 struct {
Enums Enums
Messages Messages
Extensions Extensions
IsMapEntry bool // promoted from google.protobuf.MessageOptions
IsMessageSet bool // promoted from google.protobuf.MessageOptions
}
MessageL2 struct {
Options func() pref.ProtoMessage
Fields Fields
Oneofs Oneofs
ReservedNames Names
ReservedRanges FieldRanges
RequiredNumbers FieldNumbers // must be consistent with Fields.Cardinality
ExtensionRanges FieldRanges
ExtensionRangeOptions []func() pref.ProtoMessage // must be same length as ExtensionRanges
}
Field struct {
Base
L1 FieldL1
}
FieldL1 struct {
Options func() pref.ProtoMessage
Number pref.FieldNumber
Cardinality pref.Cardinality // must be consistent with Message.RequiredNumbers
Kind pref.Kind
StringName stringName
IsProto3Optional bool // promoted from google.protobuf.FieldDescriptorProto
IsWeak bool // promoted from google.protobuf.FieldOptions
HasPacked bool // promoted from google.protobuf.FieldOptions
IsPacked bool // promoted from google.protobuf.FieldOptions
HasEnforceUTF8 bool // promoted from google.protobuf.FieldOptions
EnforceUTF8 bool // promoted from google.protobuf.FieldOptions
Default defaultValue
ContainingOneof pref.OneofDescriptor // must be consistent with Message.Oneofs.Fields
Enum pref.EnumDescriptor
Message pref.MessageDescriptor
}
Oneof struct {
Base
L1 OneofL1
}
OneofL1 struct {
Options func() pref.ProtoMessage
Fields OneofFields // must be consistent with Message.Fields.ContainingOneof
}
)
func (md *Message) Options() pref.ProtoMessage {
if f := md.lazyInit().Options; f != nil {
return f()
}
return descopts.Message
}
func (md *Message) IsMapEntry() bool { return md.L1.IsMapEntry }
func (md *Message) Fields() pref.FieldDescriptors { return &md.lazyInit().Fields }
func (md *Message) Oneofs() pref.OneofDescriptors { return &md.lazyInit().Oneofs }
func (md *Message) ReservedNames() pref.Names { return &md.lazyInit().ReservedNames }
func (md *Message) ReservedRanges() pref.FieldRanges { return &md.lazyInit().ReservedRanges }
func (md *Message) RequiredNumbers() pref.FieldNumbers { return &md.lazyInit().RequiredNumbers }
func (md *Message) ExtensionRanges() pref.FieldRanges { return &md.lazyInit().ExtensionRanges }
func (md *Message) ExtensionRangeOptions(i int) pref.ProtoMessage {
if f := md.lazyInit().ExtensionRangeOptions[i]; f != nil {
return f()
}
return descopts.ExtensionRange
}
func (md *Message) Enums() pref.EnumDescriptors { return &md.L1.Enums }
func (md *Message) Messages() pref.MessageDescriptors { return &md.L1.Messages }
func (md *Message) Extensions() pref.ExtensionDescriptors { return &md.L1.Extensions }
func (md *Message) ProtoType(pref.MessageDescriptor) {}
func (md *Message) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, md) }
func (md *Message) lazyInit() *MessageL2 {
md.L0.ParentFile.lazyInit() // implicitly initializes L2
return md.L2
}
// IsMessageSet is a pseudo-internal API for checking whether a message
// should serialize in the proto1 message format.
//
// WARNING: This method is exempt from the compatibility promise and may be
// removed in the future without warning.
func (md *Message) IsMessageSet() bool {
return md.L1.IsMessageSet
}
func (fd *Field) Options() pref.ProtoMessage {
if f := fd.L1.Options; f != nil {
return f()
}
return descopts.Field
}
func (fd *Field) Number() pref.FieldNumber { return fd.L1.Number }
func (fd *Field) Cardinality() pref.Cardinality { return fd.L1.Cardinality }
func (fd *Field) Kind() pref.Kind { return fd.L1.Kind }
func (fd *Field) HasJSONName() bool { return fd.L1.StringName.hasJSON }
func (fd *Field) JSONName() string { return fd.L1.StringName.getJSON(fd) }
func (fd *Field) TextName() string { return fd.L1.StringName.getText(fd) }
func (fd *Field) HasPresence() bool {
return fd.L1.Cardinality != pref.Repeated && (fd.L0.ParentFile.L1.Syntax == pref.Proto2 || fd.L1.Message != nil || fd.L1.ContainingOneof != nil)
}
func (fd *Field) HasOptionalKeyword() bool {
return (fd.L0.ParentFile.L1.Syntax == pref.Proto2 && fd.L1.Cardinality == pref.Optional && fd.L1.ContainingOneof == nil) || fd.L1.IsProto3Optional
}
func (fd *Field) IsPacked() bool {
if !fd.L1.HasPacked && fd.L0.ParentFile.L1.Syntax != pref.Proto2 && fd.L1.Cardinality == pref.Repeated {
switch fd.L1.Kind {
case pref.StringKind, pref.BytesKind, pref.MessageKind, pref.GroupKind:
default:
return true
}
}
return fd.L1.IsPacked
}
func (fd *Field) IsExtension() bool { return false }
func (fd *Field) IsWeak() bool { return fd.L1.IsWeak }
func (fd *Field) IsList() bool { return fd.Cardinality() == pref.Repeated && !fd.IsMap() }
func (fd *Field) IsMap() bool { return fd.Message() != nil && fd.Message().IsMapEntry() }
func (fd *Field) MapKey() pref.FieldDescriptor {
if !fd.IsMap() {
return nil
}
return fd.Message().Fields().ByNumber(genid.MapEntry_Key_field_number)
}
func (fd *Field) MapValue() pref.FieldDescriptor {
if !fd.IsMap() {
return nil
}
return fd.Message().Fields().ByNumber(genid.MapEntry_Value_field_number)
}
func (fd *Field) HasDefault() bool { return fd.L1.Default.has }
func (fd *Field) Default() pref.Value { return fd.L1.Default.get(fd) }
func (fd *Field) DefaultEnumValue() pref.EnumValueDescriptor { return fd.L1.Default.enum }
func (fd *Field) ContainingOneof() pref.OneofDescriptor { return fd.L1.ContainingOneof }
func (fd *Field) ContainingMessage() pref.MessageDescriptor {
return fd.L0.Parent.(pref.MessageDescriptor)
}
func (fd *Field) Enum() pref.EnumDescriptor {
return fd.L1.Enum
}
func (fd *Field) Message() pref.MessageDescriptor {
if fd.L1.IsWeak {
if d, _ := protoregistry.GlobalFiles.FindDescriptorByName(fd.L1.Message.FullName()); d != nil {
return d.(pref.MessageDescriptor)
}
}
return fd.L1.Message
}
func (fd *Field) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, fd) }
func (fd *Field) ProtoType(pref.FieldDescriptor) {}
// EnforceUTF8 is a pseudo-internal API to determine whether to enforce UTF-8
// validation for the string field. This exists for Google-internal use only
// since proto3 did not enforce UTF-8 validity prior to the open-source release.
// If this method does not exist, the default is to enforce valid UTF-8.
//
// WARNING: This method is exempt from the compatibility promise and may be
// removed in the future without warning.
func (fd *Field) EnforceUTF8() bool {
if fd.L1.HasEnforceUTF8 {
return fd.L1.EnforceUTF8
}
return fd.L0.ParentFile.L1.Syntax == pref.Proto3
}
func (od *Oneof) IsSynthetic() bool {
return od.L0.ParentFile.L1.Syntax == pref.Proto3 && len(od.L1.Fields.List) == 1 && od.L1.Fields.List[0].HasOptionalKeyword()
}
func (od *Oneof) Options() pref.ProtoMessage {
if f := od.L1.Options; f != nil {
return f()
}
return descopts.Oneof
}
func (od *Oneof) Fields() pref.FieldDescriptors { return &od.L1.Fields }
func (od *Oneof) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, od) }
func (od *Oneof) ProtoType(pref.OneofDescriptor) {}
type (
Extension struct {
Base
L1 ExtensionL1
L2 *ExtensionL2 // protected by fileDesc.once
}
ExtensionL1 struct {
Number pref.FieldNumber
Extendee pref.MessageDescriptor
Cardinality pref.Cardinality
Kind pref.Kind
}
ExtensionL2 struct {
Options func() pref.ProtoMessage
StringName stringName
IsProto3Optional bool // promoted from google.protobuf.FieldDescriptorProto
IsPacked bool // promoted from google.protobuf.FieldOptions
Default defaultValue
Enum pref.EnumDescriptor
Message pref.MessageDescriptor
}
)
func (xd *Extension) Options() pref.ProtoMessage {
if f := xd.lazyInit().Options; f != nil {
return f()
}
return descopts.Field
}
func (xd *Extension) Number() pref.FieldNumber { return xd.L1.Number }
func (xd *Extension) Cardinality() pref.Cardinality { return xd.L1.Cardinality }
func (xd *Extension) Kind() pref.Kind { return xd.L1.Kind }
func (xd *Extension) HasJSONName() bool { return xd.lazyInit().StringName.hasJSON }
func (xd *Extension) JSONName() string { return xd.lazyInit().StringName.getJSON(xd) }
func (xd *Extension) TextName() string { return xd.lazyInit().StringName.getText(xd) }
func (xd *Extension) HasPresence() bool { return xd.L1.Cardinality != pref.Repeated }
func (xd *Extension) HasOptionalKeyword() bool {
return (xd.L0.ParentFile.L1.Syntax == pref.Proto2 && xd.L1.Cardinality == pref.Optional) || xd.lazyInit().IsProto3Optional
}
func (xd *Extension) IsPacked() bool { return xd.lazyInit().IsPacked }
func (xd *Extension) IsExtension() bool { return true }
func (xd *Extension) IsWeak() bool { return false }
func (xd *Extension) IsList() bool { return xd.Cardinality() == pref.Repeated }
func (xd *Extension) IsMap() bool { return false }
func (xd *Extension) MapKey() pref.FieldDescriptor { return nil }
func (xd *Extension) MapValue() pref.FieldDescriptor { return nil }
func (xd *Extension) HasDefault() bool { return xd.lazyInit().Default.has }
func (xd *Extension) Default() pref.Value { return xd.lazyInit().Default.get(xd) }
func (xd *Extension) DefaultEnumValue() pref.EnumValueDescriptor { return xd.lazyInit().Default.enum }
func (xd *Extension) ContainingOneof() pref.OneofDescriptor { return nil }
func (xd *Extension) ContainingMessage() pref.MessageDescriptor { return xd.L1.Extendee }
func (xd *Extension) Enum() pref.EnumDescriptor { return xd.lazyInit().Enum }
func (xd *Extension) Message() pref.MessageDescriptor { return xd.lazyInit().Message }
func (xd *Extension) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, xd) }
func (xd *Extension) ProtoType(pref.FieldDescriptor) {}
func (xd *Extension) ProtoInternal(pragma.DoNotImplement) {}
func (xd *Extension) lazyInit() *ExtensionL2 {
xd.L0.ParentFile.lazyInit() // implicitly initializes L2
return xd.L2
}
type (
Service struct {
Base
L1 ServiceL1
L2 *ServiceL2 // protected by fileDesc.once
}
ServiceL1 struct{}
ServiceL2 struct {
Options func() pref.ProtoMessage
Methods Methods
}
Method struct {
Base
L1 MethodL1
}
MethodL1 struct {
Options func() pref.ProtoMessage
Input pref.MessageDescriptor
Output pref.MessageDescriptor
IsStreamingClient bool
IsStreamingServer bool
}
)
func (sd *Service) Options() pref.ProtoMessage {
if f := sd.lazyInit().Options; f != nil {
return f()
}
return descopts.Service
}
func (sd *Service) Methods() pref.MethodDescriptors { return &sd.lazyInit().Methods }
func (sd *Service) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, sd) }
func (sd *Service) ProtoType(pref.ServiceDescriptor) {}
func (sd *Service) ProtoInternal(pragma.DoNotImplement) {}
func (sd *Service) lazyInit() *ServiceL2 {
sd.L0.ParentFile.lazyInit() // implicitly initializes L2
return sd.L2
}
func (md *Method) Options() pref.ProtoMessage {
if f := md.L1.Options; f != nil {
return f()
}
return descopts.Method
}
func (md *Method) Input() pref.MessageDescriptor { return md.L1.Input }
func (md *Method) Output() pref.MessageDescriptor { return md.L1.Output }
func (md *Method) IsStreamingClient() bool { return md.L1.IsStreamingClient }
func (md *Method) IsStreamingServer() bool { return md.L1.IsStreamingServer }
func (md *Method) Format(s fmt.State, r rune) { descfmt.FormatDesc(s, r, md) }
func (md *Method) ProtoType(pref.MethodDescriptor) {}
func (md *Method) ProtoInternal(pragma.DoNotImplement) {}
// Surrogate files are can be used to create standalone descriptors
// where the syntax is only information derived from the parent file.
var (
SurrogateProto2 = &File{L1: FileL1{Syntax: pref.Proto2}, L2: &FileL2{}}
SurrogateProto3 = &File{L1: FileL1{Syntax: pref.Proto3}, L2: &FileL2{}}
)
type (
Base struct {
L0 BaseL0
}
BaseL0 struct {
FullName pref.FullName // must be populated
ParentFile *File // must be populated
Parent pref.Descriptor
Index int
}
)
func (d *Base) Name() pref.Name { return d.L0.FullName.Name() }
func (d *Base) FullName() pref.FullName { return d.L0.FullName }
func (d *Base) ParentFile() pref.FileDescriptor {
if d.L0.ParentFile == SurrogateProto2 || d.L0.ParentFile == SurrogateProto3 {
return nil // surrogate files are not real parents
}
return d.L0.ParentFile
}
func (d *Base) Parent() pref.Descriptor { return d.L0.Parent }
func (d *Base) Index() int { return d.L0.Index }
func (d *Base) Syntax() pref.Syntax { return d.L0.ParentFile.Syntax() }
func (d *Base) IsPlaceholder() bool { return false }
func (d *Base) ProtoInternal(pragma.DoNotImplement) {}
type stringName struct {
hasJSON bool
once sync.Once
nameJSON string
nameText string
}
// InitJSON initializes the name. It is exported for use by other internal packages.
func (s *stringName) InitJSON(name string) {
s.hasJSON = true
s.nameJSON = name
}
func (s *stringName) lazyInit(fd pref.FieldDescriptor) *stringName {
s.once.Do(func() {
if fd.IsExtension() {
// For extensions, JSON and text are formatted the same way.
var name string
if messageset.IsMessageSetExtension(fd) {
name = string("[" + fd.FullName().Parent() + "]")
} else {
name = string("[" + fd.FullName() + "]")
}
s.nameJSON = name
s.nameText = name
} else {
// Format the JSON name.
if !s.hasJSON {
s.nameJSON = strs.JSONCamelCase(string(fd.Name()))
}
// Format the text name.
s.nameText = string(fd.Name())
if fd.Kind() == pref.GroupKind {
s.nameText = string(fd.Message().Name())
}
}
})
return s
}
func (s *stringName) getJSON(fd pref.FieldDescriptor) string { return s.lazyInit(fd).nameJSON }
func (s *stringName) getText(fd pref.FieldDescriptor) string { return s.lazyInit(fd).nameText }
func DefaultValue(v pref.Value, ev pref.EnumValueDescriptor) defaultValue {
dv := defaultValue{has: v.IsValid(), val: v, enum: ev}
if b, ok := v.Interface().([]byte); ok {
// Store a copy of the default bytes, so that we can detect
// accidental mutations of the original value.
dv.bytes = append([]byte(nil), b...)
}
return dv
}
func unmarshalDefault(b []byte, k pref.Kind, pf *File, ed pref.EnumDescriptor) defaultValue {
var evs pref.EnumValueDescriptors
if k == pref.EnumKind {
// If the enum is declared within the same file, be careful not to
// blindly call the Values method, lest we bind ourselves in a deadlock.
if e, ok := ed.(*Enum); ok && e.L0.ParentFile == pf {
evs = &e.L2.Values
} else {
evs = ed.Values()
}
// If we are unable to resolve the enum dependency, use a placeholder
// enum value since we will not be able to parse the default value.
if ed.IsPlaceholder() && pref.Name(b).IsValid() {
v := pref.ValueOfEnum(0)
ev := PlaceholderEnumValue(ed.FullName().Parent().Append(pref.Name(b)))
return DefaultValue(v, ev)
}
}
v, ev, err := defval.Unmarshal(string(b), k, evs, defval.Descriptor)
if err != nil {
panic(err)
}
return DefaultValue(v, ev)
}
type defaultValue struct {
has bool
val pref.Value
enum pref.EnumValueDescriptor
bytes []byte
}
func (dv *defaultValue) get(fd pref.FieldDescriptor) pref.Value {
// Return the zero value as the default if unpopulated.
if !dv.has {
if fd.Cardinality() == pref.Repeated {
return pref.Value{}
}
switch fd.Kind() {
case pref.BoolKind:
return pref.ValueOfBool(false)
case pref.Int32Kind, pref.Sint32Kind, pref.Sfixed32Kind:
return pref.ValueOfInt32(0)
case pref.Int64Kind, pref.Sint64Kind, pref.Sfixed64Kind:
return pref.ValueOfInt64(0)
case pref.Uint32Kind, pref.Fixed32Kind:
return pref.ValueOfUint32(0)
case pref.Uint64Kind, pref.Fixed64Kind:
return pref.ValueOfUint64(0)
case pref.FloatKind:
return pref.ValueOfFloat32(0)
case pref.DoubleKind:
return pref.ValueOfFloat64(0)
case pref.StringKind:
return pref.ValueOfString("")
case pref.BytesKind:
return pref.ValueOfBytes(nil)
case pref.EnumKind:
if evs := fd.Enum().Values(); evs.Len() > 0 {
return pref.ValueOfEnum(evs.Get(0).Number())
}
return pref.ValueOfEnum(0)
}
}
if len(dv.bytes) > 0 && !bytes.Equal(dv.bytes, dv.val.Bytes()) {
// TODO: Avoid panic if we're running with the race detector
// and instead spawn a goroutine that periodically resets
// this value back to the original to induce a race.
panic(fmt.Sprintf("detected mutation on the default bytes for %v", fd.FullName()))
}
return dv.val
}

View File

@ -0,0 +1,471 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package filedesc
import (
"sync"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/internal/strs"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
// fileRaw is a data struct used when initializing a file descriptor from
// a raw FileDescriptorProto.
type fileRaw struct {
builder Builder
allEnums []Enum
allMessages []Message
allExtensions []Extension
allServices []Service
}
func newRawFile(db Builder) *File {
fd := &File{fileRaw: fileRaw{builder: db}}
fd.initDecls(db.NumEnums, db.NumMessages, db.NumExtensions, db.NumServices)
fd.unmarshalSeed(db.RawDescriptor)
// Extended message targets are eagerly resolved since registration
// needs this information at program init time.
for i := range fd.allExtensions {
xd := &fd.allExtensions[i]
xd.L1.Extendee = fd.resolveMessageDependency(xd.L1.Extendee, listExtTargets, int32(i))
}
fd.checkDecls()
return fd
}
// initDecls pre-allocates slices for the exact number of enums, messages
// (including map entries), extensions, and services declared in the proto file.
// This is done to avoid regrowing the slice, which would change the address
// for any previously seen declaration.
//
// The alloc methods "allocates" slices by pulling from the capacity.
func (fd *File) initDecls(numEnums, numMessages, numExtensions, numServices int32) {
fd.allEnums = make([]Enum, 0, numEnums)
fd.allMessages = make([]Message, 0, numMessages)
fd.allExtensions = make([]Extension, 0, numExtensions)
fd.allServices = make([]Service, 0, numServices)
}
func (fd *File) allocEnums(n int) []Enum {
total := len(fd.allEnums)
es := fd.allEnums[total : total+n]
fd.allEnums = fd.allEnums[:total+n]
return es
}
func (fd *File) allocMessages(n int) []Message {
total := len(fd.allMessages)
ms := fd.allMessages[total : total+n]
fd.allMessages = fd.allMessages[:total+n]
return ms
}
func (fd *File) allocExtensions(n int) []Extension {
total := len(fd.allExtensions)
xs := fd.allExtensions[total : total+n]
fd.allExtensions = fd.allExtensions[:total+n]
return xs
}
func (fd *File) allocServices(n int) []Service {
total := len(fd.allServices)
xs := fd.allServices[total : total+n]
fd.allServices = fd.allServices[:total+n]
return xs
}
// checkDecls performs a sanity check that the expected number of expected
// declarations matches the number that were found in the descriptor proto.
func (fd *File) checkDecls() {
switch {
case len(fd.allEnums) != cap(fd.allEnums):
case len(fd.allMessages) != cap(fd.allMessages):
case len(fd.allExtensions) != cap(fd.allExtensions):
case len(fd.allServices) != cap(fd.allServices):
default:
return
}
panic("mismatching cardinality")
}
func (fd *File) unmarshalSeed(b []byte) {
sb := getBuilder()
defer putBuilder(sb)
var prevField pref.FieldNumber
var numEnums, numMessages, numExtensions, numServices int
var posEnums, posMessages, posExtensions, posServices int
b0 := b
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.FileDescriptorProto_Syntax_field_number:
switch string(v) {
case "proto2":
fd.L1.Syntax = pref.Proto2
case "proto3":
fd.L1.Syntax = pref.Proto3
default:
panic("invalid syntax")
}
case genid.FileDescriptorProto_Name_field_number:
fd.L1.Path = sb.MakeString(v)
case genid.FileDescriptorProto_Package_field_number:
fd.L1.Package = pref.FullName(sb.MakeString(v))
case genid.FileDescriptorProto_EnumType_field_number:
if prevField != genid.FileDescriptorProto_EnumType_field_number {
if numEnums > 0 {
panic("non-contiguous repeated field")
}
posEnums = len(b0) - len(b) - n - m
}
numEnums++
case genid.FileDescriptorProto_MessageType_field_number:
if prevField != genid.FileDescriptorProto_MessageType_field_number {
if numMessages > 0 {
panic("non-contiguous repeated field")
}
posMessages = len(b0) - len(b) - n - m
}
numMessages++
case genid.FileDescriptorProto_Extension_field_number:
if prevField != genid.FileDescriptorProto_Extension_field_number {
if numExtensions > 0 {
panic("non-contiguous repeated field")
}
posExtensions = len(b0) - len(b) - n - m
}
numExtensions++
case genid.FileDescriptorProto_Service_field_number:
if prevField != genid.FileDescriptorProto_Service_field_number {
if numServices > 0 {
panic("non-contiguous repeated field")
}
posServices = len(b0) - len(b) - n - m
}
numServices++
}
prevField = num
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
prevField = -1 // ignore known field numbers of unknown wire type
}
}
// If syntax is missing, it is assumed to be proto2.
if fd.L1.Syntax == 0 {
fd.L1.Syntax = pref.Proto2
}
// Must allocate all declarations before parsing each descriptor type
// to ensure we handled all descriptors in "flattened ordering".
if numEnums > 0 {
fd.L1.Enums.List = fd.allocEnums(numEnums)
}
if numMessages > 0 {
fd.L1.Messages.List = fd.allocMessages(numMessages)
}
if numExtensions > 0 {
fd.L1.Extensions.List = fd.allocExtensions(numExtensions)
}
if numServices > 0 {
fd.L1.Services.List = fd.allocServices(numServices)
}
if numEnums > 0 {
b := b0[posEnums:]
for i := range fd.L1.Enums.List {
_, n := protowire.ConsumeVarint(b)
v, m := protowire.ConsumeBytes(b[n:])
fd.L1.Enums.List[i].unmarshalSeed(v, sb, fd, fd, i)
b = b[n+m:]
}
}
if numMessages > 0 {
b := b0[posMessages:]
for i := range fd.L1.Messages.List {
_, n := protowire.ConsumeVarint(b)
v, m := protowire.ConsumeBytes(b[n:])
fd.L1.Messages.List[i].unmarshalSeed(v, sb, fd, fd, i)
b = b[n+m:]
}
}
if numExtensions > 0 {
b := b0[posExtensions:]
for i := range fd.L1.Extensions.List {
_, n := protowire.ConsumeVarint(b)
v, m := protowire.ConsumeBytes(b[n:])
fd.L1.Extensions.List[i].unmarshalSeed(v, sb, fd, fd, i)
b = b[n+m:]
}
}
if numServices > 0 {
b := b0[posServices:]
for i := range fd.L1.Services.List {
_, n := protowire.ConsumeVarint(b)
v, m := protowire.ConsumeBytes(b[n:])
fd.L1.Services.List[i].unmarshalSeed(v, sb, fd, fd, i)
b = b[n+m:]
}
}
}
func (ed *Enum) unmarshalSeed(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
ed.L0.ParentFile = pf
ed.L0.Parent = pd
ed.L0.Index = i
var numValues int
for b := b; len(b) > 0; {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.EnumDescriptorProto_Name_field_number:
ed.L0.FullName = appendFullName(sb, pd.FullName(), v)
case genid.EnumDescriptorProto_Value_field_number:
numValues++
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
// Only construct enum value descriptors for top-level enums since
// they are needed for registration.
if pd != pf {
return
}
ed.L1.eagerValues = true
ed.L2 = new(EnumL2)
ed.L2.Values.List = make([]EnumValue, numValues)
for i := 0; len(b) > 0; {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.EnumDescriptorProto_Value_field_number:
ed.L2.Values.List[i].unmarshalFull(v, sb, pf, ed, i)
i++
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}
func (md *Message) unmarshalSeed(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
md.L0.ParentFile = pf
md.L0.Parent = pd
md.L0.Index = i
var prevField pref.FieldNumber
var numEnums, numMessages, numExtensions int
var posEnums, posMessages, posExtensions int
b0 := b
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.DescriptorProto_Name_field_number:
md.L0.FullName = appendFullName(sb, pd.FullName(), v)
case genid.DescriptorProto_EnumType_field_number:
if prevField != genid.DescriptorProto_EnumType_field_number {
if numEnums > 0 {
panic("non-contiguous repeated field")
}
posEnums = len(b0) - len(b) - n - m
}
numEnums++
case genid.DescriptorProto_NestedType_field_number:
if prevField != genid.DescriptorProto_NestedType_field_number {
if numMessages > 0 {
panic("non-contiguous repeated field")
}
posMessages = len(b0) - len(b) - n - m
}
numMessages++
case genid.DescriptorProto_Extension_field_number:
if prevField != genid.DescriptorProto_Extension_field_number {
if numExtensions > 0 {
panic("non-contiguous repeated field")
}
posExtensions = len(b0) - len(b) - n - m
}
numExtensions++
case genid.DescriptorProto_Options_field_number:
md.unmarshalSeedOptions(v)
}
prevField = num
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
prevField = -1 // ignore known field numbers of unknown wire type
}
}
// Must allocate all declarations before parsing each descriptor type
// to ensure we handled all descriptors in "flattened ordering".
if numEnums > 0 {
md.L1.Enums.List = pf.allocEnums(numEnums)
}
if numMessages > 0 {
md.L1.Messages.List = pf.allocMessages(numMessages)
}
if numExtensions > 0 {
md.L1.Extensions.List = pf.allocExtensions(numExtensions)
}
if numEnums > 0 {
b := b0[posEnums:]
for i := range md.L1.Enums.List {
_, n := protowire.ConsumeVarint(b)
v, m := protowire.ConsumeBytes(b[n:])
md.L1.Enums.List[i].unmarshalSeed(v, sb, pf, md, i)
b = b[n+m:]
}
}
if numMessages > 0 {
b := b0[posMessages:]
for i := range md.L1.Messages.List {
_, n := protowire.ConsumeVarint(b)
v, m := protowire.ConsumeBytes(b[n:])
md.L1.Messages.List[i].unmarshalSeed(v, sb, pf, md, i)
b = b[n+m:]
}
}
if numExtensions > 0 {
b := b0[posExtensions:]
for i := range md.L1.Extensions.List {
_, n := protowire.ConsumeVarint(b)
v, m := protowire.ConsumeBytes(b[n:])
md.L1.Extensions.List[i].unmarshalSeed(v, sb, pf, md, i)
b = b[n+m:]
}
}
}
func (md *Message) unmarshalSeedOptions(b []byte) {
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.MessageOptions_MapEntry_field_number:
md.L1.IsMapEntry = protowire.DecodeBool(v)
case genid.MessageOptions_MessageSetWireFormat_field_number:
md.L1.IsMessageSet = protowire.DecodeBool(v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}
func (xd *Extension) unmarshalSeed(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
xd.L0.ParentFile = pf
xd.L0.Parent = pd
xd.L0.Index = i
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.FieldDescriptorProto_Number_field_number:
xd.L1.Number = pref.FieldNumber(v)
case genid.FieldDescriptorProto_Label_field_number:
xd.L1.Cardinality = pref.Cardinality(v)
case genid.FieldDescriptorProto_Type_field_number:
xd.L1.Kind = pref.Kind(v)
}
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.FieldDescriptorProto_Name_field_number:
xd.L0.FullName = appendFullName(sb, pd.FullName(), v)
case genid.FieldDescriptorProto_Extendee_field_number:
xd.L1.Extendee = PlaceholderMessage(makeFullName(sb, v))
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}
func (sd *Service) unmarshalSeed(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
sd.L0.ParentFile = pf
sd.L0.Parent = pd
sd.L0.Index = i
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.ServiceDescriptorProto_Name_field_number:
sd.L0.FullName = appendFullName(sb, pd.FullName(), v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}
var nameBuilderPool = sync.Pool{
New: func() interface{} { return new(strs.Builder) },
}
func getBuilder() *strs.Builder {
return nameBuilderPool.Get().(*strs.Builder)
}
func putBuilder(b *strs.Builder) {
nameBuilderPool.Put(b)
}
// makeFullName converts b to a protoreflect.FullName,
// where b must start with a leading dot.
func makeFullName(sb *strs.Builder, b []byte) pref.FullName {
if len(b) == 0 || b[0] != '.' {
panic("name reference must be fully qualified")
}
return pref.FullName(sb.MakeString(b[1:]))
}
func appendFullName(sb *strs.Builder, prefix pref.FullName, suffix []byte) pref.FullName {
return sb.AppendFullName(prefix, pref.Name(strs.UnsafeString(suffix)))
}

View File

@ -0,0 +1,704 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package filedesc
import (
"reflect"
"sync"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/descopts"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/internal/strs"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
func (fd *File) lazyRawInit() {
fd.unmarshalFull(fd.builder.RawDescriptor)
fd.resolveMessages()
fd.resolveExtensions()
fd.resolveServices()
}
func (file *File) resolveMessages() {
var depIdx int32
for i := range file.allMessages {
md := &file.allMessages[i]
// Resolve message field dependencies.
for j := range md.L2.Fields.List {
fd := &md.L2.Fields.List[j]
// Weak fields are resolved upon actual use.
if fd.L1.IsWeak {
continue
}
// Resolve message field dependency.
switch fd.L1.Kind {
case pref.EnumKind:
fd.L1.Enum = file.resolveEnumDependency(fd.L1.Enum, listFieldDeps, depIdx)
depIdx++
case pref.MessageKind, pref.GroupKind:
fd.L1.Message = file.resolveMessageDependency(fd.L1.Message, listFieldDeps, depIdx)
depIdx++
}
// Default is resolved here since it depends on Enum being resolved.
if v := fd.L1.Default.val; v.IsValid() {
fd.L1.Default = unmarshalDefault(v.Bytes(), fd.L1.Kind, file, fd.L1.Enum)
}
}
}
}
func (file *File) resolveExtensions() {
var depIdx int32
for i := range file.allExtensions {
xd := &file.allExtensions[i]
// Resolve extension field dependency.
switch xd.L1.Kind {
case pref.EnumKind:
xd.L2.Enum = file.resolveEnumDependency(xd.L2.Enum, listExtDeps, depIdx)
depIdx++
case pref.MessageKind, pref.GroupKind:
xd.L2.Message = file.resolveMessageDependency(xd.L2.Message, listExtDeps, depIdx)
depIdx++
}
// Default is resolved here since it depends on Enum being resolved.
if v := xd.L2.Default.val; v.IsValid() {
xd.L2.Default = unmarshalDefault(v.Bytes(), xd.L1.Kind, file, xd.L2.Enum)
}
}
}
func (file *File) resolveServices() {
var depIdx int32
for i := range file.allServices {
sd := &file.allServices[i]
// Resolve method dependencies.
for j := range sd.L2.Methods.List {
md := &sd.L2.Methods.List[j]
md.L1.Input = file.resolveMessageDependency(md.L1.Input, listMethInDeps, depIdx)
md.L1.Output = file.resolveMessageDependency(md.L1.Output, listMethOutDeps, depIdx)
depIdx++
}
}
}
func (file *File) resolveEnumDependency(ed pref.EnumDescriptor, i, j int32) pref.EnumDescriptor {
r := file.builder.FileRegistry
if r, ok := r.(resolverByIndex); ok {
if ed2 := r.FindEnumByIndex(i, j, file.allEnums, file.allMessages); ed2 != nil {
return ed2
}
}
for i := range file.allEnums {
if ed2 := &file.allEnums[i]; ed2.L0.FullName == ed.FullName() {
return ed2
}
}
if d, _ := r.FindDescriptorByName(ed.FullName()); d != nil {
return d.(pref.EnumDescriptor)
}
return ed
}
func (file *File) resolveMessageDependency(md pref.MessageDescriptor, i, j int32) pref.MessageDescriptor {
r := file.builder.FileRegistry
if r, ok := r.(resolverByIndex); ok {
if md2 := r.FindMessageByIndex(i, j, file.allEnums, file.allMessages); md2 != nil {
return md2
}
}
for i := range file.allMessages {
if md2 := &file.allMessages[i]; md2.L0.FullName == md.FullName() {
return md2
}
}
if d, _ := r.FindDescriptorByName(md.FullName()); d != nil {
return d.(pref.MessageDescriptor)
}
return md
}
func (fd *File) unmarshalFull(b []byte) {
sb := getBuilder()
defer putBuilder(sb)
var enumIdx, messageIdx, extensionIdx, serviceIdx int
var rawOptions []byte
fd.L2 = new(FileL2)
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.FileDescriptorProto_PublicDependency_field_number:
fd.L2.Imports[v].IsPublic = true
case genid.FileDescriptorProto_WeakDependency_field_number:
fd.L2.Imports[v].IsWeak = true
}
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.FileDescriptorProto_Dependency_field_number:
path := sb.MakeString(v)
imp, _ := fd.builder.FileRegistry.FindFileByPath(path)
if imp == nil {
imp = PlaceholderFile(path)
}
fd.L2.Imports = append(fd.L2.Imports, pref.FileImport{FileDescriptor: imp})
case genid.FileDescriptorProto_EnumType_field_number:
fd.L1.Enums.List[enumIdx].unmarshalFull(v, sb)
enumIdx++
case genid.FileDescriptorProto_MessageType_field_number:
fd.L1.Messages.List[messageIdx].unmarshalFull(v, sb)
messageIdx++
case genid.FileDescriptorProto_Extension_field_number:
fd.L1.Extensions.List[extensionIdx].unmarshalFull(v, sb)
extensionIdx++
case genid.FileDescriptorProto_Service_field_number:
fd.L1.Services.List[serviceIdx].unmarshalFull(v, sb)
serviceIdx++
case genid.FileDescriptorProto_Options_field_number:
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
fd.L2.Options = fd.builder.optionsUnmarshaler(&descopts.File, rawOptions)
}
func (ed *Enum) unmarshalFull(b []byte, sb *strs.Builder) {
var rawValues [][]byte
var rawOptions []byte
if !ed.L1.eagerValues {
ed.L2 = new(EnumL2)
}
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.EnumDescriptorProto_Value_field_number:
rawValues = append(rawValues, v)
case genid.EnumDescriptorProto_ReservedName_field_number:
ed.L2.ReservedNames.List = append(ed.L2.ReservedNames.List, pref.Name(sb.MakeString(v)))
case genid.EnumDescriptorProto_ReservedRange_field_number:
ed.L2.ReservedRanges.List = append(ed.L2.ReservedRanges.List, unmarshalEnumReservedRange(v))
case genid.EnumDescriptorProto_Options_field_number:
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
if !ed.L1.eagerValues && len(rawValues) > 0 {
ed.L2.Values.List = make([]EnumValue, len(rawValues))
for i, b := range rawValues {
ed.L2.Values.List[i].unmarshalFull(b, sb, ed.L0.ParentFile, ed, i)
}
}
ed.L2.Options = ed.L0.ParentFile.builder.optionsUnmarshaler(&descopts.Enum, rawOptions)
}
func unmarshalEnumReservedRange(b []byte) (r [2]pref.EnumNumber) {
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.EnumDescriptorProto_EnumReservedRange_Start_field_number:
r[0] = pref.EnumNumber(v)
case genid.EnumDescriptorProto_EnumReservedRange_End_field_number:
r[1] = pref.EnumNumber(v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
return r
}
func (vd *EnumValue) unmarshalFull(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
vd.L0.ParentFile = pf
vd.L0.Parent = pd
vd.L0.Index = i
var rawOptions []byte
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.EnumValueDescriptorProto_Number_field_number:
vd.L1.Number = pref.EnumNumber(v)
}
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.EnumValueDescriptorProto_Name_field_number:
// NOTE: Enum values are in the same scope as the enum parent.
vd.L0.FullName = appendFullName(sb, pd.Parent().FullName(), v)
case genid.EnumValueDescriptorProto_Options_field_number:
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
vd.L1.Options = pf.builder.optionsUnmarshaler(&descopts.EnumValue, rawOptions)
}
func (md *Message) unmarshalFull(b []byte, sb *strs.Builder) {
var rawFields, rawOneofs [][]byte
var enumIdx, messageIdx, extensionIdx int
var rawOptions []byte
md.L2 = new(MessageL2)
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.DescriptorProto_Field_field_number:
rawFields = append(rawFields, v)
case genid.DescriptorProto_OneofDecl_field_number:
rawOneofs = append(rawOneofs, v)
case genid.DescriptorProto_ReservedName_field_number:
md.L2.ReservedNames.List = append(md.L2.ReservedNames.List, pref.Name(sb.MakeString(v)))
case genid.DescriptorProto_ReservedRange_field_number:
md.L2.ReservedRanges.List = append(md.L2.ReservedRanges.List, unmarshalMessageReservedRange(v))
case genid.DescriptorProto_ExtensionRange_field_number:
r, rawOptions := unmarshalMessageExtensionRange(v)
opts := md.L0.ParentFile.builder.optionsUnmarshaler(&descopts.ExtensionRange, rawOptions)
md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, r)
md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, opts)
case genid.DescriptorProto_EnumType_field_number:
md.L1.Enums.List[enumIdx].unmarshalFull(v, sb)
enumIdx++
case genid.DescriptorProto_NestedType_field_number:
md.L1.Messages.List[messageIdx].unmarshalFull(v, sb)
messageIdx++
case genid.DescriptorProto_Extension_field_number:
md.L1.Extensions.List[extensionIdx].unmarshalFull(v, sb)
extensionIdx++
case genid.DescriptorProto_Options_field_number:
md.unmarshalOptions(v)
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
if len(rawFields) > 0 || len(rawOneofs) > 0 {
md.L2.Fields.List = make([]Field, len(rawFields))
md.L2.Oneofs.List = make([]Oneof, len(rawOneofs))
for i, b := range rawFields {
fd := &md.L2.Fields.List[i]
fd.unmarshalFull(b, sb, md.L0.ParentFile, md, i)
if fd.L1.Cardinality == pref.Required {
md.L2.RequiredNumbers.List = append(md.L2.RequiredNumbers.List, fd.L1.Number)
}
}
for i, b := range rawOneofs {
od := &md.L2.Oneofs.List[i]
od.unmarshalFull(b, sb, md.L0.ParentFile, md, i)
}
}
md.L2.Options = md.L0.ParentFile.builder.optionsUnmarshaler(&descopts.Message, rawOptions)
}
func (md *Message) unmarshalOptions(b []byte) {
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.MessageOptions_MapEntry_field_number:
md.L1.IsMapEntry = protowire.DecodeBool(v)
case genid.MessageOptions_MessageSetWireFormat_field_number:
md.L1.IsMessageSet = protowire.DecodeBool(v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}
func unmarshalMessageReservedRange(b []byte) (r [2]pref.FieldNumber) {
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.DescriptorProto_ReservedRange_Start_field_number:
r[0] = pref.FieldNumber(v)
case genid.DescriptorProto_ReservedRange_End_field_number:
r[1] = pref.FieldNumber(v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
return r
}
func unmarshalMessageExtensionRange(b []byte) (r [2]pref.FieldNumber, rawOptions []byte) {
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.DescriptorProto_ExtensionRange_Start_field_number:
r[0] = pref.FieldNumber(v)
case genid.DescriptorProto_ExtensionRange_End_field_number:
r[1] = pref.FieldNumber(v)
}
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.DescriptorProto_ExtensionRange_Options_field_number:
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
return r, rawOptions
}
func (fd *Field) unmarshalFull(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
fd.L0.ParentFile = pf
fd.L0.Parent = pd
fd.L0.Index = i
var rawTypeName []byte
var rawOptions []byte
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.FieldDescriptorProto_Number_field_number:
fd.L1.Number = pref.FieldNumber(v)
case genid.FieldDescriptorProto_Label_field_number:
fd.L1.Cardinality = pref.Cardinality(v)
case genid.FieldDescriptorProto_Type_field_number:
fd.L1.Kind = pref.Kind(v)
case genid.FieldDescriptorProto_OneofIndex_field_number:
// In Message.unmarshalFull, we allocate slices for both
// the field and oneof descriptors before unmarshaling either
// of them. This ensures pointers to slice elements are stable.
od := &pd.(*Message).L2.Oneofs.List[v]
od.L1.Fields.List = append(od.L1.Fields.List, fd)
if fd.L1.ContainingOneof != nil {
panic("oneof type already set")
}
fd.L1.ContainingOneof = od
case genid.FieldDescriptorProto_Proto3Optional_field_number:
fd.L1.IsProto3Optional = protowire.DecodeBool(v)
}
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.FieldDescriptorProto_Name_field_number:
fd.L0.FullName = appendFullName(sb, pd.FullName(), v)
case genid.FieldDescriptorProto_JsonName_field_number:
fd.L1.StringName.InitJSON(sb.MakeString(v))
case genid.FieldDescriptorProto_DefaultValue_field_number:
fd.L1.Default.val = pref.ValueOfBytes(v) // temporarily store as bytes; later resolved in resolveMessages
case genid.FieldDescriptorProto_TypeName_field_number:
rawTypeName = v
case genid.FieldDescriptorProto_Options_field_number:
fd.unmarshalOptions(v)
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
if rawTypeName != nil {
name := makeFullName(sb, rawTypeName)
switch fd.L1.Kind {
case pref.EnumKind:
fd.L1.Enum = PlaceholderEnum(name)
case pref.MessageKind, pref.GroupKind:
fd.L1.Message = PlaceholderMessage(name)
}
}
fd.L1.Options = pf.builder.optionsUnmarshaler(&descopts.Field, rawOptions)
}
func (fd *Field) unmarshalOptions(b []byte) {
const FieldOptions_EnforceUTF8 = 13
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.FieldOptions_Packed_field_number:
fd.L1.HasPacked = true
fd.L1.IsPacked = protowire.DecodeBool(v)
case genid.FieldOptions_Weak_field_number:
fd.L1.IsWeak = protowire.DecodeBool(v)
case FieldOptions_EnforceUTF8:
fd.L1.HasEnforceUTF8 = true
fd.L1.EnforceUTF8 = protowire.DecodeBool(v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}
func (od *Oneof) unmarshalFull(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
od.L0.ParentFile = pf
od.L0.Parent = pd
od.L0.Index = i
var rawOptions []byte
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.OneofDescriptorProto_Name_field_number:
od.L0.FullName = appendFullName(sb, pd.FullName(), v)
case genid.OneofDescriptorProto_Options_field_number:
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
od.L1.Options = pf.builder.optionsUnmarshaler(&descopts.Oneof, rawOptions)
}
func (xd *Extension) unmarshalFull(b []byte, sb *strs.Builder) {
var rawTypeName []byte
var rawOptions []byte
xd.L2 = new(ExtensionL2)
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.FieldDescriptorProto_Proto3Optional_field_number:
xd.L2.IsProto3Optional = protowire.DecodeBool(v)
}
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.FieldDescriptorProto_JsonName_field_number:
xd.L2.StringName.InitJSON(sb.MakeString(v))
case genid.FieldDescriptorProto_DefaultValue_field_number:
xd.L2.Default.val = pref.ValueOfBytes(v) // temporarily store as bytes; later resolved in resolveExtensions
case genid.FieldDescriptorProto_TypeName_field_number:
rawTypeName = v
case genid.FieldDescriptorProto_Options_field_number:
xd.unmarshalOptions(v)
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
if rawTypeName != nil {
name := makeFullName(sb, rawTypeName)
switch xd.L1.Kind {
case pref.EnumKind:
xd.L2.Enum = PlaceholderEnum(name)
case pref.MessageKind, pref.GroupKind:
xd.L2.Message = PlaceholderMessage(name)
}
}
xd.L2.Options = xd.L0.ParentFile.builder.optionsUnmarshaler(&descopts.Field, rawOptions)
}
func (xd *Extension) unmarshalOptions(b []byte) {
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.FieldOptions_Packed_field_number:
xd.L2.IsPacked = protowire.DecodeBool(v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
}
func (sd *Service) unmarshalFull(b []byte, sb *strs.Builder) {
var rawMethods [][]byte
var rawOptions []byte
sd.L2 = new(ServiceL2)
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.ServiceDescriptorProto_Method_field_number:
rawMethods = append(rawMethods, v)
case genid.ServiceDescriptorProto_Options_field_number:
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
if len(rawMethods) > 0 {
sd.L2.Methods.List = make([]Method, len(rawMethods))
for i, b := range rawMethods {
sd.L2.Methods.List[i].unmarshalFull(b, sb, sd.L0.ParentFile, sd, i)
}
}
sd.L2.Options = sd.L0.ParentFile.builder.optionsUnmarshaler(&descopts.Service, rawOptions)
}
func (md *Method) unmarshalFull(b []byte, sb *strs.Builder, pf *File, pd pref.Descriptor, i int) {
md.L0.ParentFile = pf
md.L0.Parent = pd
md.L0.Index = i
var rawOptions []byte
for len(b) > 0 {
num, typ, n := protowire.ConsumeTag(b)
b = b[n:]
switch typ {
case protowire.VarintType:
v, m := protowire.ConsumeVarint(b)
b = b[m:]
switch num {
case genid.MethodDescriptorProto_ClientStreaming_field_number:
md.L1.IsStreamingClient = protowire.DecodeBool(v)
case genid.MethodDescriptorProto_ServerStreaming_field_number:
md.L1.IsStreamingServer = protowire.DecodeBool(v)
}
case protowire.BytesType:
v, m := protowire.ConsumeBytes(b)
b = b[m:]
switch num {
case genid.MethodDescriptorProto_Name_field_number:
md.L0.FullName = appendFullName(sb, pd.FullName(), v)
case genid.MethodDescriptorProto_InputType_field_number:
md.L1.Input = PlaceholderMessage(makeFullName(sb, v))
case genid.MethodDescriptorProto_OutputType_field_number:
md.L1.Output = PlaceholderMessage(makeFullName(sb, v))
case genid.MethodDescriptorProto_Options_field_number:
rawOptions = appendOptions(rawOptions, v)
}
default:
m := protowire.ConsumeFieldValue(num, typ, b)
b = b[m:]
}
}
md.L1.Options = pf.builder.optionsUnmarshaler(&descopts.Method, rawOptions)
}
// appendOptions appends src to dst, where the returned slice is never nil.
// This is necessary to distinguish between empty and unpopulated options.
func appendOptions(dst, src []byte) []byte {
if dst == nil {
dst = []byte{}
}
return append(dst, src...)
}
// optionsUnmarshaler constructs a lazy unmarshal function for an options message.
//
// The type of message to unmarshal to is passed as a pointer since the
// vars in descopts may not yet be populated at the time this function is called.
func (db *Builder) optionsUnmarshaler(p *pref.ProtoMessage, b []byte) func() pref.ProtoMessage {
if b == nil {
return nil
}
var opts pref.ProtoMessage
var once sync.Once
return func() pref.ProtoMessage {
once.Do(func() {
if *p == nil {
panic("Descriptor.Options called without importing the descriptor package")
}
opts = reflect.New(reflect.TypeOf(*p).Elem()).Interface().(pref.ProtoMessage)
if err := (proto.UnmarshalOptions{
AllowPartial: true,
Resolver: db.TypeResolver,
}).Unmarshal(b, opts); err != nil {
panic(err)
}
})
return opts
}
}

View File

@ -0,0 +1,450 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package filedesc
import (
"fmt"
"math"
"sort"
"sync"
"google.golang.org/protobuf/internal/genid"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/descfmt"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/reflect/protoreflect"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
type FileImports []pref.FileImport
func (p *FileImports) Len() int { return len(*p) }
func (p *FileImports) Get(i int) pref.FileImport { return (*p)[i] }
func (p *FileImports) Format(s fmt.State, r rune) { descfmt.FormatList(s, r, p) }
func (p *FileImports) ProtoInternal(pragma.DoNotImplement) {}
type Names struct {
List []pref.Name
once sync.Once
has map[pref.Name]int // protected by once
}
func (p *Names) Len() int { return len(p.List) }
func (p *Names) Get(i int) pref.Name { return p.List[i] }
func (p *Names) Has(s pref.Name) bool { return p.lazyInit().has[s] > 0 }
func (p *Names) Format(s fmt.State, r rune) { descfmt.FormatList(s, r, p) }
func (p *Names) ProtoInternal(pragma.DoNotImplement) {}
func (p *Names) lazyInit() *Names {
p.once.Do(func() {
if len(p.List) > 0 {
p.has = make(map[pref.Name]int, len(p.List))
for _, s := range p.List {
p.has[s] = p.has[s] + 1
}
}
})
return p
}
// CheckValid reports any errors with the set of names with an error message
// that completes the sentence: "ranges is invalid because it has ..."
func (p *Names) CheckValid() error {
for s, n := range p.lazyInit().has {
switch {
case n > 1:
return errors.New("duplicate name: %q", s)
case false && !s.IsValid():
// NOTE: The C++ implementation does not validate the identifier.
// See https://github.com/protocolbuffers/protobuf/issues/6335.
return errors.New("invalid name: %q", s)
}
}
return nil
}
type EnumRanges struct {
List [][2]pref.EnumNumber // start inclusive; end inclusive
once sync.Once
sorted [][2]pref.EnumNumber // protected by once
}
func (p *EnumRanges) Len() int { return len(p.List) }
func (p *EnumRanges) Get(i int) [2]pref.EnumNumber { return p.List[i] }
func (p *EnumRanges) Has(n pref.EnumNumber) bool {
for ls := p.lazyInit().sorted; len(ls) > 0; {
i := len(ls) / 2
switch r := enumRange(ls[i]); {
case n < r.Start():
ls = ls[:i] // search lower
case n > r.End():
ls = ls[i+1:] // search upper
default:
return true
}
}
return false
}
func (p *EnumRanges) Format(s fmt.State, r rune) { descfmt.FormatList(s, r, p) }
func (p *EnumRanges) ProtoInternal(pragma.DoNotImplement) {}
func (p *EnumRanges) lazyInit() *EnumRanges {
p.once.Do(func() {
p.sorted = append(p.sorted, p.List...)
sort.Slice(p.sorted, func(i, j int) bool {
return p.sorted[i][0] < p.sorted[j][0]
})
})
return p
}
// CheckValid reports any errors with the set of names with an error message
// that completes the sentence: "ranges is invalid because it has ..."
func (p *EnumRanges) CheckValid() error {
var rp enumRange
for i, r := range p.lazyInit().sorted {
r := enumRange(r)
switch {
case !(r.Start() <= r.End()):
return errors.New("invalid range: %v", r)
case !(rp.End() < r.Start()) && i > 0:
return errors.New("overlapping ranges: %v with %v", rp, r)
}
rp = r
}
return nil
}
type enumRange [2]protoreflect.EnumNumber
func (r enumRange) Start() protoreflect.EnumNumber { return r[0] } // inclusive
func (r enumRange) End() protoreflect.EnumNumber { return r[1] } // inclusive
func (r enumRange) String() string {
if r.Start() == r.End() {
return fmt.Sprintf("%d", r.Start())
}
return fmt.Sprintf("%d to %d", r.Start(), r.End())
}
type FieldRanges struct {
List [][2]pref.FieldNumber // start inclusive; end exclusive
once sync.Once
sorted [][2]pref.FieldNumber // protected by once
}
func (p *FieldRanges) Len() int { return len(p.List) }
func (p *FieldRanges) Get(i int) [2]pref.FieldNumber { return p.List[i] }
func (p *FieldRanges) Has(n pref.FieldNumber) bool {
for ls := p.lazyInit().sorted; len(ls) > 0; {
i := len(ls) / 2
switch r := fieldRange(ls[i]); {
case n < r.Start():
ls = ls[:i] // search lower
case n > r.End():
ls = ls[i+1:] // search upper
default:
return true
}
}
return false
}
func (p *FieldRanges) Format(s fmt.State, r rune) { descfmt.FormatList(s, r, p) }
func (p *FieldRanges) ProtoInternal(pragma.DoNotImplement) {}
func (p *FieldRanges) lazyInit() *FieldRanges {
p.once.Do(func() {
p.sorted = append(p.sorted, p.List...)
sort.Slice(p.sorted, func(i, j int) bool {
return p.sorted[i][0] < p.sorted[j][0]
})
})
return p
}
// CheckValid reports any errors with the set of ranges with an error message
// that completes the sentence: "ranges is invalid because it has ..."
func (p *FieldRanges) CheckValid(isMessageSet bool) error {
var rp fieldRange
for i, r := range p.lazyInit().sorted {
r := fieldRange(r)
switch {
case !isValidFieldNumber(r.Start(), isMessageSet):
return errors.New("invalid field number: %d", r.Start())
case !isValidFieldNumber(r.End(), isMessageSet):
return errors.New("invalid field number: %d", r.End())
case !(r.Start() <= r.End()):
return errors.New("invalid range: %v", r)
case !(rp.End() < r.Start()) && i > 0:
return errors.New("overlapping ranges: %v with %v", rp, r)
}
rp = r
}
return nil
}
// isValidFieldNumber reports whether the field number is valid.
// Unlike the FieldNumber.IsValid method, it allows ranges that cover the
// reserved number range.
func isValidFieldNumber(n protoreflect.FieldNumber, isMessageSet bool) bool {
return protowire.MinValidNumber <= n && (n <= protowire.MaxValidNumber || isMessageSet)
}
// CheckOverlap reports an error if p and q overlap.
func (p *FieldRanges) CheckOverlap(q *FieldRanges) error {
rps := p.lazyInit().sorted
rqs := q.lazyInit().sorted
for pi, qi := 0, 0; pi < len(rps) && qi < len(rqs); {
rp := fieldRange(rps[pi])
rq := fieldRange(rqs[qi])
if !(rp.End() < rq.Start() || rq.End() < rp.Start()) {
return errors.New("overlapping ranges: %v with %v", rp, rq)
}
if rp.Start() < rq.Start() {
pi++
} else {
qi++
}
}
return nil
}
type fieldRange [2]protoreflect.FieldNumber
func (r fieldRange) Start() protoreflect.FieldNumber { return r[0] } // inclusive
func (r fieldRange) End() protoreflect.FieldNumber { return r[1] - 1 } // inclusive
func (r fieldRange) String() string {
if r.Start() == r.End() {
return fmt.Sprintf("%d", r.Start())
}
return fmt.Sprintf("%d to %d", r.Start(), r.End())
}
type FieldNumbers struct {
List []pref.FieldNumber
once sync.Once
has map[pref.FieldNumber]struct{} // protected by once
}
func (p *FieldNumbers) Len() int { return len(p.List) }
func (p *FieldNumbers) Get(i int) pref.FieldNumber { return p.List[i] }
func (p *FieldNumbers) Has(n pref.FieldNumber) bool {
p.once.Do(func() {
if len(p.List) > 0 {
p.has = make(map[pref.FieldNumber]struct{}, len(p.List))
for _, n := range p.List {
p.has[n] = struct{}{}
}
}
})
_, ok := p.has[n]
return ok
}
func (p *FieldNumbers) Format(s fmt.State, r rune) { descfmt.FormatList(s, r, p) }
func (p *FieldNumbers) ProtoInternal(pragma.DoNotImplement) {}
type OneofFields struct {
List []pref.FieldDescriptor
once sync.Once
byName map[pref.Name]pref.FieldDescriptor // protected by once
byJSON map[string]pref.FieldDescriptor // protected by once
byText map[string]pref.FieldDescriptor // protected by once
byNum map[pref.FieldNumber]pref.FieldDescriptor // protected by once
}
func (p *OneofFields) Len() int { return len(p.List) }
func (p *OneofFields) Get(i int) pref.FieldDescriptor { return p.List[i] }
func (p *OneofFields) ByName(s pref.Name) pref.FieldDescriptor { return p.lazyInit().byName[s] }
func (p *OneofFields) ByJSONName(s string) pref.FieldDescriptor { return p.lazyInit().byJSON[s] }
func (p *OneofFields) ByTextName(s string) pref.FieldDescriptor { return p.lazyInit().byText[s] }
func (p *OneofFields) ByNumber(n pref.FieldNumber) pref.FieldDescriptor { return p.lazyInit().byNum[n] }
func (p *OneofFields) Format(s fmt.State, r rune) { descfmt.FormatList(s, r, p) }
func (p *OneofFields) ProtoInternal(pragma.DoNotImplement) {}
func (p *OneofFields) lazyInit() *OneofFields {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[pref.Name]pref.FieldDescriptor, len(p.List))
p.byJSON = make(map[string]pref.FieldDescriptor, len(p.List))
p.byText = make(map[string]pref.FieldDescriptor, len(p.List))
p.byNum = make(map[pref.FieldNumber]pref.FieldDescriptor, len(p.List))
for _, f := range p.List {
// Field names and numbers are guaranteed to be unique.
p.byName[f.Name()] = f
p.byJSON[f.JSONName()] = f
p.byText[f.TextName()] = f
p.byNum[f.Number()] = f
}
}
})
return p
}
type SourceLocations struct {
// List is a list of SourceLocations.
// The SourceLocation.Next field does not need to be populated
// as it will be lazily populated upon first need.
List []pref.SourceLocation
// File is the parent file descriptor that these locations are relative to.
// If non-nil, ByDescriptor verifies that the provided descriptor
// is a child of this file descriptor.
File pref.FileDescriptor
once sync.Once
byPath map[pathKey]int
}
func (p *SourceLocations) Len() int { return len(p.List) }
func (p *SourceLocations) Get(i int) pref.SourceLocation { return p.lazyInit().List[i] }
func (p *SourceLocations) byKey(k pathKey) pref.SourceLocation {
if i, ok := p.lazyInit().byPath[k]; ok {
return p.List[i]
}
return pref.SourceLocation{}
}
func (p *SourceLocations) ByPath(path pref.SourcePath) pref.SourceLocation {
return p.byKey(newPathKey(path))
}
func (p *SourceLocations) ByDescriptor(desc pref.Descriptor) pref.SourceLocation {
if p.File != nil && desc != nil && p.File != desc.ParentFile() {
return pref.SourceLocation{} // mismatching parent files
}
var pathArr [16]int32
path := pathArr[:0]
for {
switch desc.(type) {
case pref.FileDescriptor:
// Reverse the path since it was constructed in reverse.
for i, j := 0, len(path)-1; i < j; i, j = i+1, j-1 {
path[i], path[j] = path[j], path[i]
}
return p.byKey(newPathKey(path))
case pref.MessageDescriptor:
path = append(path, int32(desc.Index()))
desc = desc.Parent()
switch desc.(type) {
case pref.FileDescriptor:
path = append(path, int32(genid.FileDescriptorProto_MessageType_field_number))
case pref.MessageDescriptor:
path = append(path, int32(genid.DescriptorProto_NestedType_field_number))
default:
return pref.SourceLocation{}
}
case pref.FieldDescriptor:
isExtension := desc.(pref.FieldDescriptor).IsExtension()
path = append(path, int32(desc.Index()))
desc = desc.Parent()
if isExtension {
switch desc.(type) {
case pref.FileDescriptor:
path = append(path, int32(genid.FileDescriptorProto_Extension_field_number))
case pref.MessageDescriptor:
path = append(path, int32(genid.DescriptorProto_Extension_field_number))
default:
return pref.SourceLocation{}
}
} else {
switch desc.(type) {
case pref.MessageDescriptor:
path = append(path, int32(genid.DescriptorProto_Field_field_number))
default:
return pref.SourceLocation{}
}
}
case pref.OneofDescriptor:
path = append(path, int32(desc.Index()))
desc = desc.Parent()
switch desc.(type) {
case pref.MessageDescriptor:
path = append(path, int32(genid.DescriptorProto_OneofDecl_field_number))
default:
return pref.SourceLocation{}
}
case pref.EnumDescriptor:
path = append(path, int32(desc.Index()))
desc = desc.Parent()
switch desc.(type) {
case pref.FileDescriptor:
path = append(path, int32(genid.FileDescriptorProto_EnumType_field_number))
case pref.MessageDescriptor:
path = append(path, int32(genid.DescriptorProto_EnumType_field_number))
default:
return pref.SourceLocation{}
}
case pref.EnumValueDescriptor:
path = append(path, int32(desc.Index()))
desc = desc.Parent()
switch desc.(type) {
case pref.EnumDescriptor:
path = append(path, int32(genid.EnumDescriptorProto_Value_field_number))
default:
return pref.SourceLocation{}
}
case pref.ServiceDescriptor:
path = append(path, int32(desc.Index()))
desc = desc.Parent()
switch desc.(type) {
case pref.FileDescriptor:
path = append(path, int32(genid.FileDescriptorProto_Service_field_number))
default:
return pref.SourceLocation{}
}
case pref.MethodDescriptor:
path = append(path, int32(desc.Index()))
desc = desc.Parent()
switch desc.(type) {
case pref.ServiceDescriptor:
path = append(path, int32(genid.ServiceDescriptorProto_Method_field_number))
default:
return pref.SourceLocation{}
}
default:
return pref.SourceLocation{}
}
}
}
func (p *SourceLocations) lazyInit() *SourceLocations {
p.once.Do(func() {
if len(p.List) > 0 {
// Collect all the indexes for a given path.
pathIdxs := make(map[pathKey][]int, len(p.List))
for i, l := range p.List {
k := newPathKey(l.Path)
pathIdxs[k] = append(pathIdxs[k], i)
}
// Update the next index for all locations.
p.byPath = make(map[pathKey]int, len(p.List))
for k, idxs := range pathIdxs {
for i := 0; i < len(idxs)-1; i++ {
p.List[idxs[i]].Next = idxs[i+1]
}
p.List[idxs[len(idxs)-1]].Next = 0
p.byPath[k] = idxs[0] // record the first location for this path
}
}
})
return p
}
func (p *SourceLocations) ProtoInternal(pragma.DoNotImplement) {}
// pathKey is a comparable representation of protoreflect.SourcePath.
type pathKey struct {
arr [16]uint8 // first n-1 path segments; last element is the length
str string // used if the path does not fit in arr
}
func newPathKey(p pref.SourcePath) (k pathKey) {
if len(p) < len(k.arr) {
for i, ps := range p {
if ps < 0 || math.MaxUint8 <= ps {
return pathKey{str: p.String()}
}
k.arr[i] = uint8(ps)
}
k.arr[len(k.arr)-1] = uint8(len(p))
return k
}
return pathKey{str: p.String()}
}

View File

@ -0,0 +1,356 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-types. DO NOT EDIT.
package filedesc
import (
"fmt"
"sync"
"google.golang.org/protobuf/internal/descfmt"
"google.golang.org/protobuf/internal/pragma"
"google.golang.org/protobuf/reflect/protoreflect"
)
type Enums struct {
List []Enum
once sync.Once
byName map[protoreflect.Name]*Enum // protected by once
}
func (p *Enums) Len() int {
return len(p.List)
}
func (p *Enums) Get(i int) protoreflect.EnumDescriptor {
return &p.List[i]
}
func (p *Enums) ByName(s protoreflect.Name) protoreflect.EnumDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *Enums) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *Enums) ProtoInternal(pragma.DoNotImplement) {}
func (p *Enums) lazyInit() *Enums {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*Enum, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
}
}
})
return p
}
type EnumValues struct {
List []EnumValue
once sync.Once
byName map[protoreflect.Name]*EnumValue // protected by once
byNum map[protoreflect.EnumNumber]*EnumValue // protected by once
}
func (p *EnumValues) Len() int {
return len(p.List)
}
func (p *EnumValues) Get(i int) protoreflect.EnumValueDescriptor {
return &p.List[i]
}
func (p *EnumValues) ByName(s protoreflect.Name) protoreflect.EnumValueDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *EnumValues) ByNumber(n protoreflect.EnumNumber) protoreflect.EnumValueDescriptor {
if d := p.lazyInit().byNum[n]; d != nil {
return d
}
return nil
}
func (p *EnumValues) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *EnumValues) ProtoInternal(pragma.DoNotImplement) {}
func (p *EnumValues) lazyInit() *EnumValues {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*EnumValue, len(p.List))
p.byNum = make(map[protoreflect.EnumNumber]*EnumValue, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
if _, ok := p.byNum[d.Number()]; !ok {
p.byNum[d.Number()] = d
}
}
}
})
return p
}
type Messages struct {
List []Message
once sync.Once
byName map[protoreflect.Name]*Message // protected by once
}
func (p *Messages) Len() int {
return len(p.List)
}
func (p *Messages) Get(i int) protoreflect.MessageDescriptor {
return &p.List[i]
}
func (p *Messages) ByName(s protoreflect.Name) protoreflect.MessageDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *Messages) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *Messages) ProtoInternal(pragma.DoNotImplement) {}
func (p *Messages) lazyInit() *Messages {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*Message, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
}
}
})
return p
}
type Fields struct {
List []Field
once sync.Once
byName map[protoreflect.Name]*Field // protected by once
byJSON map[string]*Field // protected by once
byText map[string]*Field // protected by once
byNum map[protoreflect.FieldNumber]*Field // protected by once
}
func (p *Fields) Len() int {
return len(p.List)
}
func (p *Fields) Get(i int) protoreflect.FieldDescriptor {
return &p.List[i]
}
func (p *Fields) ByName(s protoreflect.Name) protoreflect.FieldDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *Fields) ByJSONName(s string) protoreflect.FieldDescriptor {
if d := p.lazyInit().byJSON[s]; d != nil {
return d
}
return nil
}
func (p *Fields) ByTextName(s string) protoreflect.FieldDescriptor {
if d := p.lazyInit().byText[s]; d != nil {
return d
}
return nil
}
func (p *Fields) ByNumber(n protoreflect.FieldNumber) protoreflect.FieldDescriptor {
if d := p.lazyInit().byNum[n]; d != nil {
return d
}
return nil
}
func (p *Fields) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *Fields) ProtoInternal(pragma.DoNotImplement) {}
func (p *Fields) lazyInit() *Fields {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*Field, len(p.List))
p.byJSON = make(map[string]*Field, len(p.List))
p.byText = make(map[string]*Field, len(p.List))
p.byNum = make(map[protoreflect.FieldNumber]*Field, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
if _, ok := p.byJSON[d.JSONName()]; !ok {
p.byJSON[d.JSONName()] = d
}
if _, ok := p.byText[d.TextName()]; !ok {
p.byText[d.TextName()] = d
}
if _, ok := p.byNum[d.Number()]; !ok {
p.byNum[d.Number()] = d
}
}
}
})
return p
}
type Oneofs struct {
List []Oneof
once sync.Once
byName map[protoreflect.Name]*Oneof // protected by once
}
func (p *Oneofs) Len() int {
return len(p.List)
}
func (p *Oneofs) Get(i int) protoreflect.OneofDescriptor {
return &p.List[i]
}
func (p *Oneofs) ByName(s protoreflect.Name) protoreflect.OneofDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *Oneofs) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *Oneofs) ProtoInternal(pragma.DoNotImplement) {}
func (p *Oneofs) lazyInit() *Oneofs {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*Oneof, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
}
}
})
return p
}
type Extensions struct {
List []Extension
once sync.Once
byName map[protoreflect.Name]*Extension // protected by once
}
func (p *Extensions) Len() int {
return len(p.List)
}
func (p *Extensions) Get(i int) protoreflect.ExtensionDescriptor {
return &p.List[i]
}
func (p *Extensions) ByName(s protoreflect.Name) protoreflect.ExtensionDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *Extensions) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *Extensions) ProtoInternal(pragma.DoNotImplement) {}
func (p *Extensions) lazyInit() *Extensions {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*Extension, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
}
}
})
return p
}
type Services struct {
List []Service
once sync.Once
byName map[protoreflect.Name]*Service // protected by once
}
func (p *Services) Len() int {
return len(p.List)
}
func (p *Services) Get(i int) protoreflect.ServiceDescriptor {
return &p.List[i]
}
func (p *Services) ByName(s protoreflect.Name) protoreflect.ServiceDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *Services) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *Services) ProtoInternal(pragma.DoNotImplement) {}
func (p *Services) lazyInit() *Services {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*Service, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
}
}
})
return p
}
type Methods struct {
List []Method
once sync.Once
byName map[protoreflect.Name]*Method // protected by once
}
func (p *Methods) Len() int {
return len(p.List)
}
func (p *Methods) Get(i int) protoreflect.MethodDescriptor {
return &p.List[i]
}
func (p *Methods) ByName(s protoreflect.Name) protoreflect.MethodDescriptor {
if d := p.lazyInit().byName[s]; d != nil {
return d
}
return nil
}
func (p *Methods) Format(s fmt.State, r rune) {
descfmt.FormatList(s, r, p)
}
func (p *Methods) ProtoInternal(pragma.DoNotImplement) {}
func (p *Methods) lazyInit() *Methods {
p.once.Do(func() {
if len(p.List) > 0 {
p.byName = make(map[protoreflect.Name]*Method, len(p.List))
for i := range p.List {
d := &p.List[i]
if _, ok := p.byName[d.Name()]; !ok {
p.byName[d.Name()] = d
}
}
}
})
return p
}

View File

@ -0,0 +1,107 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package filedesc
import (
"google.golang.org/protobuf/internal/descopts"
"google.golang.org/protobuf/internal/pragma"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
var (
emptyNames = new(Names)
emptyEnumRanges = new(EnumRanges)
emptyFieldRanges = new(FieldRanges)
emptyFieldNumbers = new(FieldNumbers)
emptySourceLocations = new(SourceLocations)
emptyFiles = new(FileImports)
emptyMessages = new(Messages)
emptyFields = new(Fields)
emptyOneofs = new(Oneofs)
emptyEnums = new(Enums)
emptyEnumValues = new(EnumValues)
emptyExtensions = new(Extensions)
emptyServices = new(Services)
)
// PlaceholderFile is a placeholder, representing only the file path.
type PlaceholderFile string
func (f PlaceholderFile) ParentFile() pref.FileDescriptor { return f }
func (f PlaceholderFile) Parent() pref.Descriptor { return nil }
func (f PlaceholderFile) Index() int { return 0 }
func (f PlaceholderFile) Syntax() pref.Syntax { return 0 }
func (f PlaceholderFile) Name() pref.Name { return "" }
func (f PlaceholderFile) FullName() pref.FullName { return "" }
func (f PlaceholderFile) IsPlaceholder() bool { return true }
func (f PlaceholderFile) Options() pref.ProtoMessage { return descopts.File }
func (f PlaceholderFile) Path() string { return string(f) }
func (f PlaceholderFile) Package() pref.FullName { return "" }
func (f PlaceholderFile) Imports() pref.FileImports { return emptyFiles }
func (f PlaceholderFile) Messages() pref.MessageDescriptors { return emptyMessages }
func (f PlaceholderFile) Enums() pref.EnumDescriptors { return emptyEnums }
func (f PlaceholderFile) Extensions() pref.ExtensionDescriptors { return emptyExtensions }
func (f PlaceholderFile) Services() pref.ServiceDescriptors { return emptyServices }
func (f PlaceholderFile) SourceLocations() pref.SourceLocations { return emptySourceLocations }
func (f PlaceholderFile) ProtoType(pref.FileDescriptor) { return }
func (f PlaceholderFile) ProtoInternal(pragma.DoNotImplement) { return }
// PlaceholderEnum is a placeholder, representing only the full name.
type PlaceholderEnum pref.FullName
func (e PlaceholderEnum) ParentFile() pref.FileDescriptor { return nil }
func (e PlaceholderEnum) Parent() pref.Descriptor { return nil }
func (e PlaceholderEnum) Index() int { return 0 }
func (e PlaceholderEnum) Syntax() pref.Syntax { return 0 }
func (e PlaceholderEnum) Name() pref.Name { return pref.FullName(e).Name() }
func (e PlaceholderEnum) FullName() pref.FullName { return pref.FullName(e) }
func (e PlaceholderEnum) IsPlaceholder() bool { return true }
func (e PlaceholderEnum) Options() pref.ProtoMessage { return descopts.Enum }
func (e PlaceholderEnum) Values() pref.EnumValueDescriptors { return emptyEnumValues }
func (e PlaceholderEnum) ReservedNames() pref.Names { return emptyNames }
func (e PlaceholderEnum) ReservedRanges() pref.EnumRanges { return emptyEnumRanges }
func (e PlaceholderEnum) ProtoType(pref.EnumDescriptor) { return }
func (e PlaceholderEnum) ProtoInternal(pragma.DoNotImplement) { return }
// PlaceholderEnumValue is a placeholder, representing only the full name.
type PlaceholderEnumValue pref.FullName
func (e PlaceholderEnumValue) ParentFile() pref.FileDescriptor { return nil }
func (e PlaceholderEnumValue) Parent() pref.Descriptor { return nil }
func (e PlaceholderEnumValue) Index() int { return 0 }
func (e PlaceholderEnumValue) Syntax() pref.Syntax { return 0 }
func (e PlaceholderEnumValue) Name() pref.Name { return pref.FullName(e).Name() }
func (e PlaceholderEnumValue) FullName() pref.FullName { return pref.FullName(e) }
func (e PlaceholderEnumValue) IsPlaceholder() bool { return true }
func (e PlaceholderEnumValue) Options() pref.ProtoMessage { return descopts.EnumValue }
func (e PlaceholderEnumValue) Number() pref.EnumNumber { return 0 }
func (e PlaceholderEnumValue) ProtoType(pref.EnumValueDescriptor) { return }
func (e PlaceholderEnumValue) ProtoInternal(pragma.DoNotImplement) { return }
// PlaceholderMessage is a placeholder, representing only the full name.
type PlaceholderMessage pref.FullName
func (m PlaceholderMessage) ParentFile() pref.FileDescriptor { return nil }
func (m PlaceholderMessage) Parent() pref.Descriptor { return nil }
func (m PlaceholderMessage) Index() int { return 0 }
func (m PlaceholderMessage) Syntax() pref.Syntax { return 0 }
func (m PlaceholderMessage) Name() pref.Name { return pref.FullName(m).Name() }
func (m PlaceholderMessage) FullName() pref.FullName { return pref.FullName(m) }
func (m PlaceholderMessage) IsPlaceholder() bool { return true }
func (m PlaceholderMessage) Options() pref.ProtoMessage { return descopts.Message }
func (m PlaceholderMessage) IsMapEntry() bool { return false }
func (m PlaceholderMessage) Fields() pref.FieldDescriptors { return emptyFields }
func (m PlaceholderMessage) Oneofs() pref.OneofDescriptors { return emptyOneofs }
func (m PlaceholderMessage) ReservedNames() pref.Names { return emptyNames }
func (m PlaceholderMessage) ReservedRanges() pref.FieldRanges { return emptyFieldRanges }
func (m PlaceholderMessage) RequiredNumbers() pref.FieldNumbers { return emptyFieldNumbers }
func (m PlaceholderMessage) ExtensionRanges() pref.FieldRanges { return emptyFieldRanges }
func (m PlaceholderMessage) ExtensionRangeOptions(int) pref.ProtoMessage { panic("index out of range") }
func (m PlaceholderMessage) Messages() pref.MessageDescriptors { return emptyMessages }
func (m PlaceholderMessage) Enums() pref.EnumDescriptors { return emptyEnums }
func (m PlaceholderMessage) Extensions() pref.ExtensionDescriptors { return emptyExtensions }
func (m PlaceholderMessage) ProtoType(pref.MessageDescriptor) { return }
func (m PlaceholderMessage) ProtoInternal(pragma.DoNotImplement) { return }

View File

@ -0,0 +1,297 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package filetype provides functionality for wrapping descriptors
// with Go type information.
package filetype
import (
"reflect"
"google.golang.org/protobuf/internal/descopts"
fdesc "google.golang.org/protobuf/internal/filedesc"
pimpl "google.golang.org/protobuf/internal/impl"
pref "google.golang.org/protobuf/reflect/protoreflect"
preg "google.golang.org/protobuf/reflect/protoregistry"
)
// Builder constructs type descriptors from a raw file descriptor
// and associated Go types for each enum and message declaration.
//
//
// Flattened Ordering
//
// The protobuf type system represents declarations as a tree. Certain nodes in
// the tree require us to either associate it with a concrete Go type or to
// resolve a dependency, which is information that must be provided separately
// since it cannot be derived from the file descriptor alone.
//
// However, representing a tree as Go literals is difficult to simply do in a
// space and time efficient way. Thus, we store them as a flattened list of
// objects where the serialization order from the tree-based form is important.
//
// The "flattened ordering" is defined as a tree traversal of all enum, message,
// extension, and service declarations using the following algorithm:
//
// def VisitFileDecls(fd):
// for e in fd.Enums: yield e
// for m in fd.Messages: yield m
// for x in fd.Extensions: yield x
// for s in fd.Services: yield s
// for m in fd.Messages: yield from VisitMessageDecls(m)
//
// def VisitMessageDecls(md):
// for e in md.Enums: yield e
// for m in md.Messages: yield m
// for x in md.Extensions: yield x
// for m in md.Messages: yield from VisitMessageDecls(m)
//
// The traversal starts at the root file descriptor and yields each direct
// declaration within each node before traversing into sub-declarations
// that children themselves may have.
type Builder struct {
// File is the underlying file descriptor builder.
File fdesc.Builder
// GoTypes is a unique set of the Go types for all declarations and
// dependencies. Each type is represented as a zero value of the Go type.
//
// Declarations are Go types generated for enums and messages directly
// declared (not publicly imported) in the proto source file.
// Messages for map entries are accounted for, but represented by nil.
// Enum declarations in "flattened ordering" come first, followed by
// message declarations in "flattened ordering".
//
// Dependencies are Go types for enums or messages referenced by
// message fields (excluding weak fields), for parent extended messages of
// extension fields, for enums or messages referenced by extension fields,
// and for input and output messages referenced by service methods.
// Dependencies must come after declarations, but the ordering of
// dependencies themselves is unspecified.
GoTypes []interface{}
// DependencyIndexes is an ordered list of indexes into GoTypes for the
// dependencies of messages, extensions, or services.
//
// There are 5 sub-lists in "flattened ordering" concatenated back-to-back:
// 0. Message field dependencies: list of the enum or message type
// referred to by every message field.
// 1. Extension field targets: list of the extended parent message of
// every extension.
// 2. Extension field dependencies: list of the enum or message type
// referred to by every extension field.
// 3. Service method inputs: list of the input message type
// referred to by every service method.
// 4. Service method outputs: list of the output message type
// referred to by every service method.
//
// The offset into DependencyIndexes for the start of each sub-list
// is appended to the end in reverse order.
DependencyIndexes []int32
// EnumInfos is a list of enum infos in "flattened ordering".
EnumInfos []pimpl.EnumInfo
// MessageInfos is a list of message infos in "flattened ordering".
// If provided, the GoType and PBType for each element is populated.
//
// Requirement: len(MessageInfos) == len(Build.Messages)
MessageInfos []pimpl.MessageInfo
// ExtensionInfos is a list of extension infos in "flattened ordering".
// Each element is initialized and registered with the protoregistry package.
//
// Requirement: len(LegacyExtensions) == len(Build.Extensions)
ExtensionInfos []pimpl.ExtensionInfo
// TypeRegistry is the registry to register each type descriptor.
// If nil, it uses protoregistry.GlobalTypes.
TypeRegistry interface {
RegisterMessage(pref.MessageType) error
RegisterEnum(pref.EnumType) error
RegisterExtension(pref.ExtensionType) error
}
}
// Out is the output of the builder.
type Out struct {
File pref.FileDescriptor
}
func (tb Builder) Build() (out Out) {
// Replace the resolver with one that resolves dependencies by index,
// which is faster and more reliable than relying on the global registry.
if tb.File.FileRegistry == nil {
tb.File.FileRegistry = preg.GlobalFiles
}
tb.File.FileRegistry = &resolverByIndex{
goTypes: tb.GoTypes,
depIdxs: tb.DependencyIndexes,
fileRegistry: tb.File.FileRegistry,
}
// Initialize registry if unpopulated.
if tb.TypeRegistry == nil {
tb.TypeRegistry = preg.GlobalTypes
}
fbOut := tb.File.Build()
out.File = fbOut.File
// Process enums.
enumGoTypes := tb.GoTypes[:len(fbOut.Enums)]
if len(tb.EnumInfos) != len(fbOut.Enums) {
panic("mismatching enum lengths")
}
if len(fbOut.Enums) > 0 {
for i := range fbOut.Enums {
tb.EnumInfos[i] = pimpl.EnumInfo{
GoReflectType: reflect.TypeOf(enumGoTypes[i]),
Desc: &fbOut.Enums[i],
}
// Register enum types.
if err := tb.TypeRegistry.RegisterEnum(&tb.EnumInfos[i]); err != nil {
panic(err)
}
}
}
// Process messages.
messageGoTypes := tb.GoTypes[len(fbOut.Enums):][:len(fbOut.Messages)]
if len(tb.MessageInfos) != len(fbOut.Messages) {
panic("mismatching message lengths")
}
if len(fbOut.Messages) > 0 {
for i := range fbOut.Messages {
if messageGoTypes[i] == nil {
continue // skip map entry
}
tb.MessageInfos[i].GoReflectType = reflect.TypeOf(messageGoTypes[i])
tb.MessageInfos[i].Desc = &fbOut.Messages[i]
// Register message types.
if err := tb.TypeRegistry.RegisterMessage(&tb.MessageInfos[i]); err != nil {
panic(err)
}
}
// As a special-case for descriptor.proto,
// locally register concrete message type for the options.
if out.File.Path() == "google/protobuf/descriptor.proto" && out.File.Package() == "google.protobuf" {
for i := range fbOut.Messages {
switch fbOut.Messages[i].Name() {
case "FileOptions":
descopts.File = messageGoTypes[i].(pref.ProtoMessage)
case "EnumOptions":
descopts.Enum = messageGoTypes[i].(pref.ProtoMessage)
case "EnumValueOptions":
descopts.EnumValue = messageGoTypes[i].(pref.ProtoMessage)
case "MessageOptions":
descopts.Message = messageGoTypes[i].(pref.ProtoMessage)
case "FieldOptions":
descopts.Field = messageGoTypes[i].(pref.ProtoMessage)
case "OneofOptions":
descopts.Oneof = messageGoTypes[i].(pref.ProtoMessage)
case "ExtensionRangeOptions":
descopts.ExtensionRange = messageGoTypes[i].(pref.ProtoMessage)
case "ServiceOptions":
descopts.Service = messageGoTypes[i].(pref.ProtoMessage)
case "MethodOptions":
descopts.Method = messageGoTypes[i].(pref.ProtoMessage)
}
}
}
}
// Process extensions.
if len(tb.ExtensionInfos) != len(fbOut.Extensions) {
panic("mismatching extension lengths")
}
var depIdx int32
for i := range fbOut.Extensions {
// For enum and message kinds, determine the referent Go type so
// that we can construct their constructors.
const listExtDeps = 2
var goType reflect.Type
switch fbOut.Extensions[i].L1.Kind {
case pref.EnumKind:
j := depIdxs.Get(tb.DependencyIndexes, listExtDeps, depIdx)
goType = reflect.TypeOf(tb.GoTypes[j])
depIdx++
case pref.MessageKind, pref.GroupKind:
j := depIdxs.Get(tb.DependencyIndexes, listExtDeps, depIdx)
goType = reflect.TypeOf(tb.GoTypes[j])
depIdx++
default:
goType = goTypeForPBKind[fbOut.Extensions[i].L1.Kind]
}
if fbOut.Extensions[i].IsList() {
goType = reflect.SliceOf(goType)
}
pimpl.InitExtensionInfo(&tb.ExtensionInfos[i], &fbOut.Extensions[i], goType)
// Register extension types.
if err := tb.TypeRegistry.RegisterExtension(&tb.ExtensionInfos[i]); err != nil {
panic(err)
}
}
return out
}
var goTypeForPBKind = map[pref.Kind]reflect.Type{
pref.BoolKind: reflect.TypeOf(bool(false)),
pref.Int32Kind: reflect.TypeOf(int32(0)),
pref.Sint32Kind: reflect.TypeOf(int32(0)),
pref.Sfixed32Kind: reflect.TypeOf(int32(0)),
pref.Int64Kind: reflect.TypeOf(int64(0)),
pref.Sint64Kind: reflect.TypeOf(int64(0)),
pref.Sfixed64Kind: reflect.TypeOf(int64(0)),
pref.Uint32Kind: reflect.TypeOf(uint32(0)),
pref.Fixed32Kind: reflect.TypeOf(uint32(0)),
pref.Uint64Kind: reflect.TypeOf(uint64(0)),
pref.Fixed64Kind: reflect.TypeOf(uint64(0)),
pref.FloatKind: reflect.TypeOf(float32(0)),
pref.DoubleKind: reflect.TypeOf(float64(0)),
pref.StringKind: reflect.TypeOf(string("")),
pref.BytesKind: reflect.TypeOf([]byte(nil)),
}
type depIdxs []int32
// Get retrieves the jth element of the ith sub-list.
func (x depIdxs) Get(i, j int32) int32 {
return x[x[int32(len(x))-i-1]+j]
}
type (
resolverByIndex struct {
goTypes []interface{}
depIdxs depIdxs
fileRegistry
}
fileRegistry interface {
FindFileByPath(string) (pref.FileDescriptor, error)
FindDescriptorByName(pref.FullName) (pref.Descriptor, error)
RegisterFile(pref.FileDescriptor) error
}
)
func (r *resolverByIndex) FindEnumByIndex(i, j int32, es []fdesc.Enum, ms []fdesc.Message) pref.EnumDescriptor {
if depIdx := int(r.depIdxs.Get(i, j)); int(depIdx) < len(es)+len(ms) {
return &es[depIdx]
} else {
return pimpl.Export{}.EnumDescriptorOf(r.goTypes[depIdx])
}
}
func (r *resolverByIndex) FindMessageByIndex(i, j int32, es []fdesc.Enum, ms []fdesc.Message) pref.MessageDescriptor {
if depIdx := int(r.depIdxs.Get(i, j)); depIdx < len(es)+len(ms) {
return &ms[depIdx-len(es)]
} else {
return pimpl.Export{}.MessageDescriptorOf(r.goTypes[depIdx])
}
}

View File

@ -0,0 +1,24 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package flags provides a set of flags controlled by build tags.
package flags
// ProtoLegacy specifies whether to enable support for legacy functionality
// such as MessageSets, weak fields, and various other obscure behavior
// that is necessary to maintain backwards compatibility with proto1 or
// the pre-release variants of proto2 and proto3.
//
// This is disabled by default unless built with the "protolegacy" tag.
//
// WARNING: The compatibility agreement covers nothing provided by this flag.
// As such, functionality may suddenly be removed or changed at our discretion.
const ProtoLegacy = protoLegacy
// LazyUnmarshalExtensions specifies whether to lazily unmarshal extensions.
//
// Lazy extension unmarshaling validates the contents of message-valued
// extension fields at unmarshal time, but defers creating the message
// structure until the extension is first accessed.
const LazyUnmarshalExtensions = ProtoLegacy

View File

@ -0,0 +1,9 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !protolegacy
package flags
const protoLegacy = false

View File

@ -0,0 +1,9 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build protolegacy
package flags
const protoLegacy = true

View File

@ -0,0 +1,34 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_any_proto = "google/protobuf/any.proto"
// Names for google.protobuf.Any.
const (
Any_message_name protoreflect.Name = "Any"
Any_message_fullname protoreflect.FullName = "google.protobuf.Any"
)
// Field names for google.protobuf.Any.
const (
Any_TypeUrl_field_name protoreflect.Name = "type_url"
Any_Value_field_name protoreflect.Name = "value"
Any_TypeUrl_field_fullname protoreflect.FullName = "google.protobuf.Any.type_url"
Any_Value_field_fullname protoreflect.FullName = "google.protobuf.Any.value"
)
// Field numbers for google.protobuf.Any.
const (
Any_TypeUrl_field_number protoreflect.FieldNumber = 1
Any_Value_field_number protoreflect.FieldNumber = 2
)

View File

@ -0,0 +1,106 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_api_proto = "google/protobuf/api.proto"
// Names for google.protobuf.Api.
const (
Api_message_name protoreflect.Name = "Api"
Api_message_fullname protoreflect.FullName = "google.protobuf.Api"
)
// Field names for google.protobuf.Api.
const (
Api_Name_field_name protoreflect.Name = "name"
Api_Methods_field_name protoreflect.Name = "methods"
Api_Options_field_name protoreflect.Name = "options"
Api_Version_field_name protoreflect.Name = "version"
Api_SourceContext_field_name protoreflect.Name = "source_context"
Api_Mixins_field_name protoreflect.Name = "mixins"
Api_Syntax_field_name protoreflect.Name = "syntax"
Api_Name_field_fullname protoreflect.FullName = "google.protobuf.Api.name"
Api_Methods_field_fullname protoreflect.FullName = "google.protobuf.Api.methods"
Api_Options_field_fullname protoreflect.FullName = "google.protobuf.Api.options"
Api_Version_field_fullname protoreflect.FullName = "google.protobuf.Api.version"
Api_SourceContext_field_fullname protoreflect.FullName = "google.protobuf.Api.source_context"
Api_Mixins_field_fullname protoreflect.FullName = "google.protobuf.Api.mixins"
Api_Syntax_field_fullname protoreflect.FullName = "google.protobuf.Api.syntax"
)
// Field numbers for google.protobuf.Api.
const (
Api_Name_field_number protoreflect.FieldNumber = 1
Api_Methods_field_number protoreflect.FieldNumber = 2
Api_Options_field_number protoreflect.FieldNumber = 3
Api_Version_field_number protoreflect.FieldNumber = 4
Api_SourceContext_field_number protoreflect.FieldNumber = 5
Api_Mixins_field_number protoreflect.FieldNumber = 6
Api_Syntax_field_number protoreflect.FieldNumber = 7
)
// Names for google.protobuf.Method.
const (
Method_message_name protoreflect.Name = "Method"
Method_message_fullname protoreflect.FullName = "google.protobuf.Method"
)
// Field names for google.protobuf.Method.
const (
Method_Name_field_name protoreflect.Name = "name"
Method_RequestTypeUrl_field_name protoreflect.Name = "request_type_url"
Method_RequestStreaming_field_name protoreflect.Name = "request_streaming"
Method_ResponseTypeUrl_field_name protoreflect.Name = "response_type_url"
Method_ResponseStreaming_field_name protoreflect.Name = "response_streaming"
Method_Options_field_name protoreflect.Name = "options"
Method_Syntax_field_name protoreflect.Name = "syntax"
Method_Name_field_fullname protoreflect.FullName = "google.protobuf.Method.name"
Method_RequestTypeUrl_field_fullname protoreflect.FullName = "google.protobuf.Method.request_type_url"
Method_RequestStreaming_field_fullname protoreflect.FullName = "google.protobuf.Method.request_streaming"
Method_ResponseTypeUrl_field_fullname protoreflect.FullName = "google.protobuf.Method.response_type_url"
Method_ResponseStreaming_field_fullname protoreflect.FullName = "google.protobuf.Method.response_streaming"
Method_Options_field_fullname protoreflect.FullName = "google.protobuf.Method.options"
Method_Syntax_field_fullname protoreflect.FullName = "google.protobuf.Method.syntax"
)
// Field numbers for google.protobuf.Method.
const (
Method_Name_field_number protoreflect.FieldNumber = 1
Method_RequestTypeUrl_field_number protoreflect.FieldNumber = 2
Method_RequestStreaming_field_number protoreflect.FieldNumber = 3
Method_ResponseTypeUrl_field_number protoreflect.FieldNumber = 4
Method_ResponseStreaming_field_number protoreflect.FieldNumber = 5
Method_Options_field_number protoreflect.FieldNumber = 6
Method_Syntax_field_number protoreflect.FieldNumber = 7
)
// Names for google.protobuf.Mixin.
const (
Mixin_message_name protoreflect.Name = "Mixin"
Mixin_message_fullname protoreflect.FullName = "google.protobuf.Mixin"
)
// Field names for google.protobuf.Mixin.
const (
Mixin_Name_field_name protoreflect.Name = "name"
Mixin_Root_field_name protoreflect.Name = "root"
Mixin_Name_field_fullname protoreflect.FullName = "google.protobuf.Mixin.name"
Mixin_Root_field_fullname protoreflect.FullName = "google.protobuf.Mixin.root"
)
// Field numbers for google.protobuf.Mixin.
const (
Mixin_Name_field_number protoreflect.FieldNumber = 1
Mixin_Root_field_number protoreflect.FieldNumber = 2
)

View File

@ -0,0 +1,829 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_descriptor_proto = "google/protobuf/descriptor.proto"
// Names for google.protobuf.FileDescriptorSet.
const (
FileDescriptorSet_message_name protoreflect.Name = "FileDescriptorSet"
FileDescriptorSet_message_fullname protoreflect.FullName = "google.protobuf.FileDescriptorSet"
)
// Field names for google.protobuf.FileDescriptorSet.
const (
FileDescriptorSet_File_field_name protoreflect.Name = "file"
FileDescriptorSet_File_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorSet.file"
)
// Field numbers for google.protobuf.FileDescriptorSet.
const (
FileDescriptorSet_File_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.FileDescriptorProto.
const (
FileDescriptorProto_message_name protoreflect.Name = "FileDescriptorProto"
FileDescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto"
)
// Field names for google.protobuf.FileDescriptorProto.
const (
FileDescriptorProto_Name_field_name protoreflect.Name = "name"
FileDescriptorProto_Package_field_name protoreflect.Name = "package"
FileDescriptorProto_Dependency_field_name protoreflect.Name = "dependency"
FileDescriptorProto_PublicDependency_field_name protoreflect.Name = "public_dependency"
FileDescriptorProto_WeakDependency_field_name protoreflect.Name = "weak_dependency"
FileDescriptorProto_MessageType_field_name protoreflect.Name = "message_type"
FileDescriptorProto_EnumType_field_name protoreflect.Name = "enum_type"
FileDescriptorProto_Service_field_name protoreflect.Name = "service"
FileDescriptorProto_Extension_field_name protoreflect.Name = "extension"
FileDescriptorProto_Options_field_name protoreflect.Name = "options"
FileDescriptorProto_SourceCodeInfo_field_name protoreflect.Name = "source_code_info"
FileDescriptorProto_Syntax_field_name protoreflect.Name = "syntax"
FileDescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.name"
FileDescriptorProto_Package_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.package"
FileDescriptorProto_Dependency_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.dependency"
FileDescriptorProto_PublicDependency_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.public_dependency"
FileDescriptorProto_WeakDependency_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.weak_dependency"
FileDescriptorProto_MessageType_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.message_type"
FileDescriptorProto_EnumType_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.enum_type"
FileDescriptorProto_Service_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.service"
FileDescriptorProto_Extension_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.extension"
FileDescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.options"
FileDescriptorProto_SourceCodeInfo_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.source_code_info"
FileDescriptorProto_Syntax_field_fullname protoreflect.FullName = "google.protobuf.FileDescriptorProto.syntax"
)
// Field numbers for google.protobuf.FileDescriptorProto.
const (
FileDescriptorProto_Name_field_number protoreflect.FieldNumber = 1
FileDescriptorProto_Package_field_number protoreflect.FieldNumber = 2
FileDescriptorProto_Dependency_field_number protoreflect.FieldNumber = 3
FileDescriptorProto_PublicDependency_field_number protoreflect.FieldNumber = 10
FileDescriptorProto_WeakDependency_field_number protoreflect.FieldNumber = 11
FileDescriptorProto_MessageType_field_number protoreflect.FieldNumber = 4
FileDescriptorProto_EnumType_field_number protoreflect.FieldNumber = 5
FileDescriptorProto_Service_field_number protoreflect.FieldNumber = 6
FileDescriptorProto_Extension_field_number protoreflect.FieldNumber = 7
FileDescriptorProto_Options_field_number protoreflect.FieldNumber = 8
FileDescriptorProto_SourceCodeInfo_field_number protoreflect.FieldNumber = 9
FileDescriptorProto_Syntax_field_number protoreflect.FieldNumber = 12
)
// Names for google.protobuf.DescriptorProto.
const (
DescriptorProto_message_name protoreflect.Name = "DescriptorProto"
DescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.DescriptorProto"
)
// Field names for google.protobuf.DescriptorProto.
const (
DescriptorProto_Name_field_name protoreflect.Name = "name"
DescriptorProto_Field_field_name protoreflect.Name = "field"
DescriptorProto_Extension_field_name protoreflect.Name = "extension"
DescriptorProto_NestedType_field_name protoreflect.Name = "nested_type"
DescriptorProto_EnumType_field_name protoreflect.Name = "enum_type"
DescriptorProto_ExtensionRange_field_name protoreflect.Name = "extension_range"
DescriptorProto_OneofDecl_field_name protoreflect.Name = "oneof_decl"
DescriptorProto_Options_field_name protoreflect.Name = "options"
DescriptorProto_ReservedRange_field_name protoreflect.Name = "reserved_range"
DescriptorProto_ReservedName_field_name protoreflect.Name = "reserved_name"
DescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.name"
DescriptorProto_Field_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.field"
DescriptorProto_Extension_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.extension"
DescriptorProto_NestedType_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.nested_type"
DescriptorProto_EnumType_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.enum_type"
DescriptorProto_ExtensionRange_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.extension_range"
DescriptorProto_OneofDecl_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.oneof_decl"
DescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.options"
DescriptorProto_ReservedRange_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.reserved_range"
DescriptorProto_ReservedName_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.reserved_name"
)
// Field numbers for google.protobuf.DescriptorProto.
const (
DescriptorProto_Name_field_number protoreflect.FieldNumber = 1
DescriptorProto_Field_field_number protoreflect.FieldNumber = 2
DescriptorProto_Extension_field_number protoreflect.FieldNumber = 6
DescriptorProto_NestedType_field_number protoreflect.FieldNumber = 3
DescriptorProto_EnumType_field_number protoreflect.FieldNumber = 4
DescriptorProto_ExtensionRange_field_number protoreflect.FieldNumber = 5
DescriptorProto_OneofDecl_field_number protoreflect.FieldNumber = 8
DescriptorProto_Options_field_number protoreflect.FieldNumber = 7
DescriptorProto_ReservedRange_field_number protoreflect.FieldNumber = 9
DescriptorProto_ReservedName_field_number protoreflect.FieldNumber = 10
)
// Names for google.protobuf.DescriptorProto.ExtensionRange.
const (
DescriptorProto_ExtensionRange_message_name protoreflect.Name = "ExtensionRange"
DescriptorProto_ExtensionRange_message_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.ExtensionRange"
)
// Field names for google.protobuf.DescriptorProto.ExtensionRange.
const (
DescriptorProto_ExtensionRange_Start_field_name protoreflect.Name = "start"
DescriptorProto_ExtensionRange_End_field_name protoreflect.Name = "end"
DescriptorProto_ExtensionRange_Options_field_name protoreflect.Name = "options"
DescriptorProto_ExtensionRange_Start_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.ExtensionRange.start"
DescriptorProto_ExtensionRange_End_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.ExtensionRange.end"
DescriptorProto_ExtensionRange_Options_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.ExtensionRange.options"
)
// Field numbers for google.protobuf.DescriptorProto.ExtensionRange.
const (
DescriptorProto_ExtensionRange_Start_field_number protoreflect.FieldNumber = 1
DescriptorProto_ExtensionRange_End_field_number protoreflect.FieldNumber = 2
DescriptorProto_ExtensionRange_Options_field_number protoreflect.FieldNumber = 3
)
// Names for google.protobuf.DescriptorProto.ReservedRange.
const (
DescriptorProto_ReservedRange_message_name protoreflect.Name = "ReservedRange"
DescriptorProto_ReservedRange_message_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.ReservedRange"
)
// Field names for google.protobuf.DescriptorProto.ReservedRange.
const (
DescriptorProto_ReservedRange_Start_field_name protoreflect.Name = "start"
DescriptorProto_ReservedRange_End_field_name protoreflect.Name = "end"
DescriptorProto_ReservedRange_Start_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.ReservedRange.start"
DescriptorProto_ReservedRange_End_field_fullname protoreflect.FullName = "google.protobuf.DescriptorProto.ReservedRange.end"
)
// Field numbers for google.protobuf.DescriptorProto.ReservedRange.
const (
DescriptorProto_ReservedRange_Start_field_number protoreflect.FieldNumber = 1
DescriptorProto_ReservedRange_End_field_number protoreflect.FieldNumber = 2
)
// Names for google.protobuf.ExtensionRangeOptions.
const (
ExtensionRangeOptions_message_name protoreflect.Name = "ExtensionRangeOptions"
ExtensionRangeOptions_message_fullname protoreflect.FullName = "google.protobuf.ExtensionRangeOptions"
)
// Field names for google.protobuf.ExtensionRangeOptions.
const (
ExtensionRangeOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
ExtensionRangeOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.ExtensionRangeOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.ExtensionRangeOptions.
const (
ExtensionRangeOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Names for google.protobuf.FieldDescriptorProto.
const (
FieldDescriptorProto_message_name protoreflect.Name = "FieldDescriptorProto"
FieldDescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto"
)
// Field names for google.protobuf.FieldDescriptorProto.
const (
FieldDescriptorProto_Name_field_name protoreflect.Name = "name"
FieldDescriptorProto_Number_field_name protoreflect.Name = "number"
FieldDescriptorProto_Label_field_name protoreflect.Name = "label"
FieldDescriptorProto_Type_field_name protoreflect.Name = "type"
FieldDescriptorProto_TypeName_field_name protoreflect.Name = "type_name"
FieldDescriptorProto_Extendee_field_name protoreflect.Name = "extendee"
FieldDescriptorProto_DefaultValue_field_name protoreflect.Name = "default_value"
FieldDescriptorProto_OneofIndex_field_name protoreflect.Name = "oneof_index"
FieldDescriptorProto_JsonName_field_name protoreflect.Name = "json_name"
FieldDescriptorProto_Options_field_name protoreflect.Name = "options"
FieldDescriptorProto_Proto3Optional_field_name protoreflect.Name = "proto3_optional"
FieldDescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.name"
FieldDescriptorProto_Number_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.number"
FieldDescriptorProto_Label_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.label"
FieldDescriptorProto_Type_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.type"
FieldDescriptorProto_TypeName_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.type_name"
FieldDescriptorProto_Extendee_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.extendee"
FieldDescriptorProto_DefaultValue_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.default_value"
FieldDescriptorProto_OneofIndex_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.oneof_index"
FieldDescriptorProto_JsonName_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.json_name"
FieldDescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.options"
FieldDescriptorProto_Proto3Optional_field_fullname protoreflect.FullName = "google.protobuf.FieldDescriptorProto.proto3_optional"
)
// Field numbers for google.protobuf.FieldDescriptorProto.
const (
FieldDescriptorProto_Name_field_number protoreflect.FieldNumber = 1
FieldDescriptorProto_Number_field_number protoreflect.FieldNumber = 3
FieldDescriptorProto_Label_field_number protoreflect.FieldNumber = 4
FieldDescriptorProto_Type_field_number protoreflect.FieldNumber = 5
FieldDescriptorProto_TypeName_field_number protoreflect.FieldNumber = 6
FieldDescriptorProto_Extendee_field_number protoreflect.FieldNumber = 2
FieldDescriptorProto_DefaultValue_field_number protoreflect.FieldNumber = 7
FieldDescriptorProto_OneofIndex_field_number protoreflect.FieldNumber = 9
FieldDescriptorProto_JsonName_field_number protoreflect.FieldNumber = 10
FieldDescriptorProto_Options_field_number protoreflect.FieldNumber = 8
FieldDescriptorProto_Proto3Optional_field_number protoreflect.FieldNumber = 17
)
// Full and short names for google.protobuf.FieldDescriptorProto.Type.
const (
FieldDescriptorProto_Type_enum_fullname = "google.protobuf.FieldDescriptorProto.Type"
FieldDescriptorProto_Type_enum_name = "Type"
)
// Full and short names for google.protobuf.FieldDescriptorProto.Label.
const (
FieldDescriptorProto_Label_enum_fullname = "google.protobuf.FieldDescriptorProto.Label"
FieldDescriptorProto_Label_enum_name = "Label"
)
// Names for google.protobuf.OneofDescriptorProto.
const (
OneofDescriptorProto_message_name protoreflect.Name = "OneofDescriptorProto"
OneofDescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.OneofDescriptorProto"
)
// Field names for google.protobuf.OneofDescriptorProto.
const (
OneofDescriptorProto_Name_field_name protoreflect.Name = "name"
OneofDescriptorProto_Options_field_name protoreflect.Name = "options"
OneofDescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.OneofDescriptorProto.name"
OneofDescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.OneofDescriptorProto.options"
)
// Field numbers for google.protobuf.OneofDescriptorProto.
const (
OneofDescriptorProto_Name_field_number protoreflect.FieldNumber = 1
OneofDescriptorProto_Options_field_number protoreflect.FieldNumber = 2
)
// Names for google.protobuf.EnumDescriptorProto.
const (
EnumDescriptorProto_message_name protoreflect.Name = "EnumDescriptorProto"
EnumDescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto"
)
// Field names for google.protobuf.EnumDescriptorProto.
const (
EnumDescriptorProto_Name_field_name protoreflect.Name = "name"
EnumDescriptorProto_Value_field_name protoreflect.Name = "value"
EnumDescriptorProto_Options_field_name protoreflect.Name = "options"
EnumDescriptorProto_ReservedRange_field_name protoreflect.Name = "reserved_range"
EnumDescriptorProto_ReservedName_field_name protoreflect.Name = "reserved_name"
EnumDescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.name"
EnumDescriptorProto_Value_field_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.value"
EnumDescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.options"
EnumDescriptorProto_ReservedRange_field_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.reserved_range"
EnumDescriptorProto_ReservedName_field_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.reserved_name"
)
// Field numbers for google.protobuf.EnumDescriptorProto.
const (
EnumDescriptorProto_Name_field_number protoreflect.FieldNumber = 1
EnumDescriptorProto_Value_field_number protoreflect.FieldNumber = 2
EnumDescriptorProto_Options_field_number protoreflect.FieldNumber = 3
EnumDescriptorProto_ReservedRange_field_number protoreflect.FieldNumber = 4
EnumDescriptorProto_ReservedName_field_number protoreflect.FieldNumber = 5
)
// Names for google.protobuf.EnumDescriptorProto.EnumReservedRange.
const (
EnumDescriptorProto_EnumReservedRange_message_name protoreflect.Name = "EnumReservedRange"
EnumDescriptorProto_EnumReservedRange_message_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.EnumReservedRange"
)
// Field names for google.protobuf.EnumDescriptorProto.EnumReservedRange.
const (
EnumDescriptorProto_EnumReservedRange_Start_field_name protoreflect.Name = "start"
EnumDescriptorProto_EnumReservedRange_End_field_name protoreflect.Name = "end"
EnumDescriptorProto_EnumReservedRange_Start_field_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.EnumReservedRange.start"
EnumDescriptorProto_EnumReservedRange_End_field_fullname protoreflect.FullName = "google.protobuf.EnumDescriptorProto.EnumReservedRange.end"
)
// Field numbers for google.protobuf.EnumDescriptorProto.EnumReservedRange.
const (
EnumDescriptorProto_EnumReservedRange_Start_field_number protoreflect.FieldNumber = 1
EnumDescriptorProto_EnumReservedRange_End_field_number protoreflect.FieldNumber = 2
)
// Names for google.protobuf.EnumValueDescriptorProto.
const (
EnumValueDescriptorProto_message_name protoreflect.Name = "EnumValueDescriptorProto"
EnumValueDescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.EnumValueDescriptorProto"
)
// Field names for google.protobuf.EnumValueDescriptorProto.
const (
EnumValueDescriptorProto_Name_field_name protoreflect.Name = "name"
EnumValueDescriptorProto_Number_field_name protoreflect.Name = "number"
EnumValueDescriptorProto_Options_field_name protoreflect.Name = "options"
EnumValueDescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.EnumValueDescriptorProto.name"
EnumValueDescriptorProto_Number_field_fullname protoreflect.FullName = "google.protobuf.EnumValueDescriptorProto.number"
EnumValueDescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.EnumValueDescriptorProto.options"
)
// Field numbers for google.protobuf.EnumValueDescriptorProto.
const (
EnumValueDescriptorProto_Name_field_number protoreflect.FieldNumber = 1
EnumValueDescriptorProto_Number_field_number protoreflect.FieldNumber = 2
EnumValueDescriptorProto_Options_field_number protoreflect.FieldNumber = 3
)
// Names for google.protobuf.ServiceDescriptorProto.
const (
ServiceDescriptorProto_message_name protoreflect.Name = "ServiceDescriptorProto"
ServiceDescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.ServiceDescriptorProto"
)
// Field names for google.protobuf.ServiceDescriptorProto.
const (
ServiceDescriptorProto_Name_field_name protoreflect.Name = "name"
ServiceDescriptorProto_Method_field_name protoreflect.Name = "method"
ServiceDescriptorProto_Options_field_name protoreflect.Name = "options"
ServiceDescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.ServiceDescriptorProto.name"
ServiceDescriptorProto_Method_field_fullname protoreflect.FullName = "google.protobuf.ServiceDescriptorProto.method"
ServiceDescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.ServiceDescriptorProto.options"
)
// Field numbers for google.protobuf.ServiceDescriptorProto.
const (
ServiceDescriptorProto_Name_field_number protoreflect.FieldNumber = 1
ServiceDescriptorProto_Method_field_number protoreflect.FieldNumber = 2
ServiceDescriptorProto_Options_field_number protoreflect.FieldNumber = 3
)
// Names for google.protobuf.MethodDescriptorProto.
const (
MethodDescriptorProto_message_name protoreflect.Name = "MethodDescriptorProto"
MethodDescriptorProto_message_fullname protoreflect.FullName = "google.protobuf.MethodDescriptorProto"
)
// Field names for google.protobuf.MethodDescriptorProto.
const (
MethodDescriptorProto_Name_field_name protoreflect.Name = "name"
MethodDescriptorProto_InputType_field_name protoreflect.Name = "input_type"
MethodDescriptorProto_OutputType_field_name protoreflect.Name = "output_type"
MethodDescriptorProto_Options_field_name protoreflect.Name = "options"
MethodDescriptorProto_ClientStreaming_field_name protoreflect.Name = "client_streaming"
MethodDescriptorProto_ServerStreaming_field_name protoreflect.Name = "server_streaming"
MethodDescriptorProto_Name_field_fullname protoreflect.FullName = "google.protobuf.MethodDescriptorProto.name"
MethodDescriptorProto_InputType_field_fullname protoreflect.FullName = "google.protobuf.MethodDescriptorProto.input_type"
MethodDescriptorProto_OutputType_field_fullname protoreflect.FullName = "google.protobuf.MethodDescriptorProto.output_type"
MethodDescriptorProto_Options_field_fullname protoreflect.FullName = "google.protobuf.MethodDescriptorProto.options"
MethodDescriptorProto_ClientStreaming_field_fullname protoreflect.FullName = "google.protobuf.MethodDescriptorProto.client_streaming"
MethodDescriptorProto_ServerStreaming_field_fullname protoreflect.FullName = "google.protobuf.MethodDescriptorProto.server_streaming"
)
// Field numbers for google.protobuf.MethodDescriptorProto.
const (
MethodDescriptorProto_Name_field_number protoreflect.FieldNumber = 1
MethodDescriptorProto_InputType_field_number protoreflect.FieldNumber = 2
MethodDescriptorProto_OutputType_field_number protoreflect.FieldNumber = 3
MethodDescriptorProto_Options_field_number protoreflect.FieldNumber = 4
MethodDescriptorProto_ClientStreaming_field_number protoreflect.FieldNumber = 5
MethodDescriptorProto_ServerStreaming_field_number protoreflect.FieldNumber = 6
)
// Names for google.protobuf.FileOptions.
const (
FileOptions_message_name protoreflect.Name = "FileOptions"
FileOptions_message_fullname protoreflect.FullName = "google.protobuf.FileOptions"
)
// Field names for google.protobuf.FileOptions.
const (
FileOptions_JavaPackage_field_name protoreflect.Name = "java_package"
FileOptions_JavaOuterClassname_field_name protoreflect.Name = "java_outer_classname"
FileOptions_JavaMultipleFiles_field_name protoreflect.Name = "java_multiple_files"
FileOptions_JavaGenerateEqualsAndHash_field_name protoreflect.Name = "java_generate_equals_and_hash"
FileOptions_JavaStringCheckUtf8_field_name protoreflect.Name = "java_string_check_utf8"
FileOptions_OptimizeFor_field_name protoreflect.Name = "optimize_for"
FileOptions_GoPackage_field_name protoreflect.Name = "go_package"
FileOptions_CcGenericServices_field_name protoreflect.Name = "cc_generic_services"
FileOptions_JavaGenericServices_field_name protoreflect.Name = "java_generic_services"
FileOptions_PyGenericServices_field_name protoreflect.Name = "py_generic_services"
FileOptions_PhpGenericServices_field_name protoreflect.Name = "php_generic_services"
FileOptions_Deprecated_field_name protoreflect.Name = "deprecated"
FileOptions_CcEnableArenas_field_name protoreflect.Name = "cc_enable_arenas"
FileOptions_ObjcClassPrefix_field_name protoreflect.Name = "objc_class_prefix"
FileOptions_CsharpNamespace_field_name protoreflect.Name = "csharp_namespace"
FileOptions_SwiftPrefix_field_name protoreflect.Name = "swift_prefix"
FileOptions_PhpClassPrefix_field_name protoreflect.Name = "php_class_prefix"
FileOptions_PhpNamespace_field_name protoreflect.Name = "php_namespace"
FileOptions_PhpMetadataNamespace_field_name protoreflect.Name = "php_metadata_namespace"
FileOptions_RubyPackage_field_name protoreflect.Name = "ruby_package"
FileOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
FileOptions_JavaPackage_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.java_package"
FileOptions_JavaOuterClassname_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.java_outer_classname"
FileOptions_JavaMultipleFiles_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.java_multiple_files"
FileOptions_JavaGenerateEqualsAndHash_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.java_generate_equals_and_hash"
FileOptions_JavaStringCheckUtf8_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.java_string_check_utf8"
FileOptions_OptimizeFor_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.optimize_for"
FileOptions_GoPackage_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.go_package"
FileOptions_CcGenericServices_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.cc_generic_services"
FileOptions_JavaGenericServices_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.java_generic_services"
FileOptions_PyGenericServices_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.py_generic_services"
FileOptions_PhpGenericServices_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.php_generic_services"
FileOptions_Deprecated_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.deprecated"
FileOptions_CcEnableArenas_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.cc_enable_arenas"
FileOptions_ObjcClassPrefix_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.objc_class_prefix"
FileOptions_CsharpNamespace_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.csharp_namespace"
FileOptions_SwiftPrefix_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.swift_prefix"
FileOptions_PhpClassPrefix_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.php_class_prefix"
FileOptions_PhpNamespace_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.php_namespace"
FileOptions_PhpMetadataNamespace_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.php_metadata_namespace"
FileOptions_RubyPackage_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.ruby_package"
FileOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.FileOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.FileOptions.
const (
FileOptions_JavaPackage_field_number protoreflect.FieldNumber = 1
FileOptions_JavaOuterClassname_field_number protoreflect.FieldNumber = 8
FileOptions_JavaMultipleFiles_field_number protoreflect.FieldNumber = 10
FileOptions_JavaGenerateEqualsAndHash_field_number protoreflect.FieldNumber = 20
FileOptions_JavaStringCheckUtf8_field_number protoreflect.FieldNumber = 27
FileOptions_OptimizeFor_field_number protoreflect.FieldNumber = 9
FileOptions_GoPackage_field_number protoreflect.FieldNumber = 11
FileOptions_CcGenericServices_field_number protoreflect.FieldNumber = 16
FileOptions_JavaGenericServices_field_number protoreflect.FieldNumber = 17
FileOptions_PyGenericServices_field_number protoreflect.FieldNumber = 18
FileOptions_PhpGenericServices_field_number protoreflect.FieldNumber = 42
FileOptions_Deprecated_field_number protoreflect.FieldNumber = 23
FileOptions_CcEnableArenas_field_number protoreflect.FieldNumber = 31
FileOptions_ObjcClassPrefix_field_number protoreflect.FieldNumber = 36
FileOptions_CsharpNamespace_field_number protoreflect.FieldNumber = 37
FileOptions_SwiftPrefix_field_number protoreflect.FieldNumber = 39
FileOptions_PhpClassPrefix_field_number protoreflect.FieldNumber = 40
FileOptions_PhpNamespace_field_number protoreflect.FieldNumber = 41
FileOptions_PhpMetadataNamespace_field_number protoreflect.FieldNumber = 44
FileOptions_RubyPackage_field_number protoreflect.FieldNumber = 45
FileOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Full and short names for google.protobuf.FileOptions.OptimizeMode.
const (
FileOptions_OptimizeMode_enum_fullname = "google.protobuf.FileOptions.OptimizeMode"
FileOptions_OptimizeMode_enum_name = "OptimizeMode"
)
// Names for google.protobuf.MessageOptions.
const (
MessageOptions_message_name protoreflect.Name = "MessageOptions"
MessageOptions_message_fullname protoreflect.FullName = "google.protobuf.MessageOptions"
)
// Field names for google.protobuf.MessageOptions.
const (
MessageOptions_MessageSetWireFormat_field_name protoreflect.Name = "message_set_wire_format"
MessageOptions_NoStandardDescriptorAccessor_field_name protoreflect.Name = "no_standard_descriptor_accessor"
MessageOptions_Deprecated_field_name protoreflect.Name = "deprecated"
MessageOptions_MapEntry_field_name protoreflect.Name = "map_entry"
MessageOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
MessageOptions_MessageSetWireFormat_field_fullname protoreflect.FullName = "google.protobuf.MessageOptions.message_set_wire_format"
MessageOptions_NoStandardDescriptorAccessor_field_fullname protoreflect.FullName = "google.protobuf.MessageOptions.no_standard_descriptor_accessor"
MessageOptions_Deprecated_field_fullname protoreflect.FullName = "google.protobuf.MessageOptions.deprecated"
MessageOptions_MapEntry_field_fullname protoreflect.FullName = "google.protobuf.MessageOptions.map_entry"
MessageOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.MessageOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.MessageOptions.
const (
MessageOptions_MessageSetWireFormat_field_number protoreflect.FieldNumber = 1
MessageOptions_NoStandardDescriptorAccessor_field_number protoreflect.FieldNumber = 2
MessageOptions_Deprecated_field_number protoreflect.FieldNumber = 3
MessageOptions_MapEntry_field_number protoreflect.FieldNumber = 7
MessageOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Names for google.protobuf.FieldOptions.
const (
FieldOptions_message_name protoreflect.Name = "FieldOptions"
FieldOptions_message_fullname protoreflect.FullName = "google.protobuf.FieldOptions"
)
// Field names for google.protobuf.FieldOptions.
const (
FieldOptions_Ctype_field_name protoreflect.Name = "ctype"
FieldOptions_Packed_field_name protoreflect.Name = "packed"
FieldOptions_Jstype_field_name protoreflect.Name = "jstype"
FieldOptions_Lazy_field_name protoreflect.Name = "lazy"
FieldOptions_Deprecated_field_name protoreflect.Name = "deprecated"
FieldOptions_Weak_field_name protoreflect.Name = "weak"
FieldOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
FieldOptions_Ctype_field_fullname protoreflect.FullName = "google.protobuf.FieldOptions.ctype"
FieldOptions_Packed_field_fullname protoreflect.FullName = "google.protobuf.FieldOptions.packed"
FieldOptions_Jstype_field_fullname protoreflect.FullName = "google.protobuf.FieldOptions.jstype"
FieldOptions_Lazy_field_fullname protoreflect.FullName = "google.protobuf.FieldOptions.lazy"
FieldOptions_Deprecated_field_fullname protoreflect.FullName = "google.protobuf.FieldOptions.deprecated"
FieldOptions_Weak_field_fullname protoreflect.FullName = "google.protobuf.FieldOptions.weak"
FieldOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.FieldOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.FieldOptions.
const (
FieldOptions_Ctype_field_number protoreflect.FieldNumber = 1
FieldOptions_Packed_field_number protoreflect.FieldNumber = 2
FieldOptions_Jstype_field_number protoreflect.FieldNumber = 6
FieldOptions_Lazy_field_number protoreflect.FieldNumber = 5
FieldOptions_Deprecated_field_number protoreflect.FieldNumber = 3
FieldOptions_Weak_field_number protoreflect.FieldNumber = 10
FieldOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Full and short names for google.protobuf.FieldOptions.CType.
const (
FieldOptions_CType_enum_fullname = "google.protobuf.FieldOptions.CType"
FieldOptions_CType_enum_name = "CType"
)
// Full and short names for google.protobuf.FieldOptions.JSType.
const (
FieldOptions_JSType_enum_fullname = "google.protobuf.FieldOptions.JSType"
FieldOptions_JSType_enum_name = "JSType"
)
// Names for google.protobuf.OneofOptions.
const (
OneofOptions_message_name protoreflect.Name = "OneofOptions"
OneofOptions_message_fullname protoreflect.FullName = "google.protobuf.OneofOptions"
)
// Field names for google.protobuf.OneofOptions.
const (
OneofOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
OneofOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.OneofOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.OneofOptions.
const (
OneofOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Names for google.protobuf.EnumOptions.
const (
EnumOptions_message_name protoreflect.Name = "EnumOptions"
EnumOptions_message_fullname protoreflect.FullName = "google.protobuf.EnumOptions"
)
// Field names for google.protobuf.EnumOptions.
const (
EnumOptions_AllowAlias_field_name protoreflect.Name = "allow_alias"
EnumOptions_Deprecated_field_name protoreflect.Name = "deprecated"
EnumOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
EnumOptions_AllowAlias_field_fullname protoreflect.FullName = "google.protobuf.EnumOptions.allow_alias"
EnumOptions_Deprecated_field_fullname protoreflect.FullName = "google.protobuf.EnumOptions.deprecated"
EnumOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.EnumOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.EnumOptions.
const (
EnumOptions_AllowAlias_field_number protoreflect.FieldNumber = 2
EnumOptions_Deprecated_field_number protoreflect.FieldNumber = 3
EnumOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Names for google.protobuf.EnumValueOptions.
const (
EnumValueOptions_message_name protoreflect.Name = "EnumValueOptions"
EnumValueOptions_message_fullname protoreflect.FullName = "google.protobuf.EnumValueOptions"
)
// Field names for google.protobuf.EnumValueOptions.
const (
EnumValueOptions_Deprecated_field_name protoreflect.Name = "deprecated"
EnumValueOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
EnumValueOptions_Deprecated_field_fullname protoreflect.FullName = "google.protobuf.EnumValueOptions.deprecated"
EnumValueOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.EnumValueOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.EnumValueOptions.
const (
EnumValueOptions_Deprecated_field_number protoreflect.FieldNumber = 1
EnumValueOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Names for google.protobuf.ServiceOptions.
const (
ServiceOptions_message_name protoreflect.Name = "ServiceOptions"
ServiceOptions_message_fullname protoreflect.FullName = "google.protobuf.ServiceOptions"
)
// Field names for google.protobuf.ServiceOptions.
const (
ServiceOptions_Deprecated_field_name protoreflect.Name = "deprecated"
ServiceOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
ServiceOptions_Deprecated_field_fullname protoreflect.FullName = "google.protobuf.ServiceOptions.deprecated"
ServiceOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.ServiceOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.ServiceOptions.
const (
ServiceOptions_Deprecated_field_number protoreflect.FieldNumber = 33
ServiceOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Names for google.protobuf.MethodOptions.
const (
MethodOptions_message_name protoreflect.Name = "MethodOptions"
MethodOptions_message_fullname protoreflect.FullName = "google.protobuf.MethodOptions"
)
// Field names for google.protobuf.MethodOptions.
const (
MethodOptions_Deprecated_field_name protoreflect.Name = "deprecated"
MethodOptions_IdempotencyLevel_field_name protoreflect.Name = "idempotency_level"
MethodOptions_UninterpretedOption_field_name protoreflect.Name = "uninterpreted_option"
MethodOptions_Deprecated_field_fullname protoreflect.FullName = "google.protobuf.MethodOptions.deprecated"
MethodOptions_IdempotencyLevel_field_fullname protoreflect.FullName = "google.protobuf.MethodOptions.idempotency_level"
MethodOptions_UninterpretedOption_field_fullname protoreflect.FullName = "google.protobuf.MethodOptions.uninterpreted_option"
)
// Field numbers for google.protobuf.MethodOptions.
const (
MethodOptions_Deprecated_field_number protoreflect.FieldNumber = 33
MethodOptions_IdempotencyLevel_field_number protoreflect.FieldNumber = 34
MethodOptions_UninterpretedOption_field_number protoreflect.FieldNumber = 999
)
// Full and short names for google.protobuf.MethodOptions.IdempotencyLevel.
const (
MethodOptions_IdempotencyLevel_enum_fullname = "google.protobuf.MethodOptions.IdempotencyLevel"
MethodOptions_IdempotencyLevel_enum_name = "IdempotencyLevel"
)
// Names for google.protobuf.UninterpretedOption.
const (
UninterpretedOption_message_name protoreflect.Name = "UninterpretedOption"
UninterpretedOption_message_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption"
)
// Field names for google.protobuf.UninterpretedOption.
const (
UninterpretedOption_Name_field_name protoreflect.Name = "name"
UninterpretedOption_IdentifierValue_field_name protoreflect.Name = "identifier_value"
UninterpretedOption_PositiveIntValue_field_name protoreflect.Name = "positive_int_value"
UninterpretedOption_NegativeIntValue_field_name protoreflect.Name = "negative_int_value"
UninterpretedOption_DoubleValue_field_name protoreflect.Name = "double_value"
UninterpretedOption_StringValue_field_name protoreflect.Name = "string_value"
UninterpretedOption_AggregateValue_field_name protoreflect.Name = "aggregate_value"
UninterpretedOption_Name_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.name"
UninterpretedOption_IdentifierValue_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.identifier_value"
UninterpretedOption_PositiveIntValue_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.positive_int_value"
UninterpretedOption_NegativeIntValue_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.negative_int_value"
UninterpretedOption_DoubleValue_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.double_value"
UninterpretedOption_StringValue_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.string_value"
UninterpretedOption_AggregateValue_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.aggregate_value"
)
// Field numbers for google.protobuf.UninterpretedOption.
const (
UninterpretedOption_Name_field_number protoreflect.FieldNumber = 2
UninterpretedOption_IdentifierValue_field_number protoreflect.FieldNumber = 3
UninterpretedOption_PositiveIntValue_field_number protoreflect.FieldNumber = 4
UninterpretedOption_NegativeIntValue_field_number protoreflect.FieldNumber = 5
UninterpretedOption_DoubleValue_field_number protoreflect.FieldNumber = 6
UninterpretedOption_StringValue_field_number protoreflect.FieldNumber = 7
UninterpretedOption_AggregateValue_field_number protoreflect.FieldNumber = 8
)
// Names for google.protobuf.UninterpretedOption.NamePart.
const (
UninterpretedOption_NamePart_message_name protoreflect.Name = "NamePart"
UninterpretedOption_NamePart_message_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.NamePart"
)
// Field names for google.protobuf.UninterpretedOption.NamePart.
const (
UninterpretedOption_NamePart_NamePart_field_name protoreflect.Name = "name_part"
UninterpretedOption_NamePart_IsExtension_field_name protoreflect.Name = "is_extension"
UninterpretedOption_NamePart_NamePart_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.NamePart.name_part"
UninterpretedOption_NamePart_IsExtension_field_fullname protoreflect.FullName = "google.protobuf.UninterpretedOption.NamePart.is_extension"
)
// Field numbers for google.protobuf.UninterpretedOption.NamePart.
const (
UninterpretedOption_NamePart_NamePart_field_number protoreflect.FieldNumber = 1
UninterpretedOption_NamePart_IsExtension_field_number protoreflect.FieldNumber = 2
)
// Names for google.protobuf.SourceCodeInfo.
const (
SourceCodeInfo_message_name protoreflect.Name = "SourceCodeInfo"
SourceCodeInfo_message_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo"
)
// Field names for google.protobuf.SourceCodeInfo.
const (
SourceCodeInfo_Location_field_name protoreflect.Name = "location"
SourceCodeInfo_Location_field_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo.location"
)
// Field numbers for google.protobuf.SourceCodeInfo.
const (
SourceCodeInfo_Location_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.SourceCodeInfo.Location.
const (
SourceCodeInfo_Location_message_name protoreflect.Name = "Location"
SourceCodeInfo_Location_message_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo.Location"
)
// Field names for google.protobuf.SourceCodeInfo.Location.
const (
SourceCodeInfo_Location_Path_field_name protoreflect.Name = "path"
SourceCodeInfo_Location_Span_field_name protoreflect.Name = "span"
SourceCodeInfo_Location_LeadingComments_field_name protoreflect.Name = "leading_comments"
SourceCodeInfo_Location_TrailingComments_field_name protoreflect.Name = "trailing_comments"
SourceCodeInfo_Location_LeadingDetachedComments_field_name protoreflect.Name = "leading_detached_comments"
SourceCodeInfo_Location_Path_field_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo.Location.path"
SourceCodeInfo_Location_Span_field_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo.Location.span"
SourceCodeInfo_Location_LeadingComments_field_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo.Location.leading_comments"
SourceCodeInfo_Location_TrailingComments_field_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo.Location.trailing_comments"
SourceCodeInfo_Location_LeadingDetachedComments_field_fullname protoreflect.FullName = "google.protobuf.SourceCodeInfo.Location.leading_detached_comments"
)
// Field numbers for google.protobuf.SourceCodeInfo.Location.
const (
SourceCodeInfo_Location_Path_field_number protoreflect.FieldNumber = 1
SourceCodeInfo_Location_Span_field_number protoreflect.FieldNumber = 2
SourceCodeInfo_Location_LeadingComments_field_number protoreflect.FieldNumber = 3
SourceCodeInfo_Location_TrailingComments_field_number protoreflect.FieldNumber = 4
SourceCodeInfo_Location_LeadingDetachedComments_field_number protoreflect.FieldNumber = 6
)
// Names for google.protobuf.GeneratedCodeInfo.
const (
GeneratedCodeInfo_message_name protoreflect.Name = "GeneratedCodeInfo"
GeneratedCodeInfo_message_fullname protoreflect.FullName = "google.protobuf.GeneratedCodeInfo"
)
// Field names for google.protobuf.GeneratedCodeInfo.
const (
GeneratedCodeInfo_Annotation_field_name protoreflect.Name = "annotation"
GeneratedCodeInfo_Annotation_field_fullname protoreflect.FullName = "google.protobuf.GeneratedCodeInfo.annotation"
)
// Field numbers for google.protobuf.GeneratedCodeInfo.
const (
GeneratedCodeInfo_Annotation_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.GeneratedCodeInfo.Annotation.
const (
GeneratedCodeInfo_Annotation_message_name protoreflect.Name = "Annotation"
GeneratedCodeInfo_Annotation_message_fullname protoreflect.FullName = "google.protobuf.GeneratedCodeInfo.Annotation"
)
// Field names for google.protobuf.GeneratedCodeInfo.Annotation.
const (
GeneratedCodeInfo_Annotation_Path_field_name protoreflect.Name = "path"
GeneratedCodeInfo_Annotation_SourceFile_field_name protoreflect.Name = "source_file"
GeneratedCodeInfo_Annotation_Begin_field_name protoreflect.Name = "begin"
GeneratedCodeInfo_Annotation_End_field_name protoreflect.Name = "end"
GeneratedCodeInfo_Annotation_Path_field_fullname protoreflect.FullName = "google.protobuf.GeneratedCodeInfo.Annotation.path"
GeneratedCodeInfo_Annotation_SourceFile_field_fullname protoreflect.FullName = "google.protobuf.GeneratedCodeInfo.Annotation.source_file"
GeneratedCodeInfo_Annotation_Begin_field_fullname protoreflect.FullName = "google.protobuf.GeneratedCodeInfo.Annotation.begin"
GeneratedCodeInfo_Annotation_End_field_fullname protoreflect.FullName = "google.protobuf.GeneratedCodeInfo.Annotation.end"
)
// Field numbers for google.protobuf.GeneratedCodeInfo.Annotation.
const (
GeneratedCodeInfo_Annotation_Path_field_number protoreflect.FieldNumber = 1
GeneratedCodeInfo_Annotation_SourceFile_field_number protoreflect.FieldNumber = 2
GeneratedCodeInfo_Annotation_Begin_field_number protoreflect.FieldNumber = 3
GeneratedCodeInfo_Annotation_End_field_number protoreflect.FieldNumber = 4
)

View File

@ -0,0 +1,11 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package genid contains constants for declarations in descriptor.proto
// and the well-known types.
package genid
import protoreflect "google.golang.org/protobuf/reflect/protoreflect"
const GoogleProtobuf_package protoreflect.FullName = "google.protobuf"

View File

@ -0,0 +1,34 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_duration_proto = "google/protobuf/duration.proto"
// Names for google.protobuf.Duration.
const (
Duration_message_name protoreflect.Name = "Duration"
Duration_message_fullname protoreflect.FullName = "google.protobuf.Duration"
)
// Field names for google.protobuf.Duration.
const (
Duration_Seconds_field_name protoreflect.Name = "seconds"
Duration_Nanos_field_name protoreflect.Name = "nanos"
Duration_Seconds_field_fullname protoreflect.FullName = "google.protobuf.Duration.seconds"
Duration_Nanos_field_fullname protoreflect.FullName = "google.protobuf.Duration.nanos"
)
// Field numbers for google.protobuf.Duration.
const (
Duration_Seconds_field_number protoreflect.FieldNumber = 1
Duration_Nanos_field_number protoreflect.FieldNumber = 2
)

View File

@ -0,0 +1,19 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_empty_proto = "google/protobuf/empty.proto"
// Names for google.protobuf.Empty.
const (
Empty_message_name protoreflect.Name = "Empty"
Empty_message_fullname protoreflect.FullName = "google.protobuf.Empty"
)

View File

@ -0,0 +1,31 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_field_mask_proto = "google/protobuf/field_mask.proto"
// Names for google.protobuf.FieldMask.
const (
FieldMask_message_name protoreflect.Name = "FieldMask"
FieldMask_message_fullname protoreflect.FullName = "google.protobuf.FieldMask"
)
// Field names for google.protobuf.FieldMask.
const (
FieldMask_Paths_field_name protoreflect.Name = "paths"
FieldMask_Paths_field_fullname protoreflect.FullName = "google.protobuf.FieldMask.paths"
)
// Field numbers for google.protobuf.FieldMask.
const (
FieldMask_Paths_field_number protoreflect.FieldNumber = 1
)

View File

@ -0,0 +1,25 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package genid
// Go names of implementation-specific struct fields in generated messages.
const (
State_goname = "state"
SizeCache_goname = "sizeCache"
SizeCacheA_goname = "XXX_sizecache"
WeakFields_goname = "weakFields"
WeakFieldsA_goname = "XXX_weak"
UnknownFields_goname = "unknownFields"
UnknownFieldsA_goname = "XXX_unrecognized"
ExtensionFields_goname = "extensionFields"
ExtensionFieldsA_goname = "XXX_InternalExtensions"
ExtensionFieldsB_goname = "XXX_extensions"
WeakFieldPrefix_goname = "XXX_weak_"
)

View File

@ -0,0 +1,16 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package genid
import protoreflect "google.golang.org/protobuf/reflect/protoreflect"
// Generic field names and numbers for synthetic map entry messages.
const (
MapEntry_Key_field_name protoreflect.Name = "key"
MapEntry_Value_field_name protoreflect.Name = "value"
MapEntry_Key_field_number protoreflect.FieldNumber = 1
MapEntry_Value_field_number protoreflect.FieldNumber = 2
)

View File

@ -0,0 +1,31 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_source_context_proto = "google/protobuf/source_context.proto"
// Names for google.protobuf.SourceContext.
const (
SourceContext_message_name protoreflect.Name = "SourceContext"
SourceContext_message_fullname protoreflect.FullName = "google.protobuf.SourceContext"
)
// Field names for google.protobuf.SourceContext.
const (
SourceContext_FileName_field_name protoreflect.Name = "file_name"
SourceContext_FileName_field_fullname protoreflect.FullName = "google.protobuf.SourceContext.file_name"
)
// Field numbers for google.protobuf.SourceContext.
const (
SourceContext_FileName_field_number protoreflect.FieldNumber = 1
)

View File

@ -0,0 +1,116 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_struct_proto = "google/protobuf/struct.proto"
// Full and short names for google.protobuf.NullValue.
const (
NullValue_enum_fullname = "google.protobuf.NullValue"
NullValue_enum_name = "NullValue"
)
// Names for google.protobuf.Struct.
const (
Struct_message_name protoreflect.Name = "Struct"
Struct_message_fullname protoreflect.FullName = "google.protobuf.Struct"
)
// Field names for google.protobuf.Struct.
const (
Struct_Fields_field_name protoreflect.Name = "fields"
Struct_Fields_field_fullname protoreflect.FullName = "google.protobuf.Struct.fields"
)
// Field numbers for google.protobuf.Struct.
const (
Struct_Fields_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.Struct.FieldsEntry.
const (
Struct_FieldsEntry_message_name protoreflect.Name = "FieldsEntry"
Struct_FieldsEntry_message_fullname protoreflect.FullName = "google.protobuf.Struct.FieldsEntry"
)
// Field names for google.protobuf.Struct.FieldsEntry.
const (
Struct_FieldsEntry_Key_field_name protoreflect.Name = "key"
Struct_FieldsEntry_Value_field_name protoreflect.Name = "value"
Struct_FieldsEntry_Key_field_fullname protoreflect.FullName = "google.protobuf.Struct.FieldsEntry.key"
Struct_FieldsEntry_Value_field_fullname protoreflect.FullName = "google.protobuf.Struct.FieldsEntry.value"
)
// Field numbers for google.protobuf.Struct.FieldsEntry.
const (
Struct_FieldsEntry_Key_field_number protoreflect.FieldNumber = 1
Struct_FieldsEntry_Value_field_number protoreflect.FieldNumber = 2
)
// Names for google.protobuf.Value.
const (
Value_message_name protoreflect.Name = "Value"
Value_message_fullname protoreflect.FullName = "google.protobuf.Value"
)
// Field names for google.protobuf.Value.
const (
Value_NullValue_field_name protoreflect.Name = "null_value"
Value_NumberValue_field_name protoreflect.Name = "number_value"
Value_StringValue_field_name protoreflect.Name = "string_value"
Value_BoolValue_field_name protoreflect.Name = "bool_value"
Value_StructValue_field_name protoreflect.Name = "struct_value"
Value_ListValue_field_name protoreflect.Name = "list_value"
Value_NullValue_field_fullname protoreflect.FullName = "google.protobuf.Value.null_value"
Value_NumberValue_field_fullname protoreflect.FullName = "google.protobuf.Value.number_value"
Value_StringValue_field_fullname protoreflect.FullName = "google.protobuf.Value.string_value"
Value_BoolValue_field_fullname protoreflect.FullName = "google.protobuf.Value.bool_value"
Value_StructValue_field_fullname protoreflect.FullName = "google.protobuf.Value.struct_value"
Value_ListValue_field_fullname protoreflect.FullName = "google.protobuf.Value.list_value"
)
// Field numbers for google.protobuf.Value.
const (
Value_NullValue_field_number protoreflect.FieldNumber = 1
Value_NumberValue_field_number protoreflect.FieldNumber = 2
Value_StringValue_field_number protoreflect.FieldNumber = 3
Value_BoolValue_field_number protoreflect.FieldNumber = 4
Value_StructValue_field_number protoreflect.FieldNumber = 5
Value_ListValue_field_number protoreflect.FieldNumber = 6
)
// Oneof names for google.protobuf.Value.
const (
Value_Kind_oneof_name protoreflect.Name = "kind"
Value_Kind_oneof_fullname protoreflect.FullName = "google.protobuf.Value.kind"
)
// Names for google.protobuf.ListValue.
const (
ListValue_message_name protoreflect.Name = "ListValue"
ListValue_message_fullname protoreflect.FullName = "google.protobuf.ListValue"
)
// Field names for google.protobuf.ListValue.
const (
ListValue_Values_field_name protoreflect.Name = "values"
ListValue_Values_field_fullname protoreflect.FullName = "google.protobuf.ListValue.values"
)
// Field numbers for google.protobuf.ListValue.
const (
ListValue_Values_field_number protoreflect.FieldNumber = 1
)

View File

@ -0,0 +1,34 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_timestamp_proto = "google/protobuf/timestamp.proto"
// Names for google.protobuf.Timestamp.
const (
Timestamp_message_name protoreflect.Name = "Timestamp"
Timestamp_message_fullname protoreflect.FullName = "google.protobuf.Timestamp"
)
// Field names for google.protobuf.Timestamp.
const (
Timestamp_Seconds_field_name protoreflect.Name = "seconds"
Timestamp_Nanos_field_name protoreflect.Name = "nanos"
Timestamp_Seconds_field_fullname protoreflect.FullName = "google.protobuf.Timestamp.seconds"
Timestamp_Nanos_field_fullname protoreflect.FullName = "google.protobuf.Timestamp.nanos"
)
// Field numbers for google.protobuf.Timestamp.
const (
Timestamp_Seconds_field_number protoreflect.FieldNumber = 1
Timestamp_Nanos_field_number protoreflect.FieldNumber = 2
)

View File

@ -0,0 +1,184 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_type_proto = "google/protobuf/type.proto"
// Full and short names for google.protobuf.Syntax.
const (
Syntax_enum_fullname = "google.protobuf.Syntax"
Syntax_enum_name = "Syntax"
)
// Names for google.protobuf.Type.
const (
Type_message_name protoreflect.Name = "Type"
Type_message_fullname protoreflect.FullName = "google.protobuf.Type"
)
// Field names for google.protobuf.Type.
const (
Type_Name_field_name protoreflect.Name = "name"
Type_Fields_field_name protoreflect.Name = "fields"
Type_Oneofs_field_name protoreflect.Name = "oneofs"
Type_Options_field_name protoreflect.Name = "options"
Type_SourceContext_field_name protoreflect.Name = "source_context"
Type_Syntax_field_name protoreflect.Name = "syntax"
Type_Name_field_fullname protoreflect.FullName = "google.protobuf.Type.name"
Type_Fields_field_fullname protoreflect.FullName = "google.protobuf.Type.fields"
Type_Oneofs_field_fullname protoreflect.FullName = "google.protobuf.Type.oneofs"
Type_Options_field_fullname protoreflect.FullName = "google.protobuf.Type.options"
Type_SourceContext_field_fullname protoreflect.FullName = "google.protobuf.Type.source_context"
Type_Syntax_field_fullname protoreflect.FullName = "google.protobuf.Type.syntax"
)
// Field numbers for google.protobuf.Type.
const (
Type_Name_field_number protoreflect.FieldNumber = 1
Type_Fields_field_number protoreflect.FieldNumber = 2
Type_Oneofs_field_number protoreflect.FieldNumber = 3
Type_Options_field_number protoreflect.FieldNumber = 4
Type_SourceContext_field_number protoreflect.FieldNumber = 5
Type_Syntax_field_number protoreflect.FieldNumber = 6
)
// Names for google.protobuf.Field.
const (
Field_message_name protoreflect.Name = "Field"
Field_message_fullname protoreflect.FullName = "google.protobuf.Field"
)
// Field names for google.protobuf.Field.
const (
Field_Kind_field_name protoreflect.Name = "kind"
Field_Cardinality_field_name protoreflect.Name = "cardinality"
Field_Number_field_name protoreflect.Name = "number"
Field_Name_field_name protoreflect.Name = "name"
Field_TypeUrl_field_name protoreflect.Name = "type_url"
Field_OneofIndex_field_name protoreflect.Name = "oneof_index"
Field_Packed_field_name protoreflect.Name = "packed"
Field_Options_field_name protoreflect.Name = "options"
Field_JsonName_field_name protoreflect.Name = "json_name"
Field_DefaultValue_field_name protoreflect.Name = "default_value"
Field_Kind_field_fullname protoreflect.FullName = "google.protobuf.Field.kind"
Field_Cardinality_field_fullname protoreflect.FullName = "google.protobuf.Field.cardinality"
Field_Number_field_fullname protoreflect.FullName = "google.protobuf.Field.number"
Field_Name_field_fullname protoreflect.FullName = "google.protobuf.Field.name"
Field_TypeUrl_field_fullname protoreflect.FullName = "google.protobuf.Field.type_url"
Field_OneofIndex_field_fullname protoreflect.FullName = "google.protobuf.Field.oneof_index"
Field_Packed_field_fullname protoreflect.FullName = "google.protobuf.Field.packed"
Field_Options_field_fullname protoreflect.FullName = "google.protobuf.Field.options"
Field_JsonName_field_fullname protoreflect.FullName = "google.protobuf.Field.json_name"
Field_DefaultValue_field_fullname protoreflect.FullName = "google.protobuf.Field.default_value"
)
// Field numbers for google.protobuf.Field.
const (
Field_Kind_field_number protoreflect.FieldNumber = 1
Field_Cardinality_field_number protoreflect.FieldNumber = 2
Field_Number_field_number protoreflect.FieldNumber = 3
Field_Name_field_number protoreflect.FieldNumber = 4
Field_TypeUrl_field_number protoreflect.FieldNumber = 6
Field_OneofIndex_field_number protoreflect.FieldNumber = 7
Field_Packed_field_number protoreflect.FieldNumber = 8
Field_Options_field_number protoreflect.FieldNumber = 9
Field_JsonName_field_number protoreflect.FieldNumber = 10
Field_DefaultValue_field_number protoreflect.FieldNumber = 11
)
// Full and short names for google.protobuf.Field.Kind.
const (
Field_Kind_enum_fullname = "google.protobuf.Field.Kind"
Field_Kind_enum_name = "Kind"
)
// Full and short names for google.protobuf.Field.Cardinality.
const (
Field_Cardinality_enum_fullname = "google.protobuf.Field.Cardinality"
Field_Cardinality_enum_name = "Cardinality"
)
// Names for google.protobuf.Enum.
const (
Enum_message_name protoreflect.Name = "Enum"
Enum_message_fullname protoreflect.FullName = "google.protobuf.Enum"
)
// Field names for google.protobuf.Enum.
const (
Enum_Name_field_name protoreflect.Name = "name"
Enum_Enumvalue_field_name protoreflect.Name = "enumvalue"
Enum_Options_field_name protoreflect.Name = "options"
Enum_SourceContext_field_name protoreflect.Name = "source_context"
Enum_Syntax_field_name protoreflect.Name = "syntax"
Enum_Name_field_fullname protoreflect.FullName = "google.protobuf.Enum.name"
Enum_Enumvalue_field_fullname protoreflect.FullName = "google.protobuf.Enum.enumvalue"
Enum_Options_field_fullname protoreflect.FullName = "google.protobuf.Enum.options"
Enum_SourceContext_field_fullname protoreflect.FullName = "google.protobuf.Enum.source_context"
Enum_Syntax_field_fullname protoreflect.FullName = "google.protobuf.Enum.syntax"
)
// Field numbers for google.protobuf.Enum.
const (
Enum_Name_field_number protoreflect.FieldNumber = 1
Enum_Enumvalue_field_number protoreflect.FieldNumber = 2
Enum_Options_field_number protoreflect.FieldNumber = 3
Enum_SourceContext_field_number protoreflect.FieldNumber = 4
Enum_Syntax_field_number protoreflect.FieldNumber = 5
)
// Names for google.protobuf.EnumValue.
const (
EnumValue_message_name protoreflect.Name = "EnumValue"
EnumValue_message_fullname protoreflect.FullName = "google.protobuf.EnumValue"
)
// Field names for google.protobuf.EnumValue.
const (
EnumValue_Name_field_name protoreflect.Name = "name"
EnumValue_Number_field_name protoreflect.Name = "number"
EnumValue_Options_field_name protoreflect.Name = "options"
EnumValue_Name_field_fullname protoreflect.FullName = "google.protobuf.EnumValue.name"
EnumValue_Number_field_fullname protoreflect.FullName = "google.protobuf.EnumValue.number"
EnumValue_Options_field_fullname protoreflect.FullName = "google.protobuf.EnumValue.options"
)
// Field numbers for google.protobuf.EnumValue.
const (
EnumValue_Name_field_number protoreflect.FieldNumber = 1
EnumValue_Number_field_number protoreflect.FieldNumber = 2
EnumValue_Options_field_number protoreflect.FieldNumber = 3
)
// Names for google.protobuf.Option.
const (
Option_message_name protoreflect.Name = "Option"
Option_message_fullname protoreflect.FullName = "google.protobuf.Option"
)
// Field names for google.protobuf.Option.
const (
Option_Name_field_name protoreflect.Name = "name"
Option_Value_field_name protoreflect.Name = "value"
Option_Name_field_fullname protoreflect.FullName = "google.protobuf.Option.name"
Option_Value_field_fullname protoreflect.FullName = "google.protobuf.Option.value"
)
// Field numbers for google.protobuf.Option.
const (
Option_Name_field_number protoreflect.FieldNumber = 1
Option_Value_field_number protoreflect.FieldNumber = 2
)

View File

@ -0,0 +1,13 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package genid
import protoreflect "google.golang.org/protobuf/reflect/protoreflect"
// Generic field name and number for messages in wrappers.proto.
const (
WrapperValue_Value_field_name protoreflect.Name = "value"
WrapperValue_Value_field_number protoreflect.FieldNumber = 1
)

View File

@ -0,0 +1,175 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate-protos. DO NOT EDIT.
package genid
import (
protoreflect "google.golang.org/protobuf/reflect/protoreflect"
)
const File_google_protobuf_wrappers_proto = "google/protobuf/wrappers.proto"
// Names for google.protobuf.DoubleValue.
const (
DoubleValue_message_name protoreflect.Name = "DoubleValue"
DoubleValue_message_fullname protoreflect.FullName = "google.protobuf.DoubleValue"
)
// Field names for google.protobuf.DoubleValue.
const (
DoubleValue_Value_field_name protoreflect.Name = "value"
DoubleValue_Value_field_fullname protoreflect.FullName = "google.protobuf.DoubleValue.value"
)
// Field numbers for google.protobuf.DoubleValue.
const (
DoubleValue_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.FloatValue.
const (
FloatValue_message_name protoreflect.Name = "FloatValue"
FloatValue_message_fullname protoreflect.FullName = "google.protobuf.FloatValue"
)
// Field names for google.protobuf.FloatValue.
const (
FloatValue_Value_field_name protoreflect.Name = "value"
FloatValue_Value_field_fullname protoreflect.FullName = "google.protobuf.FloatValue.value"
)
// Field numbers for google.protobuf.FloatValue.
const (
FloatValue_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.Int64Value.
const (
Int64Value_message_name protoreflect.Name = "Int64Value"
Int64Value_message_fullname protoreflect.FullName = "google.protobuf.Int64Value"
)
// Field names for google.protobuf.Int64Value.
const (
Int64Value_Value_field_name protoreflect.Name = "value"
Int64Value_Value_field_fullname protoreflect.FullName = "google.protobuf.Int64Value.value"
)
// Field numbers for google.protobuf.Int64Value.
const (
Int64Value_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.UInt64Value.
const (
UInt64Value_message_name protoreflect.Name = "UInt64Value"
UInt64Value_message_fullname protoreflect.FullName = "google.protobuf.UInt64Value"
)
// Field names for google.protobuf.UInt64Value.
const (
UInt64Value_Value_field_name protoreflect.Name = "value"
UInt64Value_Value_field_fullname protoreflect.FullName = "google.protobuf.UInt64Value.value"
)
// Field numbers for google.protobuf.UInt64Value.
const (
UInt64Value_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.Int32Value.
const (
Int32Value_message_name protoreflect.Name = "Int32Value"
Int32Value_message_fullname protoreflect.FullName = "google.protobuf.Int32Value"
)
// Field names for google.protobuf.Int32Value.
const (
Int32Value_Value_field_name protoreflect.Name = "value"
Int32Value_Value_field_fullname protoreflect.FullName = "google.protobuf.Int32Value.value"
)
// Field numbers for google.protobuf.Int32Value.
const (
Int32Value_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.UInt32Value.
const (
UInt32Value_message_name protoreflect.Name = "UInt32Value"
UInt32Value_message_fullname protoreflect.FullName = "google.protobuf.UInt32Value"
)
// Field names for google.protobuf.UInt32Value.
const (
UInt32Value_Value_field_name protoreflect.Name = "value"
UInt32Value_Value_field_fullname protoreflect.FullName = "google.protobuf.UInt32Value.value"
)
// Field numbers for google.protobuf.UInt32Value.
const (
UInt32Value_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.BoolValue.
const (
BoolValue_message_name protoreflect.Name = "BoolValue"
BoolValue_message_fullname protoreflect.FullName = "google.protobuf.BoolValue"
)
// Field names for google.protobuf.BoolValue.
const (
BoolValue_Value_field_name protoreflect.Name = "value"
BoolValue_Value_field_fullname protoreflect.FullName = "google.protobuf.BoolValue.value"
)
// Field numbers for google.protobuf.BoolValue.
const (
BoolValue_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.StringValue.
const (
StringValue_message_name protoreflect.Name = "StringValue"
StringValue_message_fullname protoreflect.FullName = "google.protobuf.StringValue"
)
// Field names for google.protobuf.StringValue.
const (
StringValue_Value_field_name protoreflect.Name = "value"
StringValue_Value_field_fullname protoreflect.FullName = "google.protobuf.StringValue.value"
)
// Field numbers for google.protobuf.StringValue.
const (
StringValue_Value_field_number protoreflect.FieldNumber = 1
)
// Names for google.protobuf.BytesValue.
const (
BytesValue_message_name protoreflect.Name = "BytesValue"
BytesValue_message_fullname protoreflect.FullName = "google.protobuf.BytesValue"
)
// Field names for google.protobuf.BytesValue.
const (
BytesValue_Value_field_name protoreflect.Name = "value"
BytesValue_Value_field_fullname protoreflect.FullName = "google.protobuf.BytesValue.value"
)
// Field numbers for google.protobuf.BytesValue.
const (
BytesValue_Value_field_number protoreflect.FieldNumber = 1
)

View File

@ -0,0 +1,177 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"strconv"
"google.golang.org/protobuf/encoding/prototext"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
piface "google.golang.org/protobuf/runtime/protoiface"
)
// Export is a zero-length named type that exists only to export a set of
// functions that we do not want to appear in godoc.
type Export struct{}
// NewError formats a string according to the format specifier and arguments and
// returns an error that has a "proto" prefix.
func (Export) NewError(f string, x ...interface{}) error {
return errors.New(f, x...)
}
// enum is any enum type generated by protoc-gen-go
// and must be a named int32 type.
type enum = interface{}
// EnumOf returns the protoreflect.Enum interface over e.
// It returns nil if e is nil.
func (Export) EnumOf(e enum) pref.Enum {
switch e := e.(type) {
case nil:
return nil
case pref.Enum:
return e
default:
return legacyWrapEnum(reflect.ValueOf(e))
}
}
// EnumDescriptorOf returns the protoreflect.EnumDescriptor for e.
// It returns nil if e is nil.
func (Export) EnumDescriptorOf(e enum) pref.EnumDescriptor {
switch e := e.(type) {
case nil:
return nil
case pref.Enum:
return e.Descriptor()
default:
return LegacyLoadEnumDesc(reflect.TypeOf(e))
}
}
// EnumTypeOf returns the protoreflect.EnumType for e.
// It returns nil if e is nil.
func (Export) EnumTypeOf(e enum) pref.EnumType {
switch e := e.(type) {
case nil:
return nil
case pref.Enum:
return e.Type()
default:
return legacyLoadEnumType(reflect.TypeOf(e))
}
}
// EnumStringOf returns the enum value as a string, either as the name if
// the number is resolvable, or the number formatted as a string.
func (Export) EnumStringOf(ed pref.EnumDescriptor, n pref.EnumNumber) string {
ev := ed.Values().ByNumber(n)
if ev != nil {
return string(ev.Name())
}
return strconv.Itoa(int(n))
}
// message is any message type generated by protoc-gen-go
// and must be a pointer to a named struct type.
type message = interface{}
// legacyMessageWrapper wraps a v2 message as a v1 message.
type legacyMessageWrapper struct{ m pref.ProtoMessage }
func (m legacyMessageWrapper) Reset() { proto.Reset(m.m) }
func (m legacyMessageWrapper) String() string { return Export{}.MessageStringOf(m.m) }
func (m legacyMessageWrapper) ProtoMessage() {}
// ProtoMessageV1Of converts either a v1 or v2 message to a v1 message.
// It returns nil if m is nil.
func (Export) ProtoMessageV1Of(m message) piface.MessageV1 {
switch mv := m.(type) {
case nil:
return nil
case piface.MessageV1:
return mv
case unwrapper:
return Export{}.ProtoMessageV1Of(mv.protoUnwrap())
case pref.ProtoMessage:
return legacyMessageWrapper{mv}
default:
panic(fmt.Sprintf("message %T is neither a v1 or v2 Message", m))
}
}
func (Export) protoMessageV2Of(m message) pref.ProtoMessage {
switch mv := m.(type) {
case nil:
return nil
case pref.ProtoMessage:
return mv
case legacyMessageWrapper:
return mv.m
case piface.MessageV1:
return nil
default:
panic(fmt.Sprintf("message %T is neither a v1 or v2 Message", m))
}
}
// ProtoMessageV2Of converts either a v1 or v2 message to a v2 message.
// It returns nil if m is nil.
func (Export) ProtoMessageV2Of(m message) pref.ProtoMessage {
if m == nil {
return nil
}
if mv := (Export{}).protoMessageV2Of(m); mv != nil {
return mv
}
return legacyWrapMessage(reflect.ValueOf(m)).Interface()
}
// MessageOf returns the protoreflect.Message interface over m.
// It returns nil if m is nil.
func (Export) MessageOf(m message) pref.Message {
if m == nil {
return nil
}
if mv := (Export{}).protoMessageV2Of(m); mv != nil {
return mv.ProtoReflect()
}
return legacyWrapMessage(reflect.ValueOf(m))
}
// MessageDescriptorOf returns the protoreflect.MessageDescriptor for m.
// It returns nil if m is nil.
func (Export) MessageDescriptorOf(m message) pref.MessageDescriptor {
if m == nil {
return nil
}
if mv := (Export{}).protoMessageV2Of(m); mv != nil {
return mv.ProtoReflect().Descriptor()
}
return LegacyLoadMessageDesc(reflect.TypeOf(m))
}
// MessageTypeOf returns the protoreflect.MessageType for m.
// It returns nil if m is nil.
func (Export) MessageTypeOf(m message) pref.MessageType {
if m == nil {
return nil
}
if mv := (Export{}).protoMessageV2Of(m); mv != nil {
return mv.ProtoReflect().Type()
}
return legacyLoadMessageType(reflect.TypeOf(m), "")
}
// MessageStringOf returns the message value as a string,
// which is the message serialized in the protobuf text format.
func (Export) MessageStringOf(m pref.ProtoMessage) string {
return prototext.MarshalOptions{Multiline: false}.Format(m)
}

View File

@ -0,0 +1,141 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"sync"
"google.golang.org/protobuf/internal/errors"
pref "google.golang.org/protobuf/reflect/protoreflect"
piface "google.golang.org/protobuf/runtime/protoiface"
)
func (mi *MessageInfo) checkInitialized(in piface.CheckInitializedInput) (piface.CheckInitializedOutput, error) {
var p pointer
if ms, ok := in.Message.(*messageState); ok {
p = ms.pointer()
} else {
p = in.Message.(*messageReflectWrapper).pointer()
}
return piface.CheckInitializedOutput{}, mi.checkInitializedPointer(p)
}
func (mi *MessageInfo) checkInitializedPointer(p pointer) error {
mi.init()
if !mi.needsInitCheck {
return nil
}
if p.IsNil() {
for _, f := range mi.orderedCoderFields {
if f.isRequired {
return errors.RequiredNotSet(string(mi.Desc.Fields().ByNumber(f.num).FullName()))
}
}
return nil
}
if mi.extensionOffset.IsValid() {
e := p.Apply(mi.extensionOffset).Extensions()
if err := mi.isInitExtensions(e); err != nil {
return err
}
}
for _, f := range mi.orderedCoderFields {
if !f.isRequired && f.funcs.isInit == nil {
continue
}
fptr := p.Apply(f.offset)
if f.isPointer && fptr.Elem().IsNil() {
if f.isRequired {
return errors.RequiredNotSet(string(mi.Desc.Fields().ByNumber(f.num).FullName()))
}
continue
}
if f.funcs.isInit == nil {
continue
}
if err := f.funcs.isInit(fptr, f); err != nil {
return err
}
}
return nil
}
func (mi *MessageInfo) isInitExtensions(ext *map[int32]ExtensionField) error {
if ext == nil {
return nil
}
for _, x := range *ext {
ei := getExtensionFieldInfo(x.Type())
if ei.funcs.isInit == nil {
continue
}
v := x.Value()
if !v.IsValid() {
continue
}
if err := ei.funcs.isInit(v); err != nil {
return err
}
}
return nil
}
var (
needsInitCheckMu sync.Mutex
needsInitCheckMap sync.Map
)
// needsInitCheck reports whether a message needs to be checked for partial initialization.
//
// It returns true if the message transitively includes any required or extension fields.
func needsInitCheck(md pref.MessageDescriptor) bool {
if v, ok := needsInitCheckMap.Load(md); ok {
if has, ok := v.(bool); ok {
return has
}
}
needsInitCheckMu.Lock()
defer needsInitCheckMu.Unlock()
return needsInitCheckLocked(md)
}
func needsInitCheckLocked(md pref.MessageDescriptor) (has bool) {
if v, ok := needsInitCheckMap.Load(md); ok {
// If has is true, we've previously determined that this message
// needs init checks.
//
// If has is false, we've previously determined that it can never
// be uninitialized.
//
// If has is not a bool, we've just encountered a cycle in the
// message graph. In this case, it is safe to return false: If
// the message does have required fields, we'll detect them later
// in the graph traversal.
has, ok := v.(bool)
return ok && has
}
needsInitCheckMap.Store(md, struct{}{}) // avoid cycles while descending into this message
defer func() {
needsInitCheckMap.Store(md, has)
}()
if md.RequiredNumbers().Len() > 0 {
return true
}
if md.ExtensionRanges().Len() > 0 {
return true
}
for i := 0; i < md.Fields().Len(); i++ {
fd := md.Fields().Get(i)
// Map keys are never messages, so just consider the map value.
if fd.IsMap() {
fd = fd.MapValue()
}
fmd := fd.Message()
if fmd != nil && needsInitCheckLocked(fmd) {
return true
}
}
return false
}

View File

@ -0,0 +1,223 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"sync"
"sync/atomic"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/errors"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
type extensionFieldInfo struct {
wiretag uint64
tagsize int
unmarshalNeedsValue bool
funcs valueCoderFuncs
validation validationInfo
}
var legacyExtensionFieldInfoCache sync.Map // map[protoreflect.ExtensionType]*extensionFieldInfo
func getExtensionFieldInfo(xt pref.ExtensionType) *extensionFieldInfo {
if xi, ok := xt.(*ExtensionInfo); ok {
xi.lazyInit()
return xi.info
}
return legacyLoadExtensionFieldInfo(xt)
}
// legacyLoadExtensionFieldInfo dynamically loads a *ExtensionInfo for xt.
func legacyLoadExtensionFieldInfo(xt pref.ExtensionType) *extensionFieldInfo {
if xi, ok := legacyExtensionFieldInfoCache.Load(xt); ok {
return xi.(*extensionFieldInfo)
}
e := makeExtensionFieldInfo(xt.TypeDescriptor())
if e, ok := legacyMessageTypeCache.LoadOrStore(xt, e); ok {
return e.(*extensionFieldInfo)
}
return e
}
func makeExtensionFieldInfo(xd pref.ExtensionDescriptor) *extensionFieldInfo {
var wiretag uint64
if !xd.IsPacked() {
wiretag = protowire.EncodeTag(xd.Number(), wireTypes[xd.Kind()])
} else {
wiretag = protowire.EncodeTag(xd.Number(), protowire.BytesType)
}
e := &extensionFieldInfo{
wiretag: wiretag,
tagsize: protowire.SizeVarint(wiretag),
funcs: encoderFuncsForValue(xd),
}
// Does the unmarshal function need a value passed to it?
// This is true for composite types, where we pass in a message, list, or map to fill in,
// and for enums, where we pass in a prototype value to specify the concrete enum type.
switch xd.Kind() {
case pref.MessageKind, pref.GroupKind, pref.EnumKind:
e.unmarshalNeedsValue = true
default:
if xd.Cardinality() == pref.Repeated {
e.unmarshalNeedsValue = true
}
}
return e
}
type lazyExtensionValue struct {
atomicOnce uint32 // atomically set if value is valid
mu sync.Mutex
xi *extensionFieldInfo
value pref.Value
b []byte
fn func() pref.Value
}
type ExtensionField struct {
typ pref.ExtensionType
// value is either the value of GetValue,
// or a *lazyExtensionValue that then returns the value of GetValue.
value pref.Value
lazy *lazyExtensionValue
}
func (f *ExtensionField) appendLazyBytes(xt pref.ExtensionType, xi *extensionFieldInfo, num protowire.Number, wtyp protowire.Type, b []byte) {
if f.lazy == nil {
f.lazy = &lazyExtensionValue{xi: xi}
}
f.typ = xt
f.lazy.xi = xi
f.lazy.b = protowire.AppendTag(f.lazy.b, num, wtyp)
f.lazy.b = append(f.lazy.b, b...)
}
func (f *ExtensionField) canLazy(xt pref.ExtensionType) bool {
if f.typ == nil {
return true
}
if f.typ == xt && f.lazy != nil && atomic.LoadUint32(&f.lazy.atomicOnce) == 0 {
return true
}
return false
}
func (f *ExtensionField) lazyInit() {
f.lazy.mu.Lock()
defer f.lazy.mu.Unlock()
if atomic.LoadUint32(&f.lazy.atomicOnce) == 1 {
return
}
if f.lazy.xi != nil {
b := f.lazy.b
val := f.typ.New()
for len(b) > 0 {
var tag uint64
if b[0] < 0x80 {
tag = uint64(b[0])
b = b[1:]
} else if len(b) >= 2 && b[1] < 128 {
tag = uint64(b[0]&0x7f) + uint64(b[1])<<7
b = b[2:]
} else {
var n int
tag, n = protowire.ConsumeVarint(b)
if n < 0 {
panic(errors.New("bad tag in lazy extension decoding"))
}
b = b[n:]
}
num := protowire.Number(tag >> 3)
wtyp := protowire.Type(tag & 7)
var out unmarshalOutput
var err error
val, out, err = f.lazy.xi.funcs.unmarshal(b, val, num, wtyp, lazyUnmarshalOptions)
if err != nil {
panic(errors.New("decode failure in lazy extension decoding: %v", err))
}
b = b[out.n:]
}
f.lazy.value = val
} else {
f.lazy.value = f.lazy.fn()
}
f.lazy.xi = nil
f.lazy.fn = nil
f.lazy.b = nil
atomic.StoreUint32(&f.lazy.atomicOnce, 1)
}
// Set sets the type and value of the extension field.
// This must not be called concurrently.
func (f *ExtensionField) Set(t pref.ExtensionType, v pref.Value) {
f.typ = t
f.value = v
f.lazy = nil
}
// SetLazy sets the type and a value that is to be lazily evaluated upon first use.
// This must not be called concurrently.
func (f *ExtensionField) SetLazy(t pref.ExtensionType, fn func() pref.Value) {
f.typ = t
f.lazy = &lazyExtensionValue{fn: fn}
}
// Value returns the value of the extension field.
// This may be called concurrently.
func (f *ExtensionField) Value() pref.Value {
if f.lazy != nil {
if atomic.LoadUint32(&f.lazy.atomicOnce) == 0 {
f.lazyInit()
}
return f.lazy.value
}
return f.value
}
// Type returns the type of the extension field.
// This may be called concurrently.
func (f ExtensionField) Type() pref.ExtensionType {
return f.typ
}
// IsSet returns whether the extension field is set.
// This may be called concurrently.
func (f ExtensionField) IsSet() bool {
return f.typ != nil
}
// IsLazy reports whether a field is lazily encoded.
// It is exported for testing.
func IsLazy(m pref.Message, fd pref.FieldDescriptor) bool {
var mi *MessageInfo
var p pointer
switch m := m.(type) {
case *messageState:
mi = m.messageInfo()
p = m.pointer()
case *messageReflectWrapper:
mi = m.messageInfo()
p = m.pointer()
default:
return false
}
xd, ok := fd.(pref.ExtensionTypeDescriptor)
if !ok {
return false
}
xt := xd.Type()
ext := mi.extensionMap(p)
if ext == nil {
return false
}
f, ok := (*ext)[int32(fd.Number())]
if !ok {
return false
}
return f.typ == xt && f.lazy != nil && atomic.LoadUint32(&f.lazy.atomicOnce) == 0
}

View File

@ -0,0 +1,830 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"sync"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/proto"
pref "google.golang.org/protobuf/reflect/protoreflect"
preg "google.golang.org/protobuf/reflect/protoregistry"
piface "google.golang.org/protobuf/runtime/protoiface"
)
type errInvalidUTF8 struct{}
func (errInvalidUTF8) Error() string { return "string field contains invalid UTF-8" }
func (errInvalidUTF8) InvalidUTF8() bool { return true }
func (errInvalidUTF8) Unwrap() error { return errors.Error }
// initOneofFieldCoders initializes the fast-path functions for the fields in a oneof.
//
// For size, marshal, and isInit operations, functions are set only on the first field
// in the oneof. The functions are called when the oneof is non-nil, and will dispatch
// to the appropriate field-specific function as necessary.
//
// The unmarshal function is set on each field individually as usual.
func (mi *MessageInfo) initOneofFieldCoders(od pref.OneofDescriptor, si structInfo) {
fs := si.oneofsByName[od.Name()]
ft := fs.Type
oneofFields := make(map[reflect.Type]*coderFieldInfo)
needIsInit := false
fields := od.Fields()
for i, lim := 0, fields.Len(); i < lim; i++ {
fd := od.Fields().Get(i)
num := fd.Number()
// Make a copy of the original coderFieldInfo for use in unmarshaling.
//
// oneofFields[oneofType].funcs.marshal is the field-specific marshal function.
//
// mi.coderFields[num].marshal is set on only the first field in the oneof,
// and dispatches to the field-specific marshaler in oneofFields.
cf := *mi.coderFields[num]
ot := si.oneofWrappersByNumber[num]
cf.ft = ot.Field(0).Type
cf.mi, cf.funcs = fieldCoder(fd, cf.ft)
oneofFields[ot] = &cf
if cf.funcs.isInit != nil {
needIsInit = true
}
mi.coderFields[num].funcs.unmarshal = func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
var vw reflect.Value // pointer to wrapper type
vi := p.AsValueOf(ft).Elem() // oneof field value of interface kind
if !vi.IsNil() && !vi.Elem().IsNil() && vi.Elem().Elem().Type() == ot {
vw = vi.Elem()
} else {
vw = reflect.New(ot)
}
out, err := cf.funcs.unmarshal(b, pointerOfValue(vw).Apply(zeroOffset), wtyp, &cf, opts)
if err != nil {
return out, err
}
vi.Set(vw)
return out, nil
}
}
getInfo := func(p pointer) (pointer, *coderFieldInfo) {
v := p.AsValueOf(ft).Elem()
if v.IsNil() {
return pointer{}, nil
}
v = v.Elem() // interface -> *struct
if v.IsNil() {
return pointer{}, nil
}
return pointerOfValue(v).Apply(zeroOffset), oneofFields[v.Elem().Type()]
}
first := mi.coderFields[od.Fields().Get(0).Number()]
first.funcs.size = func(p pointer, _ *coderFieldInfo, opts marshalOptions) int {
p, info := getInfo(p)
if info == nil || info.funcs.size == nil {
return 0
}
return info.funcs.size(p, info, opts)
}
first.funcs.marshal = func(b []byte, p pointer, _ *coderFieldInfo, opts marshalOptions) ([]byte, error) {
p, info := getInfo(p)
if info == nil || info.funcs.marshal == nil {
return b, nil
}
return info.funcs.marshal(b, p, info, opts)
}
first.funcs.merge = func(dst, src pointer, _ *coderFieldInfo, opts mergeOptions) {
srcp, srcinfo := getInfo(src)
if srcinfo == nil || srcinfo.funcs.merge == nil {
return
}
dstp, dstinfo := getInfo(dst)
if dstinfo != srcinfo {
dst.AsValueOf(ft).Elem().Set(reflect.New(src.AsValueOf(ft).Elem().Elem().Elem().Type()))
dstp = pointerOfValue(dst.AsValueOf(ft).Elem().Elem()).Apply(zeroOffset)
}
srcinfo.funcs.merge(dstp, srcp, srcinfo, opts)
}
if needIsInit {
first.funcs.isInit = func(p pointer, _ *coderFieldInfo) error {
p, info := getInfo(p)
if info == nil || info.funcs.isInit == nil {
return nil
}
return info.funcs.isInit(p, info)
}
}
}
func makeWeakMessageFieldCoder(fd pref.FieldDescriptor) pointerCoderFuncs {
var once sync.Once
var messageType pref.MessageType
lazyInit := func() {
once.Do(func() {
messageName := fd.Message().FullName()
messageType, _ = preg.GlobalTypes.FindMessageByName(messageName)
})
}
return pointerCoderFuncs{
size: func(p pointer, f *coderFieldInfo, opts marshalOptions) int {
m, ok := p.WeakFields().get(f.num)
if !ok {
return 0
}
lazyInit()
if messageType == nil {
panic(fmt.Sprintf("weak message %v is not linked in", fd.Message().FullName()))
}
return sizeMessage(m, f.tagsize, opts)
},
marshal: func(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
m, ok := p.WeakFields().get(f.num)
if !ok {
return b, nil
}
lazyInit()
if messageType == nil {
panic(fmt.Sprintf("weak message %v is not linked in", fd.Message().FullName()))
}
return appendMessage(b, m, f.wiretag, opts)
},
unmarshal: func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
fs := p.WeakFields()
m, ok := fs.get(f.num)
if !ok {
lazyInit()
if messageType == nil {
return unmarshalOutput{}, errUnknown
}
m = messageType.New().Interface()
fs.set(f.num, m)
}
return consumeMessage(b, m, wtyp, opts)
},
isInit: func(p pointer, f *coderFieldInfo) error {
m, ok := p.WeakFields().get(f.num)
if !ok {
return nil
}
return proto.CheckInitialized(m)
},
merge: func(dst, src pointer, f *coderFieldInfo, opts mergeOptions) {
sm, ok := src.WeakFields().get(f.num)
if !ok {
return
}
dm, ok := dst.WeakFields().get(f.num)
if !ok {
lazyInit()
if messageType == nil {
panic(fmt.Sprintf("weak message %v is not linked in", fd.Message().FullName()))
}
dm = messageType.New().Interface()
dst.WeakFields().set(f.num, dm)
}
opts.Merge(dm, sm)
},
}
}
func makeMessageFieldCoder(fd pref.FieldDescriptor, ft reflect.Type) pointerCoderFuncs {
if mi := getMessageInfo(ft); mi != nil {
funcs := pointerCoderFuncs{
size: sizeMessageInfo,
marshal: appendMessageInfo,
unmarshal: consumeMessageInfo,
merge: mergeMessage,
}
if needsInitCheck(mi.Desc) {
funcs.isInit = isInitMessageInfo
}
return funcs
} else {
return pointerCoderFuncs{
size: func(p pointer, f *coderFieldInfo, opts marshalOptions) int {
m := asMessage(p.AsValueOf(ft).Elem())
return sizeMessage(m, f.tagsize, opts)
},
marshal: func(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
m := asMessage(p.AsValueOf(ft).Elem())
return appendMessage(b, m, f.wiretag, opts)
},
unmarshal: func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
mp := p.AsValueOf(ft).Elem()
if mp.IsNil() {
mp.Set(reflect.New(ft.Elem()))
}
return consumeMessage(b, asMessage(mp), wtyp, opts)
},
isInit: func(p pointer, f *coderFieldInfo) error {
m := asMessage(p.AsValueOf(ft).Elem())
return proto.CheckInitialized(m)
},
merge: mergeMessage,
}
}
}
func sizeMessageInfo(p pointer, f *coderFieldInfo, opts marshalOptions) int {
return protowire.SizeBytes(f.mi.sizePointer(p.Elem(), opts)) + f.tagsize
}
func appendMessageInfo(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
b = protowire.AppendVarint(b, f.wiretag)
b = protowire.AppendVarint(b, uint64(f.mi.sizePointer(p.Elem(), opts)))
return f.mi.marshalAppendPointer(b, p.Elem(), opts)
}
func consumeMessageInfo(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.BytesType {
return out, errUnknown
}
v, n := protowire.ConsumeBytes(b)
if n < 0 {
return out, errDecode
}
if p.Elem().IsNil() {
p.SetPointer(pointerOfValue(reflect.New(f.mi.GoReflectType.Elem())))
}
o, err := f.mi.unmarshalPointer(v, p.Elem(), 0, opts)
if err != nil {
return out, err
}
out.n = n
out.initialized = o.initialized
return out, nil
}
func isInitMessageInfo(p pointer, f *coderFieldInfo) error {
return f.mi.checkInitializedPointer(p.Elem())
}
func sizeMessage(m proto.Message, tagsize int, _ marshalOptions) int {
return protowire.SizeBytes(proto.Size(m)) + tagsize
}
func appendMessage(b []byte, m proto.Message, wiretag uint64, opts marshalOptions) ([]byte, error) {
b = protowire.AppendVarint(b, wiretag)
b = protowire.AppendVarint(b, uint64(proto.Size(m)))
return opts.Options().MarshalAppend(b, m)
}
func consumeMessage(b []byte, m proto.Message, wtyp protowire.Type, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.BytesType {
return out, errUnknown
}
v, n := protowire.ConsumeBytes(b)
if n < 0 {
return out, errDecode
}
o, err := opts.Options().UnmarshalState(piface.UnmarshalInput{
Buf: v,
Message: m.ProtoReflect(),
})
if err != nil {
return out, err
}
out.n = n
out.initialized = o.Flags&piface.UnmarshalInitialized != 0
return out, nil
}
func sizeMessageValue(v pref.Value, tagsize int, opts marshalOptions) int {
m := v.Message().Interface()
return sizeMessage(m, tagsize, opts)
}
func appendMessageValue(b []byte, v pref.Value, wiretag uint64, opts marshalOptions) ([]byte, error) {
m := v.Message().Interface()
return appendMessage(b, m, wiretag, opts)
}
func consumeMessageValue(b []byte, v pref.Value, _ protowire.Number, wtyp protowire.Type, opts unmarshalOptions) (pref.Value, unmarshalOutput, error) {
m := v.Message().Interface()
out, err := consumeMessage(b, m, wtyp, opts)
return v, out, err
}
func isInitMessageValue(v pref.Value) error {
m := v.Message().Interface()
return proto.CheckInitialized(m)
}
var coderMessageValue = valueCoderFuncs{
size: sizeMessageValue,
marshal: appendMessageValue,
unmarshal: consumeMessageValue,
isInit: isInitMessageValue,
merge: mergeMessageValue,
}
func sizeGroupValue(v pref.Value, tagsize int, opts marshalOptions) int {
m := v.Message().Interface()
return sizeGroup(m, tagsize, opts)
}
func appendGroupValue(b []byte, v pref.Value, wiretag uint64, opts marshalOptions) ([]byte, error) {
m := v.Message().Interface()
return appendGroup(b, m, wiretag, opts)
}
func consumeGroupValue(b []byte, v pref.Value, num protowire.Number, wtyp protowire.Type, opts unmarshalOptions) (pref.Value, unmarshalOutput, error) {
m := v.Message().Interface()
out, err := consumeGroup(b, m, num, wtyp, opts)
return v, out, err
}
var coderGroupValue = valueCoderFuncs{
size: sizeGroupValue,
marshal: appendGroupValue,
unmarshal: consumeGroupValue,
isInit: isInitMessageValue,
merge: mergeMessageValue,
}
func makeGroupFieldCoder(fd pref.FieldDescriptor, ft reflect.Type) pointerCoderFuncs {
num := fd.Number()
if mi := getMessageInfo(ft); mi != nil {
funcs := pointerCoderFuncs{
size: sizeGroupType,
marshal: appendGroupType,
unmarshal: consumeGroupType,
merge: mergeMessage,
}
if needsInitCheck(mi.Desc) {
funcs.isInit = isInitMessageInfo
}
return funcs
} else {
return pointerCoderFuncs{
size: func(p pointer, f *coderFieldInfo, opts marshalOptions) int {
m := asMessage(p.AsValueOf(ft).Elem())
return sizeGroup(m, f.tagsize, opts)
},
marshal: func(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
m := asMessage(p.AsValueOf(ft).Elem())
return appendGroup(b, m, f.wiretag, opts)
},
unmarshal: func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
mp := p.AsValueOf(ft).Elem()
if mp.IsNil() {
mp.Set(reflect.New(ft.Elem()))
}
return consumeGroup(b, asMessage(mp), num, wtyp, opts)
},
isInit: func(p pointer, f *coderFieldInfo) error {
m := asMessage(p.AsValueOf(ft).Elem())
return proto.CheckInitialized(m)
},
merge: mergeMessage,
}
}
}
func sizeGroupType(p pointer, f *coderFieldInfo, opts marshalOptions) int {
return 2*f.tagsize + f.mi.sizePointer(p.Elem(), opts)
}
func appendGroupType(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
b = protowire.AppendVarint(b, f.wiretag) // start group
b, err := f.mi.marshalAppendPointer(b, p.Elem(), opts)
b = protowire.AppendVarint(b, f.wiretag+1) // end group
return b, err
}
func consumeGroupType(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.StartGroupType {
return out, errUnknown
}
if p.Elem().IsNil() {
p.SetPointer(pointerOfValue(reflect.New(f.mi.GoReflectType.Elem())))
}
return f.mi.unmarshalPointer(b, p.Elem(), f.num, opts)
}
func sizeGroup(m proto.Message, tagsize int, _ marshalOptions) int {
return 2*tagsize + proto.Size(m)
}
func appendGroup(b []byte, m proto.Message, wiretag uint64, opts marshalOptions) ([]byte, error) {
b = protowire.AppendVarint(b, wiretag) // start group
b, err := opts.Options().MarshalAppend(b, m)
b = protowire.AppendVarint(b, wiretag+1) // end group
return b, err
}
func consumeGroup(b []byte, m proto.Message, num protowire.Number, wtyp protowire.Type, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.StartGroupType {
return out, errUnknown
}
b, n := protowire.ConsumeGroup(num, b)
if n < 0 {
return out, errDecode
}
o, err := opts.Options().UnmarshalState(piface.UnmarshalInput{
Buf: b,
Message: m.ProtoReflect(),
})
if err != nil {
return out, err
}
out.n = n
out.initialized = o.Flags&piface.UnmarshalInitialized != 0
return out, nil
}
func makeMessageSliceFieldCoder(fd pref.FieldDescriptor, ft reflect.Type) pointerCoderFuncs {
if mi := getMessageInfo(ft); mi != nil {
funcs := pointerCoderFuncs{
size: sizeMessageSliceInfo,
marshal: appendMessageSliceInfo,
unmarshal: consumeMessageSliceInfo,
merge: mergeMessageSlice,
}
if needsInitCheck(mi.Desc) {
funcs.isInit = isInitMessageSliceInfo
}
return funcs
}
return pointerCoderFuncs{
size: func(p pointer, f *coderFieldInfo, opts marshalOptions) int {
return sizeMessageSlice(p, ft, f.tagsize, opts)
},
marshal: func(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
return appendMessageSlice(b, p, f.wiretag, ft, opts)
},
unmarshal: func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
return consumeMessageSlice(b, p, ft, wtyp, opts)
},
isInit: func(p pointer, f *coderFieldInfo) error {
return isInitMessageSlice(p, ft)
},
merge: mergeMessageSlice,
}
}
func sizeMessageSliceInfo(p pointer, f *coderFieldInfo, opts marshalOptions) int {
s := p.PointerSlice()
n := 0
for _, v := range s {
n += protowire.SizeBytes(f.mi.sizePointer(v, opts)) + f.tagsize
}
return n
}
func appendMessageSliceInfo(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
s := p.PointerSlice()
var err error
for _, v := range s {
b = protowire.AppendVarint(b, f.wiretag)
siz := f.mi.sizePointer(v, opts)
b = protowire.AppendVarint(b, uint64(siz))
b, err = f.mi.marshalAppendPointer(b, v, opts)
if err != nil {
return b, err
}
}
return b, nil
}
func consumeMessageSliceInfo(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.BytesType {
return out, errUnknown
}
v, n := protowire.ConsumeBytes(b)
if n < 0 {
return out, errDecode
}
m := reflect.New(f.mi.GoReflectType.Elem()).Interface()
mp := pointerOfIface(m)
o, err := f.mi.unmarshalPointer(v, mp, 0, opts)
if err != nil {
return out, err
}
p.AppendPointerSlice(mp)
out.n = n
out.initialized = o.initialized
return out, nil
}
func isInitMessageSliceInfo(p pointer, f *coderFieldInfo) error {
s := p.PointerSlice()
for _, v := range s {
if err := f.mi.checkInitializedPointer(v); err != nil {
return err
}
}
return nil
}
func sizeMessageSlice(p pointer, goType reflect.Type, tagsize int, _ marshalOptions) int {
s := p.PointerSlice()
n := 0
for _, v := range s {
m := asMessage(v.AsValueOf(goType.Elem()))
n += protowire.SizeBytes(proto.Size(m)) + tagsize
}
return n
}
func appendMessageSlice(b []byte, p pointer, wiretag uint64, goType reflect.Type, opts marshalOptions) ([]byte, error) {
s := p.PointerSlice()
var err error
for _, v := range s {
m := asMessage(v.AsValueOf(goType.Elem()))
b = protowire.AppendVarint(b, wiretag)
siz := proto.Size(m)
b = protowire.AppendVarint(b, uint64(siz))
b, err = opts.Options().MarshalAppend(b, m)
if err != nil {
return b, err
}
}
return b, nil
}
func consumeMessageSlice(b []byte, p pointer, goType reflect.Type, wtyp protowire.Type, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.BytesType {
return out, errUnknown
}
v, n := protowire.ConsumeBytes(b)
if n < 0 {
return out, errDecode
}
mp := reflect.New(goType.Elem())
o, err := opts.Options().UnmarshalState(piface.UnmarshalInput{
Buf: v,
Message: asMessage(mp).ProtoReflect(),
})
if err != nil {
return out, err
}
p.AppendPointerSlice(pointerOfValue(mp))
out.n = n
out.initialized = o.Flags&piface.UnmarshalInitialized != 0
return out, nil
}
func isInitMessageSlice(p pointer, goType reflect.Type) error {
s := p.PointerSlice()
for _, v := range s {
m := asMessage(v.AsValueOf(goType.Elem()))
if err := proto.CheckInitialized(m); err != nil {
return err
}
}
return nil
}
// Slices of messages
func sizeMessageSliceValue(listv pref.Value, tagsize int, opts marshalOptions) int {
list := listv.List()
n := 0
for i, llen := 0, list.Len(); i < llen; i++ {
m := list.Get(i).Message().Interface()
n += protowire.SizeBytes(proto.Size(m)) + tagsize
}
return n
}
func appendMessageSliceValue(b []byte, listv pref.Value, wiretag uint64, opts marshalOptions) ([]byte, error) {
list := listv.List()
mopts := opts.Options()
for i, llen := 0, list.Len(); i < llen; i++ {
m := list.Get(i).Message().Interface()
b = protowire.AppendVarint(b, wiretag)
siz := proto.Size(m)
b = protowire.AppendVarint(b, uint64(siz))
var err error
b, err = mopts.MarshalAppend(b, m)
if err != nil {
return b, err
}
}
return b, nil
}
func consumeMessageSliceValue(b []byte, listv pref.Value, _ protowire.Number, wtyp protowire.Type, opts unmarshalOptions) (_ pref.Value, out unmarshalOutput, err error) {
list := listv.List()
if wtyp != protowire.BytesType {
return pref.Value{}, out, errUnknown
}
v, n := protowire.ConsumeBytes(b)
if n < 0 {
return pref.Value{}, out, errDecode
}
m := list.NewElement()
o, err := opts.Options().UnmarshalState(piface.UnmarshalInput{
Buf: v,
Message: m.Message(),
})
if err != nil {
return pref.Value{}, out, err
}
list.Append(m)
out.n = n
out.initialized = o.Flags&piface.UnmarshalInitialized != 0
return listv, out, nil
}
func isInitMessageSliceValue(listv pref.Value) error {
list := listv.List()
for i, llen := 0, list.Len(); i < llen; i++ {
m := list.Get(i).Message().Interface()
if err := proto.CheckInitialized(m); err != nil {
return err
}
}
return nil
}
var coderMessageSliceValue = valueCoderFuncs{
size: sizeMessageSliceValue,
marshal: appendMessageSliceValue,
unmarshal: consumeMessageSliceValue,
isInit: isInitMessageSliceValue,
merge: mergeMessageListValue,
}
func sizeGroupSliceValue(listv pref.Value, tagsize int, opts marshalOptions) int {
list := listv.List()
n := 0
for i, llen := 0, list.Len(); i < llen; i++ {
m := list.Get(i).Message().Interface()
n += 2*tagsize + proto.Size(m)
}
return n
}
func appendGroupSliceValue(b []byte, listv pref.Value, wiretag uint64, opts marshalOptions) ([]byte, error) {
list := listv.List()
mopts := opts.Options()
for i, llen := 0, list.Len(); i < llen; i++ {
m := list.Get(i).Message().Interface()
b = protowire.AppendVarint(b, wiretag) // start group
var err error
b, err = mopts.MarshalAppend(b, m)
if err != nil {
return b, err
}
b = protowire.AppendVarint(b, wiretag+1) // end group
}
return b, nil
}
func consumeGroupSliceValue(b []byte, listv pref.Value, num protowire.Number, wtyp protowire.Type, opts unmarshalOptions) (_ pref.Value, out unmarshalOutput, err error) {
list := listv.List()
if wtyp != protowire.StartGroupType {
return pref.Value{}, out, errUnknown
}
b, n := protowire.ConsumeGroup(num, b)
if n < 0 {
return pref.Value{}, out, errDecode
}
m := list.NewElement()
o, err := opts.Options().UnmarshalState(piface.UnmarshalInput{
Buf: b,
Message: m.Message(),
})
if err != nil {
return pref.Value{}, out, err
}
list.Append(m)
out.n = n
out.initialized = o.Flags&piface.UnmarshalInitialized != 0
return listv, out, nil
}
var coderGroupSliceValue = valueCoderFuncs{
size: sizeGroupSliceValue,
marshal: appendGroupSliceValue,
unmarshal: consumeGroupSliceValue,
isInit: isInitMessageSliceValue,
merge: mergeMessageListValue,
}
func makeGroupSliceFieldCoder(fd pref.FieldDescriptor, ft reflect.Type) pointerCoderFuncs {
num := fd.Number()
if mi := getMessageInfo(ft); mi != nil {
funcs := pointerCoderFuncs{
size: sizeGroupSliceInfo,
marshal: appendGroupSliceInfo,
unmarshal: consumeGroupSliceInfo,
merge: mergeMessageSlice,
}
if needsInitCheck(mi.Desc) {
funcs.isInit = isInitMessageSliceInfo
}
return funcs
}
return pointerCoderFuncs{
size: func(p pointer, f *coderFieldInfo, opts marshalOptions) int {
return sizeGroupSlice(p, ft, f.tagsize, opts)
},
marshal: func(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
return appendGroupSlice(b, p, f.wiretag, ft, opts)
},
unmarshal: func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
return consumeGroupSlice(b, p, num, wtyp, ft, opts)
},
isInit: func(p pointer, f *coderFieldInfo) error {
return isInitMessageSlice(p, ft)
},
merge: mergeMessageSlice,
}
}
func sizeGroupSlice(p pointer, messageType reflect.Type, tagsize int, _ marshalOptions) int {
s := p.PointerSlice()
n := 0
for _, v := range s {
m := asMessage(v.AsValueOf(messageType.Elem()))
n += 2*tagsize + proto.Size(m)
}
return n
}
func appendGroupSlice(b []byte, p pointer, wiretag uint64, messageType reflect.Type, opts marshalOptions) ([]byte, error) {
s := p.PointerSlice()
var err error
for _, v := range s {
m := asMessage(v.AsValueOf(messageType.Elem()))
b = protowire.AppendVarint(b, wiretag) // start group
b, err = opts.Options().MarshalAppend(b, m)
if err != nil {
return b, err
}
b = protowire.AppendVarint(b, wiretag+1) // end group
}
return b, nil
}
func consumeGroupSlice(b []byte, p pointer, num protowire.Number, wtyp protowire.Type, goType reflect.Type, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.StartGroupType {
return out, errUnknown
}
b, n := protowire.ConsumeGroup(num, b)
if n < 0 {
return out, errDecode
}
mp := reflect.New(goType.Elem())
o, err := opts.Options().UnmarshalState(piface.UnmarshalInput{
Buf: b,
Message: asMessage(mp).ProtoReflect(),
})
if err != nil {
return out, err
}
p.AppendPointerSlice(pointerOfValue(mp))
out.n = n
out.initialized = o.Flags&piface.UnmarshalInitialized != 0
return out, nil
}
func sizeGroupSliceInfo(p pointer, f *coderFieldInfo, opts marshalOptions) int {
s := p.PointerSlice()
n := 0
for _, v := range s {
n += 2*f.tagsize + f.mi.sizePointer(v, opts)
}
return n
}
func appendGroupSliceInfo(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
s := p.PointerSlice()
var err error
for _, v := range s {
b = protowire.AppendVarint(b, f.wiretag) // start group
b, err = f.mi.marshalAppendPointer(b, v, opts)
if err != nil {
return b, err
}
b = protowire.AppendVarint(b, f.wiretag+1) // end group
}
return b, nil
}
func consumeGroupSliceInfo(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
if wtyp != protowire.StartGroupType {
return unmarshalOutput{}, errUnknown
}
m := reflect.New(f.mi.GoReflectType.Elem()).Interface()
mp := pointerOfIface(m)
out, err := f.mi.unmarshalPointer(b, mp, f.num, opts)
if err != nil {
return out, err
}
p.AppendPointerSlice(mp)
return out, nil
}
func asMessage(v reflect.Value) pref.ProtoMessage {
if m, ok := v.Interface().(pref.ProtoMessage); ok {
return m
}
return legacyWrapMessage(v).Interface()
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,388 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"reflect"
"sort"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/genid"
pref "google.golang.org/protobuf/reflect/protoreflect"
)
type mapInfo struct {
goType reflect.Type
keyWiretag uint64
valWiretag uint64
keyFuncs valueCoderFuncs
valFuncs valueCoderFuncs
keyZero pref.Value
keyKind pref.Kind
conv *mapConverter
}
func encoderFuncsForMap(fd pref.FieldDescriptor, ft reflect.Type) (valueMessage *MessageInfo, funcs pointerCoderFuncs) {
// TODO: Consider generating specialized map coders.
keyField := fd.MapKey()
valField := fd.MapValue()
keyWiretag := protowire.EncodeTag(1, wireTypes[keyField.Kind()])
valWiretag := protowire.EncodeTag(2, wireTypes[valField.Kind()])
keyFuncs := encoderFuncsForValue(keyField)
valFuncs := encoderFuncsForValue(valField)
conv := newMapConverter(ft, fd)
mapi := &mapInfo{
goType: ft,
keyWiretag: keyWiretag,
valWiretag: valWiretag,
keyFuncs: keyFuncs,
valFuncs: valFuncs,
keyZero: keyField.Default(),
keyKind: keyField.Kind(),
conv: conv,
}
if valField.Kind() == pref.MessageKind {
valueMessage = getMessageInfo(ft.Elem())
}
funcs = pointerCoderFuncs{
size: func(p pointer, f *coderFieldInfo, opts marshalOptions) int {
return sizeMap(p.AsValueOf(ft).Elem(), mapi, f, opts)
},
marshal: func(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
return appendMap(b, p.AsValueOf(ft).Elem(), mapi, f, opts)
},
unmarshal: func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
mp := p.AsValueOf(ft)
if mp.Elem().IsNil() {
mp.Elem().Set(reflect.MakeMap(mapi.goType))
}
if f.mi == nil {
return consumeMap(b, mp.Elem(), wtyp, mapi, f, opts)
} else {
return consumeMapOfMessage(b, mp.Elem(), wtyp, mapi, f, opts)
}
},
}
switch valField.Kind() {
case pref.MessageKind:
funcs.merge = mergeMapOfMessage
case pref.BytesKind:
funcs.merge = mergeMapOfBytes
default:
funcs.merge = mergeMap
}
if valFuncs.isInit != nil {
funcs.isInit = func(p pointer, f *coderFieldInfo) error {
return isInitMap(p.AsValueOf(ft).Elem(), mapi, f)
}
}
return valueMessage, funcs
}
const (
mapKeyTagSize = 1 // field 1, tag size 1.
mapValTagSize = 1 // field 2, tag size 2.
)
func sizeMap(mapv reflect.Value, mapi *mapInfo, f *coderFieldInfo, opts marshalOptions) int {
if mapv.Len() == 0 {
return 0
}
n := 0
iter := mapRange(mapv)
for iter.Next() {
key := mapi.conv.keyConv.PBValueOf(iter.Key()).MapKey()
keySize := mapi.keyFuncs.size(key.Value(), mapKeyTagSize, opts)
var valSize int
value := mapi.conv.valConv.PBValueOf(iter.Value())
if f.mi == nil {
valSize = mapi.valFuncs.size(value, mapValTagSize, opts)
} else {
p := pointerOfValue(iter.Value())
valSize += mapValTagSize
valSize += protowire.SizeBytes(f.mi.sizePointer(p, opts))
}
n += f.tagsize + protowire.SizeBytes(keySize+valSize)
}
return n
}
func consumeMap(b []byte, mapv reflect.Value, wtyp protowire.Type, mapi *mapInfo, f *coderFieldInfo, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.BytesType {
return out, errUnknown
}
b, n := protowire.ConsumeBytes(b)
if n < 0 {
return out, errDecode
}
var (
key = mapi.keyZero
val = mapi.conv.valConv.New()
)
for len(b) > 0 {
num, wtyp, n := protowire.ConsumeTag(b)
if n < 0 {
return out, errDecode
}
if num > protowire.MaxValidNumber {
return out, errDecode
}
b = b[n:]
err := errUnknown
switch num {
case genid.MapEntry_Key_field_number:
var v pref.Value
var o unmarshalOutput
v, o, err = mapi.keyFuncs.unmarshal(b, key, num, wtyp, opts)
if err != nil {
break
}
key = v
n = o.n
case genid.MapEntry_Value_field_number:
var v pref.Value
var o unmarshalOutput
v, o, err = mapi.valFuncs.unmarshal(b, val, num, wtyp, opts)
if err != nil {
break
}
val = v
n = o.n
}
if err == errUnknown {
n = protowire.ConsumeFieldValue(num, wtyp, b)
if n < 0 {
return out, errDecode
}
} else if err != nil {
return out, err
}
b = b[n:]
}
mapv.SetMapIndex(mapi.conv.keyConv.GoValueOf(key), mapi.conv.valConv.GoValueOf(val))
out.n = n
return out, nil
}
func consumeMapOfMessage(b []byte, mapv reflect.Value, wtyp protowire.Type, mapi *mapInfo, f *coderFieldInfo, opts unmarshalOptions) (out unmarshalOutput, err error) {
if wtyp != protowire.BytesType {
return out, errUnknown
}
b, n := protowire.ConsumeBytes(b)
if n < 0 {
return out, errDecode
}
var (
key = mapi.keyZero
val = reflect.New(f.mi.GoReflectType.Elem())
)
for len(b) > 0 {
num, wtyp, n := protowire.ConsumeTag(b)
if n < 0 {
return out, errDecode
}
if num > protowire.MaxValidNumber {
return out, errDecode
}
b = b[n:]
err := errUnknown
switch num {
case 1:
var v pref.Value
var o unmarshalOutput
v, o, err = mapi.keyFuncs.unmarshal(b, key, num, wtyp, opts)
if err != nil {
break
}
key = v
n = o.n
case 2:
if wtyp != protowire.BytesType {
break
}
var v []byte
v, n = protowire.ConsumeBytes(b)
if n < 0 {
return out, errDecode
}
var o unmarshalOutput
o, err = f.mi.unmarshalPointer(v, pointerOfValue(val), 0, opts)
if o.initialized {
// Consider this map item initialized so long as we see
// an initialized value.
out.initialized = true
}
}
if err == errUnknown {
n = protowire.ConsumeFieldValue(num, wtyp, b)
if n < 0 {
return out, errDecode
}
} else if err != nil {
return out, err
}
b = b[n:]
}
mapv.SetMapIndex(mapi.conv.keyConv.GoValueOf(key), val)
out.n = n
return out, nil
}
func appendMapItem(b []byte, keyrv, valrv reflect.Value, mapi *mapInfo, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
if f.mi == nil {
key := mapi.conv.keyConv.PBValueOf(keyrv).MapKey()
val := mapi.conv.valConv.PBValueOf(valrv)
size := 0
size += mapi.keyFuncs.size(key.Value(), mapKeyTagSize, opts)
size += mapi.valFuncs.size(val, mapValTagSize, opts)
b = protowire.AppendVarint(b, uint64(size))
b, err := mapi.keyFuncs.marshal(b, key.Value(), mapi.keyWiretag, opts)
if err != nil {
return nil, err
}
return mapi.valFuncs.marshal(b, val, mapi.valWiretag, opts)
} else {
key := mapi.conv.keyConv.PBValueOf(keyrv).MapKey()
val := pointerOfValue(valrv)
valSize := f.mi.sizePointer(val, opts)
size := 0
size += mapi.keyFuncs.size(key.Value(), mapKeyTagSize, opts)
size += mapValTagSize + protowire.SizeBytes(valSize)
b = protowire.AppendVarint(b, uint64(size))
b, err := mapi.keyFuncs.marshal(b, key.Value(), mapi.keyWiretag, opts)
if err != nil {
return nil, err
}
b = protowire.AppendVarint(b, mapi.valWiretag)
b = protowire.AppendVarint(b, uint64(valSize))
return f.mi.marshalAppendPointer(b, val, opts)
}
}
func appendMap(b []byte, mapv reflect.Value, mapi *mapInfo, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
if mapv.Len() == 0 {
return b, nil
}
if opts.Deterministic() {
return appendMapDeterministic(b, mapv, mapi, f, opts)
}
iter := mapRange(mapv)
for iter.Next() {
var err error
b = protowire.AppendVarint(b, f.wiretag)
b, err = appendMapItem(b, iter.Key(), iter.Value(), mapi, f, opts)
if err != nil {
return b, err
}
}
return b, nil
}
func appendMapDeterministic(b []byte, mapv reflect.Value, mapi *mapInfo, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
keys := mapv.MapKeys()
sort.Slice(keys, func(i, j int) bool {
switch keys[i].Kind() {
case reflect.Bool:
return !keys[i].Bool() && keys[j].Bool()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return keys[i].Int() < keys[j].Int()
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return keys[i].Uint() < keys[j].Uint()
case reflect.Float32, reflect.Float64:
return keys[i].Float() < keys[j].Float()
case reflect.String:
return keys[i].String() < keys[j].String()
default:
panic("invalid kind: " + keys[i].Kind().String())
}
})
for _, key := range keys {
var err error
b = protowire.AppendVarint(b, f.wiretag)
b, err = appendMapItem(b, key, mapv.MapIndex(key), mapi, f, opts)
if err != nil {
return b, err
}
}
return b, nil
}
func isInitMap(mapv reflect.Value, mapi *mapInfo, f *coderFieldInfo) error {
if mi := f.mi; mi != nil {
mi.init()
if !mi.needsInitCheck {
return nil
}
iter := mapRange(mapv)
for iter.Next() {
val := pointerOfValue(iter.Value())
if err := mi.checkInitializedPointer(val); err != nil {
return err
}
}
} else {
iter := mapRange(mapv)
for iter.Next() {
val := mapi.conv.valConv.PBValueOf(iter.Value())
if err := mapi.valFuncs.isInit(val); err != nil {
return err
}
}
}
return nil
}
func mergeMap(dst, src pointer, f *coderFieldInfo, opts mergeOptions) {
dstm := dst.AsValueOf(f.ft).Elem()
srcm := src.AsValueOf(f.ft).Elem()
if srcm.Len() == 0 {
return
}
if dstm.IsNil() {
dstm.Set(reflect.MakeMap(f.ft))
}
iter := mapRange(srcm)
for iter.Next() {
dstm.SetMapIndex(iter.Key(), iter.Value())
}
}
func mergeMapOfBytes(dst, src pointer, f *coderFieldInfo, opts mergeOptions) {
dstm := dst.AsValueOf(f.ft).Elem()
srcm := src.AsValueOf(f.ft).Elem()
if srcm.Len() == 0 {
return
}
if dstm.IsNil() {
dstm.Set(reflect.MakeMap(f.ft))
}
iter := mapRange(srcm)
for iter.Next() {
dstm.SetMapIndex(iter.Key(), reflect.ValueOf(append(emptyBuf[:], iter.Value().Bytes()...)))
}
}
func mergeMapOfMessage(dst, src pointer, f *coderFieldInfo, opts mergeOptions) {
dstm := dst.AsValueOf(f.ft).Elem()
srcm := src.AsValueOf(f.ft).Elem()
if srcm.Len() == 0 {
return
}
if dstm.IsNil() {
dstm.Set(reflect.MakeMap(f.ft))
}
iter := mapRange(srcm)
for iter.Next() {
val := reflect.New(f.ft.Elem().Elem())
if f.mi != nil {
f.mi.mergePointer(pointerOfValue(val), pointerOfValue(iter.Value()), opts)
} else {
opts.Merge(asMessage(val), asMessage(iter.Value()))
}
dstm.SetMapIndex(iter.Key(), val)
}
}

View File

@ -0,0 +1,37 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.12
package impl
import "reflect"
type mapIter struct {
v reflect.Value
keys []reflect.Value
}
// mapRange provides a less-efficient equivalent to
// the Go 1.12 reflect.Value.MapRange method.
func mapRange(v reflect.Value) *mapIter {
return &mapIter{v: v}
}
func (i *mapIter) Next() bool {
if i.keys == nil {
i.keys = i.v.MapKeys()
} else {
i.keys = i.keys[1:]
}
return len(i.keys) > 0
}
func (i *mapIter) Key() reflect.Value {
return i.keys[0]
}
func (i *mapIter) Value() reflect.Value {
return i.v.MapIndex(i.keys[0])
}

View File

@ -0,0 +1,11 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.12
package impl
import "reflect"
func mapRange(v reflect.Value) *reflect.MapIter { return v.MapRange() }

View File

@ -0,0 +1,217 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"fmt"
"reflect"
"sort"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/order"
pref "google.golang.org/protobuf/reflect/protoreflect"
piface "google.golang.org/protobuf/runtime/protoiface"
)
// coderMessageInfo contains per-message information used by the fast-path functions.
// This is a different type from MessageInfo to keep MessageInfo as general-purpose as
// possible.
type coderMessageInfo struct {
methods piface.Methods
orderedCoderFields []*coderFieldInfo
denseCoderFields []*coderFieldInfo
coderFields map[protowire.Number]*coderFieldInfo
sizecacheOffset offset
unknownOffset offset
unknownPtrKind bool
extensionOffset offset
needsInitCheck bool
isMessageSet bool
numRequiredFields uint8
}
type coderFieldInfo struct {
funcs pointerCoderFuncs // fast-path per-field functions
mi *MessageInfo // field's message
ft reflect.Type
validation validationInfo // information used by message validation
num pref.FieldNumber // field number
offset offset // struct field offset
wiretag uint64 // field tag (number + wire type)
tagsize int // size of the varint-encoded tag
isPointer bool // true if IsNil may be called on the struct field
isRequired bool // true if field is required
}
func (mi *MessageInfo) makeCoderMethods(t reflect.Type, si structInfo) {
mi.sizecacheOffset = invalidOffset
mi.unknownOffset = invalidOffset
mi.extensionOffset = invalidOffset
if si.sizecacheOffset.IsValid() && si.sizecacheType == sizecacheType {
mi.sizecacheOffset = si.sizecacheOffset
}
if si.unknownOffset.IsValid() && (si.unknownType == unknownFieldsAType || si.unknownType == unknownFieldsBType) {
mi.unknownOffset = si.unknownOffset
mi.unknownPtrKind = si.unknownType.Kind() == reflect.Ptr
}
if si.extensionOffset.IsValid() && si.extensionType == extensionFieldsType {
mi.extensionOffset = si.extensionOffset
}
mi.coderFields = make(map[protowire.Number]*coderFieldInfo)
fields := mi.Desc.Fields()
preallocFields := make([]coderFieldInfo, fields.Len())
for i := 0; i < fields.Len(); i++ {
fd := fields.Get(i)
fs := si.fieldsByNumber[fd.Number()]
isOneof := fd.ContainingOneof() != nil && !fd.ContainingOneof().IsSynthetic()
if isOneof {
fs = si.oneofsByName[fd.ContainingOneof().Name()]
}
ft := fs.Type
var wiretag uint64
if !fd.IsPacked() {
wiretag = protowire.EncodeTag(fd.Number(), wireTypes[fd.Kind()])
} else {
wiretag = protowire.EncodeTag(fd.Number(), protowire.BytesType)
}
var fieldOffset offset
var funcs pointerCoderFuncs
var childMessage *MessageInfo
switch {
case ft == nil:
// This never occurs for generated message types.
// It implies that a hand-crafted type has missing Go fields
// for specific protobuf message fields.
funcs = pointerCoderFuncs{
size: func(p pointer, f *coderFieldInfo, opts marshalOptions) int {
return 0
},
marshal: func(b []byte, p pointer, f *coderFieldInfo, opts marshalOptions) ([]byte, error) {
return nil, nil
},
unmarshal: func(b []byte, p pointer, wtyp protowire.Type, f *coderFieldInfo, opts unmarshalOptions) (unmarshalOutput, error) {
panic("missing Go struct field for " + string(fd.FullName()))
},
isInit: func(p pointer, f *coderFieldInfo) error {
panic("missing Go struct field for " + string(fd.FullName()))
},
merge: func(dst, src pointer, f *coderFieldInfo, opts mergeOptions) {
panic("missing Go struct field for " + string(fd.FullName()))
},
}
case isOneof:
fieldOffset = offsetOf(fs, mi.Exporter)
case fd.IsWeak():
fieldOffset = si.weakOffset
funcs = makeWeakMessageFieldCoder(fd)
default:
fieldOffset = offsetOf(fs, mi.Exporter)
childMessage, funcs = fieldCoder(fd, ft)
}
cf := &preallocFields[i]
*cf = coderFieldInfo{
num: fd.Number(),
offset: fieldOffset,
wiretag: wiretag,
ft: ft,
tagsize: protowire.SizeVarint(wiretag),
funcs: funcs,
mi: childMessage,
validation: newFieldValidationInfo(mi, si, fd, ft),
isPointer: fd.Cardinality() == pref.Repeated || fd.HasPresence(),
isRequired: fd.Cardinality() == pref.Required,
}
mi.orderedCoderFields = append(mi.orderedCoderFields, cf)
mi.coderFields[cf.num] = cf
}
for i, oneofs := 0, mi.Desc.Oneofs(); i < oneofs.Len(); i++ {
if od := oneofs.Get(i); !od.IsSynthetic() {
mi.initOneofFieldCoders(od, si)
}
}
if messageset.IsMessageSet(mi.Desc) {
if !mi.extensionOffset.IsValid() {
panic(fmt.Sprintf("%v: MessageSet with no extensions field", mi.Desc.FullName()))
}
if !mi.unknownOffset.IsValid() {
panic(fmt.Sprintf("%v: MessageSet with no unknown field", mi.Desc.FullName()))
}
mi.isMessageSet = true
}
sort.Slice(mi.orderedCoderFields, func(i, j int) bool {
return mi.orderedCoderFields[i].num < mi.orderedCoderFields[j].num
})
var maxDense pref.FieldNumber
for _, cf := range mi.orderedCoderFields {
if cf.num >= 16 && cf.num >= 2*maxDense {
break
}
maxDense = cf.num
}
mi.denseCoderFields = make([]*coderFieldInfo, maxDense+1)
for _, cf := range mi.orderedCoderFields {
if int(cf.num) >= len(mi.denseCoderFields) {
break
}
mi.denseCoderFields[cf.num] = cf
}
// To preserve compatibility with historic wire output, marshal oneofs last.
if mi.Desc.Oneofs().Len() > 0 {
sort.Slice(mi.orderedCoderFields, func(i, j int) bool {
fi := fields.ByNumber(mi.orderedCoderFields[i].num)
fj := fields.ByNumber(mi.orderedCoderFields[j].num)
return order.LegacyFieldOrder(fi, fj)
})
}
mi.needsInitCheck = needsInitCheck(mi.Desc)
if mi.methods.Marshal == nil && mi.methods.Size == nil {
mi.methods.Flags |= piface.SupportMarshalDeterministic
mi.methods.Marshal = mi.marshal
mi.methods.Size = mi.size
}
if mi.methods.Unmarshal == nil {
mi.methods.Flags |= piface.SupportUnmarshalDiscardUnknown
mi.methods.Unmarshal = mi.unmarshal
}
if mi.methods.CheckInitialized == nil {
mi.methods.CheckInitialized = mi.checkInitialized
}
if mi.methods.Merge == nil {
mi.methods.Merge = mi.merge
}
}
// getUnknownBytes returns a *[]byte for the unknown fields.
// It is the caller's responsibility to check whether the pointer is nil.
// This function is specially designed to be inlineable.
func (mi *MessageInfo) getUnknownBytes(p pointer) *[]byte {
if mi.unknownPtrKind {
return *p.Apply(mi.unknownOffset).BytesPtr()
} else {
return p.Apply(mi.unknownOffset).Bytes()
}
}
// mutableUnknownBytes returns a *[]byte for the unknown fields.
// The returned pointer is guaranteed to not be nil.
func (mi *MessageInfo) mutableUnknownBytes(p pointer) *[]byte {
if mi.unknownPtrKind {
bp := p.Apply(mi.unknownOffset).BytesPtr()
if *bp == nil {
*bp = new([]byte)
}
return *bp
} else {
return p.Apply(mi.unknownOffset).Bytes()
}
}

View File

@ -0,0 +1,123 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package impl
import (
"sort"
"google.golang.org/protobuf/encoding/protowire"
"google.golang.org/protobuf/internal/encoding/messageset"
"google.golang.org/protobuf/internal/errors"
"google.golang.org/protobuf/internal/flags"
)
func sizeMessageSet(mi *MessageInfo, p pointer, opts marshalOptions) (size int) {
if !flags.ProtoLegacy {
return 0
}
ext := *p.Apply(mi.extensionOffset).Extensions()
for _, x := range ext {
xi := getExtensionFieldInfo(x.Type())
if xi.funcs.size == nil {
continue
}
num, _ := protowire.DecodeTag(xi.wiretag)
size += messageset.SizeField(num)
size += xi.funcs.size(x.Value(), protowire.SizeTag(messageset.FieldMessage), opts)
}
if u := mi.getUnknownBytes(p); u != nil {
size += messageset.SizeUnknown(*u)
}
return size
}
func marshalMessageSet(mi *MessageInfo, b []byte, p pointer, opts marshalOptions) ([]byte, error) {
if !flags.ProtoLegacy {
return b, errors.New("no support for message_set_wire_format")
}
ext := *p.Apply(mi.extensionOffset).Extensions()
switch len(ext) {
case 0:
case 1:
// Fast-path for one extension: Don't bother sorting the keys.
for _, x := range ext {
var err error
b, err = marshalMessageSetField(mi, b, x, opts)
if err != nil {
return b, err
}
}
default:
// Sort the keys to provide a deterministic encoding.
// Not sure this is required, but the old code does it.
keys := make([]int, 0, len(ext))
for k := range ext {
keys = append(keys, int(k))
}
sort.Ints(keys)
for _, k := range keys {
var err error
b, err = marshalMessageSetField(mi, b, ext[int32(k)], opts)
if err != nil {
return b, err
}
}
}
if u := mi.getUnknownBytes(p); u != nil {
var err error
b, err = messageset.AppendUnknown(b, *u)
if err != nil {
return b, err
}
}
return b, nil
}
func marshalMessageSetField(mi *MessageInfo, b []byte, x ExtensionField, opts marshalOptions) ([]byte, error) {
xi := getExtensionFieldInfo(x.Type())
num, _ := protowire.DecodeTag(xi.wiretag)
b = messageset.AppendFieldStart(b, num)
b, err := xi.funcs.marshal(b, x.Value(), protowire.EncodeTag(messageset.FieldMessage, protowire.BytesType), opts)
if err != nil {
return b, err
}
b = messageset.AppendFieldEnd(b)
return b, nil
}
func unmarshalMessageSet(mi *MessageInfo, b []byte, p pointer, opts unmarshalOptions) (out unmarshalOutput, err error) {
if !flags.ProtoLegacy {
return out, errors.New("no support for message_set_wire_format")
}
ep := p.Apply(mi.extensionOffset).Extensions()
if *ep == nil {
*ep = make(map[int32]ExtensionField)
}
ext := *ep
initialized := true
err = messageset.Unmarshal(b, true, func(num protowire.Number, v []byte) error {
o, err := mi.unmarshalExtension(v, num, protowire.BytesType, ext, opts)
if err == errUnknown {
u := mi.mutableUnknownBytes(p)
*u = protowire.AppendTag(*u, num, protowire.BytesType)
*u = append(*u, v...)
return nil
}
if !o.initialized {
initialized = false
}
return err
})
out.n = len(b)
out.initialized = initialized
return out, err
}

Some files were not shown because too many files have changed in this diff Show More